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ABSTRACT

Sparse signal recovery algorithms utilizing multiple measurement
vectors (MMVs) are known to have better performance compared to
the single measurement vector case. However, current work rarely
consider the case when sources have temporal correlation, a likely
situation in practice. In this work we examine methods to account
for temporal correlation and its impact on performance. We model
sources as AR processes, and then incorporate such information into
the framework of sparse Bayesian learning for sparse signal recov-
ery. Experiments demonstrate the superiority of the proposed algo-
rithms. They also show that the performance of existing algorithms
are limited by temporal correlation, and that if such correlation can
be fully exploited, as in our proposed algorithms, the limitation can
be overcome.

Index Terms— Sparse Bayesian Learning, Sparse Signal Re-
covery, Compressive Sensing, Multiple Measurement Vectors

1. INTRODUCTION

Recovering sparse signals from multiple measurement vectors
(MMVs) is an important problem in sparse signal recovery and
compressive sensing. The model can be expressed as

T = ΦW + E, (1)

where Φ ∈ RN×M (N ≤ M) is the dictionary matrix, T ∈ RN×L

is the measurement matrix consisting of L measurement vectors,
W ∈ RM×L is the source matrix with each row representing a
possible source, and E is the noise matrix with white Gaussian noise
entries with zero mean and variance σ2. The MMV problem is often
encountered in practical applications. For example, in neuroelec-
tromagnetic source localization the event-related potentials to iden-
tify exist at least through 5 measurement vectors if the sampling fre-
quency is 500 Hz.

It has been shown [1, 2, 3, 4, 5] that compared to the case of
single measurement vector (SMV), recovery rate can be greatly im-
proved using MMV. Early work was done by Cotter et al.[1] who
showed that given the problem dimensions, i.e. M and N , one can
significantly improve the chances of recovering the sparse solution
utilizing multiple measurement vectors. The work was extended
by Chen et al.[2], giving the sparse signal recovery conditions for
the MMV problem when using �1 versus �0 minimization. Block-
sparsity model [4, 6] was first proposed for the SMV problem, and
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was shown by Eldar et al.[4] that the MMV model can be trans-
formed into the block-sparsity model with relaxed recovery condi-
tions compared to the SMV case.

In addition to the theoretical work, various algorithms were pro-
posed by extending the SMV based algorithms using row norms and
row sparsity, such as M-FOCUSS [1], M-OMP [1, 2] and Greedy
Pursuit [7]. However, these algorithms ignored the dynamics of
sources, which widely exists in practical signals, such as biomedi-
cal signals and video signals. Only recently this issue has received
attention. In [8, 9] spatial correlation among sources was analyzed
and exploited in their algorithms for better performance. Tempo-
ral correlation was also implicitly considered in [10, 11]. In [10]
the temporal correlation was formed as a smoothness constraint and
incorporated into the M-FOCUSS algorithm. In [11] the Kalman
prediction is combined with a traditional sparse signal recovery al-
gorithm, but the hybrid algorithm still uses a SMV algorithm to find
the nonzero rows of W.

Sparse Bayesian learning (SBL) based methods [3, 12], as a
branch of sparse signal recovery methods, have been shown to com-
pare favorably with traditional �1 and �p based methods [3, 9, 13].
However, existing work ignored the case where sources have tem-
poral correlation. In this work we explicitly model sources as
AR processes, transform the MMV model into the block-sparsity
model, and then derive algorithms (called AR-SBL) utilizing the
SBL framework. Experiments show that when sources have tem-
poral correlation, AR-SBL has superior performance and performs
remarkably well even in the case of extremely high correlation.

2. MODEL DESCRIPTION

As in the past work [1, 3], we make the assumption that the multiple
measurement vectors have the same, but unknown, sparsity struc-
ture, i.e. common sparsity [1]. This results in several rows of W
being zero, i.e. row sparsity. An additional consideration in this
work is the correlation among the entries in a non-zero row, referred
to here as a source. The sources (i.e. rows of W) are mutually inde-
pendent, but each source satisfies an AR(1) model 1 given by

Wi,k+1 = βWi,k +
√

1 − β2ni,k, i = 1, · · · , M ; k = 1, · · · , L (2)

where β ∈ (−1, 1) is the AR coefficient 2, and we assume ni,k ∼
N (0, αi) and Wi,k ∼ N (0, αi). The assumption of Gaussianity

1Higher order models can be readily included in the framework but they
increase the complexity of the estimation problem. AR(1) represents a good
compromise between complexity and performance.

2Due to space limit we only present results for the case where all the
sources have the same temporal correlation, but this can be generalized to the
case where each source has a different temporal correlation.
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and parameterized variance αi, the hyperparameters, is motivated
by and consistent with the SBL framework [12, 3]. A value of αi of
zero results in a row with zero entries promoting sparsity. Obviously,
if β = 0 the MMV model becomes the one with i.i.d. sources, which
is widely considered in literature [1, 2, 3, 4, 6, 7]. If β = ±1, the
MMV model is equivalent to the SMV model in terms of recovery
performance, and the benefit from multiple measurement vectors is
only signal to noise ratio (SNR) enhancement.

With the AR(1) modeling assumption, the joint distribution of
Wi· = [Wi1, · · · ,WiL] is given by

p(Wi·; αi, β) ∼ N (0,Ri) (3)

where Ri = αiB
−1 and B is defined as

B ≡

⎡
⎢⎢⎢⎣

1 β · · · βL−1

β 1 · · · βL−2

...
...

. . .
...

βL−1 βL−2 · · · 1

⎤
⎥⎥⎥⎦

−1

. (4)

Under these assumptions, we now develop algorithms to solve for a
row sparse W.

3. AR-SBL ALGORITHMS

By letting t = vec(TT ) ∈ RNL×1, D = Φ ⊗ IL, w =
vec(WT ) ∈ RML×1, and ε = vec(ET ), we can transform the
MMV model (1) to the block-sparsity model:

t = Dw + ε. (5)

We use Bayesian methods to solve the inverse problem.
Note that the likelihood of the model (5) is

p(t|w; σ2) ∼ N (Dw, σ2I). (6)

On the other hand, based on our assumptions in the previous section,
the prior for w is given by

p(w; α1, · · · , αM , β) =

M∏
i=1

p(Wi·; αi, β) = N (0,Σ−1
0 ), (7)

where Σ0 ≡ Γ ⊗ B and Γ ≡ diag{[ 1
α1

, · · · , 1
αM

]}. Thus the

posterior density of w is also Gaussian, and given by

p(w|t; σ2, α1, · · · , αM , β) ∼ N (μw,Σw), (8)

where {
μw = 1

σ2 ΣwDT t
Σw = (Σ0 + 1

σ2 DT D)−1.
(9)

From the posterior, we directly have the MAP estimation of w:

wMAP =
1

σ2
ΣwDT t (10)

where σ2, α1, · · · , αM , and β are estimated using evidence max-
imization or type-II maximum likelihood. This involves marginal-
izing over the weights and then performing ML optimization. The
likelihood function can be shown to be given by:

p(t; σ2, α1, · · · , αM , β) ∼ N (0,Σt) (11)

with Σt ≡ σ2I + DΣ−1
0 DT . We now develop two methods to

maximize it and obtain the parameters; one is the EM method and
the other is the fixed-point method.

3.1. EM based AR-SBL

Treating w as hidden variables, the Q function in the EM framework
is given by

Q = Ew|t;{α,β,(σ2)}(old)

[
log p(t,w; α, β, σ2)

]
. (12)

To estimate α, the Q function reduces to

Q(α) = L log
(|Γ|) − Tr

[(
Γ ⊗ B

)
Ĉw

]
, (13)

where Ĉw = Σ̂w + μ̂wμ̂T
w, and Σ̂w and μ̂w are evaluated us-

ing α(old), β(old) and (σ2)(old). Taking the derivative of (13) w.r.t.
αi (i = 1, · · · , M), we obtain

α
(new)
i =

1

L
Tr

[
BĈi

w

]
, (14)

where Ĉi
w = (Ĉw)[(i−1)L+1 : iL , (i−1)L+1 : iL].

To estimate β, the Q function (12) reduces to

Q(β) = M log
(|B|) − Tr

[(
Γ ⊗ B

)
Ĉw

]
. (15)

Taking the derivative w.r.t. β, the resulting gradient can be used to
develop a gradient-descent based estimation procedure.

β(new) = β + ηTr
[(

Γ ⊗ (BFB)
)
Ĉw − MBF

]
, (16)

where F = ∂(B−1)/∂β, and η is a pre-fixed small step size, or can
be determined by line search methods. In our experiments we use
the classic backtracking method to determine η.

For estimating σ2 the Q function (12) reduces to

Q(σ2) = −NL log σ2 − 1

σ2

[
‖t − Dμ̂w‖2

+(σ2)(old)[ML − Tr(Σ̂wΣ0)
]]

. (17)

After have taken its derivative, we obtain

(σ2)(new) =
‖t − Dμ̂w‖2 + (σ2)(old)

[
ML − Tr(Σ̂wΣ0)

]
NL

. (18)

However, as pointed out in [3, 13], σ2 actually is a tradeoff parameter
between signal fit and sparsity. It is not necessary to estimate it using
(18), but instead one can choose a value (may be different to the true
σ2) using simple heuristic methods.

3.2. Fixed-Point Based AR-SBL

The EM algorithm is computationally complex and has slow conver-
gence. Motivated by the work in the SMV case [12], at the expense
of proven convergence, we derive a fixed-point learning rule for αi,
which typically results in faster convergence. Following the method
in [12], from the log of (11) we take the derivative w.r.t. αi and form
a fixed-point equation, obtaining the following α learning rule:

α
(new)
i =

(μi
w)T BT μi

w

L − 1
αi

Tr(BΣi
w)

, (19)

where we define Σi
w = (Σw)[(i−1)L+1:iL , (i−1)L+1:iL] and μi

w =
(μw)[(i−1)L+1 : iL]. In addition, from the log of (11) we can derive
the β learning rule by the gradient method:

β(new) = β − η1

[
Tr

(
D

(
Γ−1 ⊗ F

)
DT Σ−1

t

)
−tT Σ−1

t D
(
Γ−1 ⊗ F

)
DT Σ−1

t t
]
. (20)
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Similarly, the learning rule for σ2 is given by

(σ2)(new) = σ2 − η2

[
Tr

(
Σ−1

t

) − tT (
Σ−1

t

)2
t
]
. (21)

Based on our experiments (not shown in this paper), the algorithm
exhibits faster convergence but has slightly lower performance than
the EM based one.

4. EXPERIMENTS

Similar to [3], four experiments were carried out. First, a dictionary
Φ ∈ RN×M was created with columns uniformly drawing from the
surface of a unit hypersphere. The source matrix Wgen ∈ RM×L

were randomly generated with D nonzero rows. The nonzero ampli-
tudes of each row were generated according to (2). Then the mea-
surement matrix was constructed by T = ΦWgen +E, where noise
were spatially and temporally uncorrelated Gaussian noise. The goal
of each algorithm was to recovery the source matrix from T and Φ.

For the high SNR case (SNR = 100dB), the performance

measurement is MSE = E
(‖Ŵ − Wgen‖2

F/‖Wgen‖2
F

)
, since

in this case we are interested in the performance both in finding
the locations of sources and in recovering their magnitudes. Here

Ŵ is the estimated source matrix. For the moderate SNR case
(SNR = 20dB), the metric is the ability to identify the sparse rows
measurement. This is measured in terms of the failure rate obtained
by aligning D largest estimated row-norms with the sparsity profile
of Wgen.

Algorithms compared were M-SBL algorithm [3], SOB-M-
FOCUSS [10], and the proposed EM based AR-SBL algorithm.
Experiment 1 studied the case when L varied from 1 to 5. Here
N = 25, M = 50, D = 16, and SNR = 100dB 3. For AR-SBL,
two cases were considered, i.e. β was given or unknown. In the
latter case, we used the initial value β0 = 0.5 to learn β. For SOB-
M-FOCUSS, we used the parameter p = 1 (p-norm) and the k-th
order smoothness approach [10] for L = k + 1(k = 1, · · · , 4) to
achieve the best results. The experiment was repeated 5000 times for
L = 1, 2, 3 and 40000 times for L = 4, 5. Fig.1 present the results
when the true β was 0, 0.5, 0.9, and 0.99, respectively.
Experiment 2 studied the similar case under SNR = 20dB. All the
experiment settings and algorithm initialization were the same to the
previous one, except to D = 12. Results are shown in Fig.2.
Experiment 3 studied the case when D varied from 10 to 20. Here
N, M, SNR and the initial parameters of algorithms were the same
as Experiment 1. The experiment was repeated 100000 times for
D = 10, · · · , 12, 50000 times for D = 13, · · · , 15, and 5000 times
for D = 16, · · · , 20. Results are shown in Fig.3. In Fig.3 (d) the
performance of M-SBL with L = 1 is also shown for comparison
purposes.
Experiment 4 studied the case when the redundancy M/N varied
from 1 to 4, where N = 25, L = 3, D = 16 and SNR = 100dB.
The experiment was repeated 5000 times. Results for β = 0.7 and
0.9 are shown in Fig.4.

Based on the experiments, the following observations can be
made. (1) AR-SBL has superior performance in all cases, and its
performance in the case where β unknown is close to the case where
β given. (2) When β = 0.99 the performance of M-SBL and SOB-
M-FOCUSS is approaching to the one in the case of L = 1 (see
Fig.1(d) and Fig.3(d)), and performance improvement is very limited
with L increasing. In contrast, AR-SBL roughly remains the same
performance with β increasing. With increasing L, the performance

3So this experiment can be viewed as an approximation of noise-free case.

1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Measurements (L)

M
SE

AR−SBL(given β)
M−SBL
AR−SBL(learn β)
SOB−M−FOCUSS

(a) β = 0

1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Measurements (L)

M
SE

AR−SBL(given β)
M−SBL
AR−SBL(learn β)
SOB−M−FOCUSS

(b) β = 0.5

1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Measurements (L)
M

SE

AR−SBL(given β)
M−SBL
AR−SBL(learn β)
SOB−M−FOCUSS

(c) β = 0.9

1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Measurements (L)

M
SE

AR−SBL(given β)
M−SBL
AR−SBL(learn β)
SOB−M−FOCUSS

(d) β = 0.99

Fig. 1. Results when L varied from 1 to 5 and SNR = 100dB.

improvement is significant. (3) Exploiting temporal correlation not
only can help recover signal magnitudes, but also can help correctly
find the locations of active sources (see Fig.2 where the performance
measurement is the failure rate to correctly find the locations, ignor-
ing the magnitudes of sources).

The noisy counterparts of Experiment 3 and Experiment 4 show
similar trends and are not shown here due to the space limit. Also, we
don’t present the comparison results with other popular algorithms,
such as the Basis Pursuit and the Orthogonal Match Pursuit for the
MMV case. However, we note that in [3] the two algorithms have
been compared with M-SBL and show interior performance to M-
SBL.

To explain the success in the presence of temporal correlation,
we draw upon some of the results in [5]. In [5], a parallel was drawn
between the MMV sparse recovery problem and the MIMO commu-
nication problem. Using this connection the performance improve-
ments were connected to the capacity improvements in MIMO chan-
nels which grows as min(D, L). The MIMO channel matrix was
obtained from the non-zero rows of W. Now from MIMO capac-
ity results, it is also known that the MIMO capacity still grows as
min(D, L) at high SNR in correlated channel environments. This
provides some insight into why the algorithms developed perform
well even in correlated environment.

5. CONCLUSION

Temporal correlation widely exists in natural signals, such as
EEG/MEG signals and video signals. Motivated by the fact, we
propose two AR-SBL algorithms for the MMV case incorporating
temporal correlation. The superiority of the algorithms have been
verified by extensive experiments.

Note that under the assumption of i.i.d. sources, current theories
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Fig. 2. Results when L varied from 1 to 5 and SNR = 20dB.

and algorithms have shown [1, 2, 4] that recovery performance im-
proves as the number of measurement vectors increases. However, in
the presence of temporal correlation, the existing MMV algorithms
show less benefits, especially when the temporal correlation is high.
Our work shows that if temporal correlation can be properly mod-
eled and incorporated in algorithms, performance improvement is
also significant even in highly correlated environments.
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