CHAPTER 4

4.1. The sketches are as below

![Sketches showing frequency responses](image)

Fig. S4-1.

4.2. It can be verified that the decimator and interpolator can be interchanged if M and L are relatively prime. Thus the system becomes as shown below,

![System diagram](image)

Fig. S4-2.

and therefore,

\[y(n) = \begin{cases}
 x(n) & n \text{ even} \\
 0 & n \text{ odd}
\end{cases} \]

or, \(y(n) = 0.5[1 + (-1)^n]x(n) \).

4.3. We have to first squeeze the frequency response and then filter out the unwanted interpolation images. The scheme to recover \(x(n) \) from \(y(n) \) is

![Scheme diagram](image)

Fig. S4-3.
4.7. We know that \(W^k, 0 \leq k \leq M - 1 \) is a set of \(M \) distinct numbers. Since \(W^M = 1 \), the set
\[
W^k, 0 \leq k \leq M - 1,
\]
(S4.7a)
is evidently a subset of the set \(W^k, 0 \leq k \leq M - 1 \). So these sets are identical if and only if \(W^{k_1} \neq W^{k_2} \) for \(k_1, k_2 \) such that \(0 \leq k_1 < k_2 \leq M - 1 \), i.e.,
\[
e^{-j2\pi k_1 L/M} \neq e^{-j2\pi k_2 L/M}, 0 \leq k_1 < k_2 \leq M - 1,
\]
(S4.7b)
i.e., if and only if \((k_2 - k_1)L \neq KM\) for integer \(K \) i.e., if and only if
\[
\frac{L}{M} \neq \frac{K}{k_2 - k_1}.
\]
If \(L \) and \(M \) are relatively prime, this is not possible (since \(0 < k_2 - k_1 < M \)). On the other hand, if \(L \) and \(M \) are not relatively prime, we can write
\[
\frac{L}{M} = \frac{K}{k_2}
\]
for appropriate \(K \) and \(k_2 < M \), so that \(W^{k_1} = W^{k_2} \) and (S4.7b) fails for \(k_1 = 0 \). Summarizing, the two given sets are identical if and only if \(L \) and \(M \) are relatively prime.

4.8. We get \(y_2(n) = x(nM/L) \) if \(nM \) is a multiple of \(L \) and 0 otherwise. Hence for \(y_1(n) = y_2(n) \) to hold, \(nM \) should be a multiple of \(L \) if and only if \(n \) is a multiple of \(L \). This means that \(M \) and \(L \) should be relatively prime.

4.9. Coins painted are numbered
\[
kM, \quad k = 0, 1, \ldots
\]
The painter returns to the 0th coin without having completed all the coins if and only if
\[
kM \mod N = 0
\]
for some \(k < N \). This holds if and only if \(kM = nN \) for some integer \(n \), so that
\[
\frac{M}{N} = \frac{n}{k}.
\]
Since \(k < N \), this is equivalent to saying that there is a common factor > 1 between \(M \) and \(N \), i.e., \(M \) and \(N \) are not relatively prime. The conclusion is that the painter covers all coins before returning to coin 0, if and only if \(M \) and \(N \) are relatively prime.

4.10. \(x(n) \) has period \(N \) and \(y(n) = x(Mn) \). Let \(L \) denote the period of \(y(n) \). Now,
\[
y(n) = y(n + L) \quad \forall n
\]
\[
\iff x(Mn) = x(Mn + ML) \quad \forall n
\]
\[
\iff ML \text{ is a multiple of } N
\]
\[
\iff pmL \text{ is a multiple of } pq \quad \text{(let } \gcd(M, N) = p, M = pm, N = pq\text{)}
\]
\[
\iff mL \text{ is a multiple of } q
\]
\[
\iff L \text{ is a multiple of } q \quad \text{(since } m \text{ and } q \text{ are relatively prime)}
\]

SOLUTIONS TO CHAP. 4 PROBLEMS 3
L should be the smallest integer such that L is a multiple of q. Therefore,

\[L = q = \frac{N}{p} = \frac{N}{\gcd(M, N)} = \frac{\lcm(M, N)}{M}. \]

Obviously, when M and N are relatively prime, L = N is the largest possible value.

4.11. The plots are

![Fig. S4-11.](image)

4.12.

a) \(h(n) = (1/2)^n \) for \(0 \leq n \leq 9 \). So

\[E_0(z) = h(0) + h(2)z^{-1} + h(4)z^{-2} + h(6)z^{-3} + h(8)z^{-4}, \]

\[= 1 + (1/2)^2 z^{-1} + (1/2)^4 z^{-2} + (1/2)^6 z^{-3} + (1/2)^8 z^{-4}, \]

\[E_1(z) = h(1) + h(3)z^{-1} + h(5)z^{-2} + h(7)z^{-3} + h(9)z^{-4}, \]

\[= (1/2) + (1/2)^3 z^{-1} + (1/2)^5 z^{-2} + (1/2)^7 z^{-3} + (1/2)^9 z^{-4}. \]

b) For \(g(n) = \alpha^n u(n) \), its transfer function can be written as

\[G(z) = \frac{1}{1 - \alpha z^{-1}} = \frac{1}{1 - \alpha^2 z^{-2}} + \frac{\alpha z^{-1}}{1 - \alpha^2 z^{-2}}. \]

By using this, we can obtain the polyphase components of \(H(z) \) as follows,

\[E_0(z) = \frac{1}{1 - (1/4)z^{-1}} + \frac{(1/3)^4 z^{-2}}{1 - (1/9)z^{-1}}, \]

\[E_1(z) = \frac{1/2}{1 - (1/4)z^{-1}} + \frac{(1/3)^3 z^{-1}}{1 - (1/9)z^{-1}}. \]

4.13. Because \(1/(1 + \alpha z^{-1}) = (1 - \alpha z^{-1})/(1 - \alpha^2 z^{-2}) \), \(H(z) \) can be written as \(E_0(z^2) + z^{-1} E_1(z^2) \) with the polyphase components

\[E_0(z) = \frac{a(1 - z^{-1})}{1 - a^2 z^{-2}}, \quad E_1(z) = \frac{1 - a^2}{1 - a^2 z^{-1}}. \]

Note that neither polyphase component is allpass (even if \(a \) is real so that \(H(z) \) is allpass).

4.14. We can rewrite

\[H(z) = \frac{1 + 2R \cos \theta z^{-1} + R^2 z^{-2}}{(1 - R^2 z^{-2})^2 - 4R^2 \cos^2 \theta z^{-2}}. \]