Homework 4

EXERCISE 5.13. 1. Let 1 =[1,1,--- , 1] € RY. Then the channel equation is:
y=1¢1+z (5.7)

where z ~ C'N (0, NoI) and x must satisfy the power constraint £[r] < P.

We note that we can project the received signal onto the direction of 1 obtaining
the suflicient statistic:
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where Z ~ C'N(0, Ny). Defining # = \/Lz we see that we have an AWGN channel
with power constraint LP and noise variance Ny. Therefore C' = log (1 + ’T{—‘Z)
We see that there is a power gain of L with respect to the single receive antenna
system.

2. Let = [hy, ha, -+, hz]T € CE. Then the channel equation is:
y=hr+z (5.9)

where z ~ CN(0, NyIp ) , h is known at the receiver and & must satisfy the power
constraint Efr] < P.

Since the receiver knows the channel, it can project the received signal onto the
direction of h obtaining the suflicient statistic:
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where Z ~ C'N(0, Ny). Then the problem reduces to computing the capacity of
a scalar fading channel, with fading coefficient given by ||hl|. It follows that:
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In contrast, the single receive antenna system has a capacity C' = F {log (1 + %)} .

The capacity is increased by having multiple receive antennas for two reasons:
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first there is a power gain L, and second HIL” has the same mean but less vari-
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ance than |i|*, and we get a diversity gain. Note that Var {”E—Hz} = 1/ L whereas
Var[|h]*] = 1.
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As L — o0, —a.s 1, s0 it follows that C' ~ log (1 + L\—‘?) for large L.

3. With full CSI, the transmitter knows the channel, and for a given realization of

the fading process {h[n]}Y_, the channel supports a rate:
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and the problem becomes that of finding the optimal power allocation strategy.

We note that the problem is the same as the one corresponding to the case of a
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single receive antenna, replacing |h[n]* by |h[n] It follows that the optimal

solution is also obtained by waterfilling:
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where A is chosen so that the power constraint is satisfied, i.e. E[P*(|[h[?)] = P.

The resulting capacity is:
1 2P*
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At low SNR, when the system is power limited, the benefit of having CSI at the
transmitter comes from the fact that we can transmit only when the channel
is good, saving power (which is the limiting resource) when the channel is bad.
The larger the fluctuation in the channel gain, the larger the benefit. If the
channel gain is constant, then the waterfilling strategy reduces to transmitting
with constant power, and there is no benefit in having CSI at the transmitter.
When there are multiple receive antennas, there is diversity and ||h||?/L does not
fluctuate much. In the limit as L — oc we have seen that this random variable
converges to a constant with probability one. Then, as L increases, the benefit
of having CSI at the transmitter is reduced.
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We know that we can approximate the pdf of ||h|? around 0 by:
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where Rayleigh fading was assumed, and hence the distribution function of ||h||?
evaluated at x is approximately given by:

Hﬂz;# (5.17)

for x small. Thus, for large SNR we get the following approximation for the

outage probability:
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We see that having multiple antennas reduces the outage probability by a factor
of (2% — 1)L /L! and also increases the exponent of SNR™! by a factor of L.
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EXERCISE 8.23. We have the following sequence of steps:

(a) |
pout(R) > P{logdet (I, +SNRHH") < R},

(b) |

> P{SNRT:[HH'] < R},
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Each of these steps can be justilied as follows:
e (a): follows from letting each antenna power be SNR rather than SNR/n;.

e (b): follows from the equation: SNRTr[HH*] < det (I,,, + SNRHH*) and hence

a simple set theoretic containment relationship.

e (c): again follows from a simple set theoretic containment relationship:

, R
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and the facts that hy;s are i.i.d.

e (d): follows from the fact |hy;]* is exponential.

e (e): follows from a simple Taylor series expansion.



Problem 2

Capacity with CSI only at Receiver:

Es H CRew —
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SVD of the Channel Matrix:
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Capacity with CSI at both transmitter and Receiver:
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Waterfilling:
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e Start with iteration counter p=1
e Calculate the constant p
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e Using 4 calculate the power in the i** sub-channel from,
My Ny ,
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e If the energy in the channel with lowest gain is negative, discard it by setting /""" p 1 =0
e Repeat the procedure by setting, p=p+ 1

e The optimal power allocation strategy is found when all the allocated power is non-negative
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Since both the singular values are equal, we can allocate equal power to the two modes
We can see this even from the waterfilling procedure

e Start with iteration counter p=1
e Calculate the constant p
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e Using p calculate the power in the i*h sub-channel from,

Mt Ny .
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e Since both 71, 71 are not negative,y?"" = 1, 7% =1

(a) Capacity with CSI at both transmitter and Receiver:

210
C = Zlog (1 + 07 Nﬁ%) Zlog (1 +o g ) = 2log, (11) = 6.9189

=1 =1

(b) Capacity with CSI only at Receiver:

Eq H
= = 6.9189
C =log, <det < N HH )) 6.918

Comment:

e Since our optimum power allocation strategy with CSI at transmitter gave Rgs = I( which
is what we use for CSI unknown case), channel knowledge at the transmitter doesn’t help in
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H is rank deficient and so it has only one singular value. We should use only one mode
and put all power into it. Waterfilling procedure is not required in this case.
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(a) Capacity with CSI at both transmitter and Receiver:
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Zog 1+U’NMT =log | 1+ 07— = log, (41) = 5.3576
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(b) Capacity with CSI only at Receiver:

E, )\ _
C = log, <det (I + NOMTHH )) = 4.3923

Comments:

e Capacity values with or without CSI (at transmitter) are lower for this channel compared
to the previous channel, this can be attributed to the rank deficient nature of this channel.

e The capacity values with and without CSI are different in this case, (For the previous
channel they are same). This is due to the fact that we avoided putting energy into the mode

that is in the nullspace, which we can’t do if there is no CSI. As a consequence, the capacity
without CSI is less than with CSI.

Problem 3

Capacity Vs. SNR
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Figure 1: Capacity with different antenna configurations

At higher SNR’s, Capacity increases linearly with the rank of channel matrix. The performance
with SIMO is better than MISO. This is due to the array gain seen in SIMO case. Better perfor-

mance of MIMO can be explained by the additional degrees of freedom available. All these plots
assume that transmitter doesn’t have CSI.



Capacity with CSI only at Receiver:
Cyuivo = logy <det <I + pHHH)>
M
let, » = min{Mp, M}
Using a low SNR approximation, outage formulation is given by,
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Correspondingly for SISO,
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Based on the tails of the distributions of ‘%’ and ‘|| h ||>” we can see that to have the same
outage (x), we need to integrate across more region in MIMO case compared to SISO. This leads
to the following inequality,
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The above inequality is noticed to be valid from simulations also. A similar analysis can be carried
out for high SNR regime, using the following approximation.

Curivo = logy <det <I + pHHH>>
My

= rlogp+rlogA

Some observations from plots:

e For small €’s, and at high SNR’s, the outage capacity ratio between MIMO and SISO is more than
the ratio at higher outage values. Which means for smaller outage values having more antennas
(at the transmitter or receiver) is more meaningful than at higher €’s.

e At moderate to high €’s, outage capacity follows the pattern of ergodic capacity, which is a linear
growth in min { Mz, Mg}

e At very high €’s (99%), outage capacity has interesting behavior. At moderate to high SNR’s
linear growth in min { M7, MR} is possible. But at very low SNR’s, SIMO performs better than all
other schemes. MISO has the worst performance of all, MIMO performs slightly better than SISO.
This can be explained in terms of power distribution at the transmitter. At low SNR’s it is better
to use only one channel, since we don’t have channel knowledge if we put energy in both modes
the chance of it being in outage is pretty high. This could be one reason for better performance of
SIMO compared to MIMO. MIMO performs slightly better than SISO because of the 2 receiving
antennas.

P. 187-189 (Tse and Vishwanath) have an analytical treatment of outage capacity for SISO, SIMO
and MISO cases.



Ergodic Capacity: MATLAB code - Slight modification for outage code
% mT, Number of transmitting antennas

% mR, Number of transmitting antennas

% ITER, number of trials

% SNRdB, Range of SNR in dB

% C_SISO, variable for capacity of a SISO system

% C_SIMO, variable for capacity of a SIMO system

% C_MISO, variable for capacity of a MISO system

% C_MIMO, variable for capacity of a MIMO system

% h_SISO, random channel for SISO (with zero mean unit variance)

% h_SIMO, random channel for SIMO

% h_MISO, random channel for MISO

% h_MIMO, random channel for MIMO

cle;

close all;

clear all;

mT = 2;

mR = 2;

ITER = 1000;

SNRdB = [0:25];

SNR = 10.(SNRdB/10);
C_SISO = zeros(1,length(SNR))
C_SIMO = zeros(1,length(SNR));
C_MISO = zeros(1,length(SNR));

C_MIMO = zeros(1,length(SNR));

for ite = 1.ITER

h_SISO = (randn +j*randn)/sqrt(2);

h_SIMO = (randn(mR,1)+j*randn(mR,1))/sqrt(2);

h-MISO = (randn(1,mT)+j*randn(1,mT))/sqrt(2);

h-MIMO = (randn(mR,mT)+j*randn(mR,mT))/sqrt(2);

for K = 1:length(SNR)

C_SISO(K) = C_SISO(K) + log2(1+ SNR(K)*norm(h_SISO)2);

C_SIMO(K) = C_SIMO(K) + log2(1+ SNR(K)*norm(h_SIMO)2);

C_MISO(K) = C_MISO(K) + log2(1+ SNR(K)*norm(h-MISO)2/mT);

C.MIMO(K) = C.MIMO(K) + log2(abs(det(eye(mR)+SNR(K)*h-MIMO*h_MIMO’/mT)));
end

end

C_SISO = C_SISO/ITER;

C_SIMO = C_SIMO/ITER;

C_MISO = C_MISO/ITER;

C_MIMO = C_MIMO/ITER;

plot(SNRdB,C_SISO,’r - .>,SNRdB,C_SIMO,’b - 0’,SNRdAB,C_MISO,’m’,SNRdAB,C_MIMO,’k - *)
legend ("SISO’,’SIMO’"MISO’,’"MIMO’,2)

xlabel('SNR in dB’)

ylabel(’Capacity (b/s/Hz)’)

title(’Capacity Vs. SNR)

grid;
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Figure 2: Outage Capacity: Increases linearly with the rank of channel matrix at high SNR’s
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Figure 3: Outage Capacity at low SNR’s
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