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Abstract—In this paper, the problem of finite-rate feedback
for spatially and temporally correlated Rayleigh fading Multiple
Input Single Output (MISO) channels with estimation errors
at the receiver and feedback delay is addressed. A model
that captures estimation errors, feedback delay, and finite-rate
quantization of the channel is developed. A novel codebook design
algorithm that minimizes the loss in ergodic capacity is pro-
posed. Simulation results show that the new codebook designed
under the consideration of estimation errors and feedback delay
outperforms the codebook designed assuming ideal conditions.
Analysis for the loss in ergodic capacity for spatially i.i.d channels
with channel estimation errors and delay (EED) is presented and
validated through simulations.

Index Terms: MISO systems, transmit beamforming, channel quanti-

zation, spatial correlation, channel estimation errors

I. INTRODUCTION

In a MISO system, if the channel state information (CSI) is
available at the transmitter, both the diversity and array gains
can be achieved with transmit beamforming [1]. In this paper
the focus is on MISO systems where CSI is conveyed from the
receiver to the transmitter through a finite-rate feedback link.
An information theoretic approach to transmit beamforming
with imperfect feedback is presented in [7]. In [8], for spatially
i.i.d channels with estimation errors, the authors study the
bounds on ergodic capacity of Multiple Input and Multiple
Output (MIMO) systems. The lower bounds on ergodic ca-
pacity for spatially correlated MIMO channels with estimation
errors are studied in [9]. When required, in both [8] and [9], an
un-quantized CSI is assumed at the transmitter. The problem
of feedback delay is addressed in [10] and [11].

Most of the existing work on finite rate quantization as-
sumes perfect channel estimation (PCE) and no feedback
delay [2]-[6]. Under PCE and no feedback delay, for spatially
correlated channels, optimum codebook design for ergodic
capacity loss is proposed in [3]. A grassmannian codebook
design for correlated channels with PCE and no delay is
proposed in [6]. In the context of determining a transmit
weighting matrix that improves the performance of orthogonal
space-time block codes, a mean-squared error criteria is used
to design codebook for channels with feedback delay and
feedback channel bit errors [12]. With randomized vector

codebook, the ergodic capacity for spatially i.i.d channels with
estimation errors and finite-rate quantization is studied in [13].

This paper focuses on optimum vector quantization (VQ)
algorithm that is directly related to the loss in ergodic capacity
of a spatially and temporally correlated channel with channel
estimation errors and delay (EED). Following the approach
taken in [2] and [3] the new design criteria can be shown
to be amenable to codebook design using a Lloyd-type VQ
algorithm. The codebook design for spatially i.i.d channel with
EED then becomes a special case of the correlated case. With
this codebook, analysis for loss (for the correlated case only
codebook design is proposed) in ergodic capacity is presented
for the spatially i.i.d scenario with EED.

The rest of this paper is organized as follows. In Section II,
the system model is introduced. In Section III, codebook
design is considered. The ergodic capacity loss analysis for the
i.i.d case is presented in Section IV. Numerical and simulation
results form Section V. The paper is concluded in Section VI.

Notation: Small and upper case bold letters indicate vector
and matrix respectively. E(.), (.)T , (.)H , |.|, and ‖.‖ denote
expectation, transpose, Hermitian, absolute value, and norm
respectively. x ∼ NC (µ,Σ) indicates a circularly symmetric
complex Gaussian random variable x with mean µ and covari-
ance Σ.

II. SYSTEM MODEL

A MISO system with t antennas at the base station (BS)
and one antenna at the mobile station (MS) is consid-
ered. The channel between the BS and the MS is mod-
eled as a frequency-flat, slowly varying Rayleigh fading
channel. The vector valued channel at time k, h[k] =
[h1[k], h2[k], . . . , ht[k]]T , is the MISO channel response with
spatial distribution given by h ∼ NC

(
0,Σhh

)
. Let w ∈ Ct×1

be the unit norm beamforming vector (BV) at the BS. Then,
the received signal at the MS is given by

y[k] = wH [k]h[k]s[k] + η[k], (1)

where η ∼ NC(0, 1). The transmitted symbol is denoted by
s. Average signal to noise ratio (SNR) is E[|s|2] = γs.

In this paper, the CSI is assumed to be imperfectly estimated
at the receiver and is partially available at the transmitter
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through a finite-rate feedback link of B bits per channel
update. Also a delay of D is assumed between channel
estimation and its actual use. More specifically, a quantization
codebook W =

{
v̂1, · · · , v̂N

}
, of size N = 2B composed of

unit-norm transmit BVs is assumed to be known to both the
receiver and the transmitter. Based on the channel estimate, the
receiver selects the best code point v̂ from the codebook and
sends the corresponding index back to the transmitter through
an error free link.

A. Modeling of Estimation Errors and Delay
In MISO systems with feedback, much of the past work

makes the simplifying assumption of perfect channel knowl-
edge at receiver and instantaneous feedback. In practice, this
is not true and both channel estimation error and feedback
delay can result in significant degradation in system perfor-
mance. Our work deals with these sources of error by making
the following assumption about the channel. As indicated
earlier, first the actual channel is modeled as a zero mean
Gaussian random process with certain correlation structure.
By modifying the correlation structure, which typically is
a function of mobility, one can understand the impact of
feedback delay on performance. Second, the channel estimate
and the actual channel are modeled as jointly Gaussian random
processes. The correlation between the two processes provides
a mechanism to control the quality of the channel estimate
and study the impact of channel estimation errors on system
performance. The two together allow for a mechanism to deal
with EED in MISO feedback systems. The modeling can
be justified for pilot based channel estimation schemes and
as shown in later sections, the modeling is mathematically
tractable.

Since the channel is modeled as a Gaussian random process,
for a feedback delay of D, the channel h[k] and its delayed
version h[k−D], are jointly Gaussian with zero mean and are
related in the following manner [15]

h[k] = ΣhdΣ−1
dd h[k−D]+e[k−D] = hc[k−D]+e[k−D], (2)

where hc ∼ NC (0,Σcc), Σcc = ΣhdΣ−1
dd Σdh, and the uncor-

related error component e ∼ NC
(
0,
(
Σhh − ΣhdΣ−1

dd Σdh
))

.
Σhh, Σdd are the autocorrelation matrices of h[k] and h[k−D]
respectively. Σhd and Σdh are the cross-correlation matrices.

In the above equation, in the absence of estimation errors,
hc[k − D] is the quantity available at the transmitter. In the
presence of estimation errors, by virtue of the joint Gaussianity
assumption the ideal channel component in (2), hc[k−D], and
its estimate, he[k − D], are jointly Gaussian with zero mean
and are related in the following manner [15]

hc[k − D] = ΣceΣ−1
ee he[k − D] + ε[k − D], (3)

where ε ∼ NC
(
0,
(
Σcc − ΣceΣ−1

ee Σec
))

. Σcc, Σee are the au-
tocorrelation matrices of hc[k−D] and he[k−D] respectively.
Σce and Σec are the cross-correlation matrices.

The relation between actual channel and the delayed version
of the channel estimate can be obtained by substituting (3)
in (2)

h[k] = h̃[k − D] + n[k], (4)

where h̃ ∼ NC (0,Σim), Σim = ΣceΣ−1
ee Σec and the uncorre-

lated noise n ∼ NC (0,Σn), Σn = Σhh − ΣceΣ−1
ee Σec. In

summary, (2) represents the actual channel in terms of its
delayed version only and (4) represents the actual channel in
terms of its estimated and delayed version. The receiver has
the instantaneous knowledge of h̃[k − D] and the statistical
knowledge of Σn. In the next section, the optimum beam-
forming vector that maximizes the received SNR is derived
based on h̃[k − D], Σn and operating SNR γs.

Note that it is possible to construct slightly different ver-
sions of the above modeling. However, as long as the actual
channel is written as a sum of a channel related component
with NC (0,Σsh) and an orthogonal noise component with
NC (0,Σsn), such that Σsh + Σsn = Σhh, then the rest of
the sections in the paper are directly applicable without any
modification.

III. TRANSMIT BEAMFORMING WITH ESTIMATION

ERRORS AND DELAY (EED)
In this section, we first discuss optimum transmit beam-

forming in the EED context and then develop an optimum
feedback strategy based on vector quantization.

A. Optimum Beamforming
The received signal with an arbitrary unit norm beamform-

ing vector w is given by

y[k] = wH [k]h[k]s[k] + η[k]

= wH [k]
(

h̃[k − D] + n[k]
)

s[k] + η[k]

= wH [k]h̃[k − D]s[k] + ζ̂[k], (5)

where conditioned on w, ζ̂[k] ∼ NC
(
0, 1 + γs wHΣnw

)
. The

appearance of signal term in the noise is due to the fact that
only h̃[k − D] is available at the transmitter instead of actual
channel h[k]. The lower bound on ergodic capacity without
channel quantization is given by [16] (for simplicity all time
indexes are ignored)

C = E

[
log2

(
1 +

γswH h̃ h̃
H

w
1 + γs wHΣnw

)]
. (6)

Selection of wopt, the optimum BV is based on

wopt = arg max
‖w‖=1

(
wH h̃ h̃

H
w

1 + γs wHΣnw

)

= arg max
‖w‖=1

(
wH h̃ h̃

H
w

wH Σd w

)
,

where Σd = γsΣn+I. The solution to the above maximization
problem is given by

wopt = Σ−1
d h̃/‖Σ−1

d h̃‖. (7)

With this selection of the beamforming vector, the lower bound
on the ergodic capacity is given by

C = E [log2 (ω)] , (8)

where ω = 1 + γsh̃
H
Σ−1

d h̃. If there are no estimation errors
and delay, then Σn = I and Σd = I(1+γs). The maximization
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then (without EED) is achieved by the well known solution
of normalized channel direction. Because of EED there is a
different solution given by (7).

B. Beamforming with Quantized Feedback
If the beamforming vector is fedback through a low rate

channel, this results in additional errors. To minimize the effect
of quantization errors, one is naturally led to a VQ framework
and finding an optimum codebook of N = 2B beamforming
vectors. We now discuss the design of such a codebook. The
beamforming vector after quantization is given by

w[k] = v̂[k − D] = Q (wopt) , (9)

where Q is the quantization function. The lower bound on the
ergodic capacity with channel quantization is given by (with
v̂[k − D] from (9) plugged into (6)),

CQ = E

[
log2

(
1 +

γs ‖h̃‖2|ϑ|2

1 + γs v̂HΣnv̂

)]
, (10)

where ϑ = v̂Hv and v = h̃/‖h̃‖. The additional loss in ergodic
capacity (there is already some loss because of EED) due to
channel quantization, is given by

CL = C − CQ = E



 log2



 ω + γs ω V̂
1 + γs ·

(
V̂ + α · |ϑ|2

)







 ,

(11)
where α = ‖h̃‖2 and V̂ = v̂HΣnv̂. Note that CL quantifies
the loss due to quantization alone precisely, and unlike C and
CQ, it is not a bound.

1) Codebook Design: The criteria for designing the code-
book is to minimize the loss in ergodic capacity CL (11).
However, CL in the above form is not very convenient because
it complicates the centroid finding step in the VQ design and
some modification is necessary. After some manipulation, the
loss term CL can be written as

CL = −E log2



1 −



1 −




1 + γs ·

(
V̂ + α · |ϑ|2

)

ω + γs ω V̂











 .

After taking the first order approximation using − log(1−x) !
x, the approximated loss, CLA, can be written as

CLA =
1

ln 2
E




ω − 1 + γs

(
V̂(ω − 1) − α|ϑ|2

)

ω + γs ω V̂





=
1

ln 2
E

(
v̂HΣvv̂

v̂HΣdv̂

)
, (12)

where

Σv =
{

(ω − 1)I + γs(ω − 1)Σn − γsαvvH

ω

}
. (13)

It will be shown that in this form CLA results in a convenient
VQ design. The above approximation is important as the code-
book design will be developed using CLA. The approximation
is well justified in the high SNR and high resolution (higher
N ) regime.

Codebook Design Criterion: Design a quantizer Q ( Q :
Ct → W) to minimize CLA, which can be written as

min
Q(.)

E

(
v̂HΣvv̂

v̂HΣdv̂

)
(14)

where v̂ = Q(v), ‖v̂‖ = 1 and v̂ ∈ W . The above objective
function is amenable to codebook design using Lloyd type
VQ-algorithm with a monotonic convergence property.
Codebook Design Algorithm: Lloyd algorithm has two con-
ditions, the Nearest Neighborhood Condition and Centroid
Condition. The details of these two conditions are discussed
below. Generate a large sample set of vectors v, which are the
normalized vectors of the delayed channel estimates.
Nearest Neighborhood Condition: Beginning with an arbitrary
set of unit vectors v̂i, i = 1, · · · , N forming the codebook W ,
the optimum Voronoi Regions Ri, i = 1, · · · , N are found
from the following condition

Ri =

{
v ∈ Ct :

v̂H
i Σvv̂i

v̂H
i Σdv̂i

≤
v̂H

j Σvv̂j

v̂H
j Σdv̂j

,∀j (= i

}

Ri contains all the training unit norm vectors v satisfying the
above condition. In the above condition, Σv as defined in (13)
contains v (as indicated earlier, v = h̃/‖h̃‖).
Centroid Condition: The codebook W is updated in this step.
For a given partition Ri obtained from the previous step, the
new set of beamforming vectors satisfy

v̂i = arg min
‖v̂‖=1,̂v∈Ri

E

{
v̂HΣvv̂

v̂HΣdv̂

}
, i = 1, · · · , N

= arg min
‖v̂‖=1,̂v∈Ri

{
v̂HΣmv̂

v̂HΣdv̂

∣∣∣∣ v ∈ Ri

}
, i = 1, · · · , N,

where Σm = E(Σv). In the implementation of the algorithm
Σm has to be estimated from the training unit norm vectors
belonging to Ri. To solve the above minimization problem
consider the generalized eigenvalue equation for Σd and Σm

ΣmF = ΛΣdF, (15)

where

Λ = diag (λ1, · · · ,λt) , and F = (f1, · · · , ft) .

Assuming that λ1 > λ2 · · · > λt, the solution to minimization
function is given by normalized version of ft, i.e.the ith new
codeword is given by

v̂i = ft/‖ft‖. (16)

The above two conditions are iterated until the convergence.
Compared to the optimum codebook design presented in [3],

apart from some changes in additive and multiplicative factors,
the primary change due to EED is that, in the centroid
condition, the new codebook design depends on the joint
eigen decomposition of both signal and noise correlation
matrices. In contrast, the centroid condition in [3] requires
eigen decomposition of only the signal correlation matrix.
Similar to [3] a new codebook has to be designed for each SNR
point. However, the codebook design is an off-line process so
it is not a computational burden on MS.
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2) Encoding: Beamforming Vector Selection: The optimum
encoding process (selection of the code point index to be sent
to the transmitter) is defined as follows

v̂ = arg max
v̂i∈W

|〈v̂i, v〉|2

v̂H
i Σdv̂i

By this encoding process, the unit norm sphere St = {v ∈
Ct}, is partitioned into N regions Ri, i = 1, ..., N .

The above encoding process is optimum in the sense that it
maximizes the received SNR. Compared to [3] the encoding
process is also different. Since EED was not considered, in [3]
only the numerator part is used in the encoding.

IV. SPATIALLY IID CHANNEL - LOSS ANALYSIS

Analyzing the loss for correlated channels with EED and
quantization is a complicated problem and analytic tractability
remains elusive at this time. However, we have had success
with the loss in ergodic capacity for the less general but
still important spatially i.i.d channel with EED and channel
quantization. A closed form analytical expression for the
combined loss due to the three forms of feedback imper-
fection (estimation errors, delay and channel quantization) is
derived in this section for the spatially i.i.d channel.

Without EED and channel quantization (i.e., transmitter has
h/‖h‖), the ergodic capacity is given by

Cideal = E
[
log2

(
1 + ‖h‖2γs

)]
. (17)

It can be shown that for the spatially i.i.d channel, Σhh = I and
Σim = |ρ|2I, 0 < |ρ| < 1. More specifically ρ can be shown
as the product of estimation related correlation coefficient ρe,
and delay related correlation co-efficient ρd [14]. With these
values the lower bound on ergodic capacity as given in (10)
becomes

Cquant = E
[
log2

(
1 + ‖h‖2γf

s θ
)]

, (18)

where
γf

s =
|ρ|2γs

1 + (1 − |ρ|2)γs
, and θ = |ϑ|2.

The loss in ergodic capacity between the ideal case, un-
quantized channel without EED, and the quantized channel
with EED is given by (19). Note that this loss formulation is
different (but more general) from the one in spatially correlated
with EED scenario. The loss function in correlated channel
case is defined as the further loss due to quantization. Where
as, for i.i.d, CL−iid implies the overall loss due to EED and
quantization. By using the Taylor series expansion (19) can be
written as

CL−iid =
1

ln 2

∞∑

k=1

1
k

E

[
‖h‖2(γs − γf

s ϑ)
1 + ‖h‖2γs

]k

=
1

ln 2

∞∑

k=1

1
k

E

([
‖h‖2γs

1 + ‖h‖2γs

]k
)

E(βk), (21)

where β = 1 − ξθ, ξ = γf
s

γs
. It is easy to see that ξ < 1 and

ξ = 1 if and only if there is no delay and no estimation error.
In (21), the independence of the quantization related term and
channel norm related term is due to the fact that the channel
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Fig. 1. Performance of new codebook deigned by considering both noise
and signal correlation matrices

is spatially i.i.d. The codebook design for this scenario is a
special case of the previously considered spatially correlated
case. The statistical characterization of θ, required for the loss
analysis, is studied in both [3] and [4] and an approximate pdf
is given as

fθ(x) = 2B(t − 1)(1 − x)t−2, 1 − ψ < x < 1, (22)

where ψ = 2−B/(t−1). The first expectation in (21) can be
evaluated as [18]

E

([
‖h‖2γs

1 + ‖h‖2γs

]k
)

=
Γ(k + t)

Γ(t)
γk

s 2F0 (t + k, k; ;−γs) ,

(23)
where 2F0(, , ; ; ) is the generalized hypergeometric function.
Using change of variables, the pdf of β can be shown to be

fβ(x) =
2B(t − 1)

ξt−1
(ξ − 1 + x)t−2 , 1−ξ < x < 1−ξ+ξψ.

E
(
βk

)
is evaluated in (20) using results from [19], where

τ = 1 − ξ + ξψ. Substituting (23) and (20) in (21) gives the
final closed form expression for CL−iid.

V. NUMERICAL AND SIMULATION RESULTS

The effectiveness of the new codebook design algorithm
can be seen in Fig. 1. It plots the (simulated) lower bound
on ergodic capacity due to the finite rate quantization of the
CSI with estimation errors and feedback delay. Simulation
parameters: t = 3, B ∈ {4, 6}, the spatially correlated
channel, Σhh, is simulated by the correlation model in [20]: A
linear antenna array with antenna spacing of half wavelength,
angle of arrival φ = 0◦ and an uniform angular spread of
[−π/5,π/5]. Σim is simulated in a similar fashion with an
uniform angular spread of [−π/5.5,π/5.5] and the resulting
correlation matrix is scaled by 0.7582. Note that the various
auto and cross correlation matrices are included in Σim, so they
are not specified separately. The noise correlation is given by
Σn = Σhh − Σim.

The new codebook clearly outperforms the codebook de-
signed without taking the EED into account [3]. The difference
between the two codebooks is not much in the low SNR
regime. However, there is a considerable gap in the high SNR
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Cideal − Cquant = E
[
log2

(
1 + ‖h‖2γs

)]
− E

[
log2

(
1 + ‖h‖2γf

s ϑ
)]

CL−iid = −E

[
log2

(
1 + ‖h‖2γf

s ϑ

1 + ‖h‖2γs

)]
= −E

[
log2

(
1 −

‖h‖2(γs − γf
s ϑ)

1 + ‖h‖2γs

)]
(19)

E
(
βk

)
=

2B(t − 1)

ξt−1

∫ 1−ξ+ξψ

1−ξ
xk (ξ − 1 + x)t−2 dx

=
2B(t − 1)(ξ − 1)t−2

ξt−1(k + 1)

[
(τ)k+1

2F0

(
−t + 2, k + 1; 2 + k; 1 +

ξψ

1 − ξ

)
− (1 − ξ)k+1

2F0 (−t + 2, k + 1; 2 + k; 1)

]
, (20)
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Fig. 2. Effect of feedback imperfections on ergodic capacity of spatially i.i.d
channel, compared to Fig. 1, this Fig plots the loss in ergodic capacity due
to EED and channel quantization.

regime. Since the signal part leaks into the noise, all the curves
flatten out at high SNRs. Increasing the number of feedback
bits improves the performance. Though the loss analysis for
correlated channels with EED is not presented, based on the
source coding perspective provided in [17], it can be shown
that the loss is proportional to 2−B/(t−1).

In Fig. 2, both the analytical and simulated curves are
plotted for the loss in ergodic capacity due to estimation errors,
delay and finite rate quantization. The analytical curves are in
agreement with the simulations. Simulation parameters: t = 3,
|ρ|2 = 0.989, and B = 4. In the evaluation of the analytical
expression for loss, (21), only the first 40 terms in the series
were considered. The penalty of having the three forms of
imperfection (solid green line) is quite severe on the system
performance. The figure also shows loss due to quantization
alone and EED alone. The loss due to quantization alone is
seen to be much less compared to the loss due to EED alone.

VI. CONCLUSION

A model that can capture the estimation errors, feedback de-
lay and channel quantization is developed for the spatially and
temporally correlated Rayleigh flat-fading MISO channels. In
the presence of EED, for the optimum transmit beamforming, a
new codebook design algorithm that takes the noise correlation
matrix into account is proposed. Simulations clearly show
that the new codebook outperforms the optimum codebook
designed for perfect channel estimation and no-delay case. For
spatially i.i.d scenario, a closed form analytical expression for
the loss (loss due to EED and channel quantization) in ergodic

capacity is derived and validated through simulations.
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