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Abstract

We derive an asymptotic Newton algorithm for Quasi Maximum Likelihood estimation of the ICA
mixture model, using the ordinary gradient and Hessian. The probabilistic mixture framework can
accommodate non-stationary environments and arbitrary source densities. We prove asymptotic stability

when the source models match the true sources. An application to EEG segmentation is given.
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I. INTRODUCTION
A. Related Work

The Gaussian liner model approach is described [1]-[3]. Non-Gaussian sources in the form of Gaussian
scale mixtures, in particular Student’s ¢ distribution, were developed in [4]-[6]. A mixture of Gaussians
source model was employed in [7]-[11]. Similar approaches were proposed in [12], [13]. These models
generally include noise and involve computationally intensive optimization algorithms. The focus in these
models is generally on “variational” methods of automatically determining the number of mixtures in a
mixture model during the optimization procedure. There is also overlap between the variational technique
used in these methods, and the Gaussian scale mixture approach to representing non-Gaussian densities.

A model similar to that proposed here was presented in [14]. The main distinguishing features of the

proposed model are,
J. A. Palmer and S. Makeig are with the Swartz Center for Computational Neuroscience, La Jolla, CA,

{jason, scott}@sccn.ucsd.edu. K. Kreutz-Delgado is with the ECE Department, Univ. of California San Diego, La

Jolla, CA, kreutz@ece.ucsd.edu.

September 12, 2011 DRAFT



1) Mixtures of Gaussian scale mixture sources provide more flexibility than the Gaussian mixture
models of [7], [11], or fixed density models used in [14]. Accurate source density modeling is
important to take advantage of Newton convergence for the true source model, as well as to
distinguish between partially overlapping ICA models by posterior likelihood.

2) Implementation of the Amari Newton method described in [15] greatly improving the convergence,
particularly in the multiple model case, in which prewhitening is not possible (in general a different
whitening matrix will be required for each unknown model.)

3) The second derivative source density quantities are converted to first derivative quantities using
integration by parts related properties of the score function and Fisher Information Matrix. Again
accurate modeling of the source densities makes this conversion possible, and makes it robust in
the presence of other (interfering) models.

The proposed model is readily extendable to MAP estimation or Variational Bayes or Ensemble
Learning approaches, which put conjugate hyperpriors on the parameters. We are interested primarily
in the large sample case, so we do not pursue these extensions here.

The probabilistic framework can also be extended to incorporate Markov dependence of state parameters
in the ICA and source mixtures.

We have also extended the model to include mixtures of linear processes [16], where blind deconvo-
lution is treated in a manner similar to [17]-[20], as well as complex ICA [21] and dependent sources
[21]-[23]. In all of these contexts the adaptive source densities, asymptotic Newton method, and mixture

model features can all be maintained.

II. ICA MIXTURE MODEL

In the standard linear model, observations x(t) € R™, ¢t = 1,..., N, are modeled as linear combinations
of a set of basis vectors A = [a; - - -a,] with random and independent coefficients s;(t), i = 1,...,n,
x(t) = As(t)

We assume for simplicity the noiseless case, or that the data has been pre-processed, e.g.by PCA, filtering,
etc., to remove noise. The data is assumed however to be non-stationary, so that different linear models
may be in effect at different times. Thus for each observation x(t), there is an index h; € {1,..., M}, with
corresponding complete basis set A, with “center” ¢, and a random vector of zero mean, independent

sources s(t) ~ qn(s), where,

an(s) = [ [ ani(s:)
i=1
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such that,

X(t) = AhS(t) +cy

with h = h;. We shall assume that only one model is active at each time, and that model A is active with
probability ~j,. For simplicity we assume temporal independence of the model indices h;, t =1...., N.

Since the model is conditionally linear, the conditional density of the observations is given by,
p(x(t) [ h) = | det Wp| gn(Wh(x(t) - cp))

where W), = A,:l.
The sources are taken to be mixtures of (generally nongaussian) Gaussian Scale Mixtures (GSMs), as
in [24],

ani(si(t)) = Z hij\/ Brij anij (\/Brij (5i(t) = bnij) 5 Phij)
j=1

where each gj;; is a GSM parameterized by pp;;.

Thus the density of the observations X = {x(¢)}, t =1,..., N, is given by,

N M
p(X;0) =[] wmpx(t)|h),

t=1 h=1
vn > 0, Zthl ~vn, = 1. The parameters to be estimated are,
0= {Wh) Chs Yhs Chigs Mhigs /Bhija phij}a

h=1,....M,i=1,...,n,and j =1,...,m.

A. Invariances in the model
Besides the accepted invariance to permutation of the component indices, invariance or redundancy
in the model also exists in two other respects. The first concerns the model centers, ¢, and the source
density location parameters ju,;. Specifically, we have p(X;0) = p(X;0’), © = {...,cp, tnij,-- -}
0 ={.. ,c;L,,u;u.j, S if
C,}L:Ch+ACh7 M;nj = Mhij — [WhAch]i> Jj=1...,m
for any Acy,. Putting ¢j, = E{x(t) | h}, we make the sources s(t) zero mean given the model. The zero

mean assumption is used in the calculation of the expected Hessian for the Newton algorithm.
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There is also scale redundancy in the row norms of W}, and the scale parameters of the source densities.
Specifically, p(X;©) = p(X;0’), where © = {Wy, tisij, Bnij, - - -}, © = {W; ,//hij,ﬁﬁnj, ...}, if for
any 7p; > 0,

(Whli: = [Whli:/Thi,
[hii = Mhij/This Bhij = BrijThis 7=1,...,m
where [Wp,];. is the ith row of W}. We use this redundancy to enforce at each iteration that the rows
of W}, are unit norm by putting 75,; = ||[Wp]::|.
These “reparameterizations” constitute the only updates for the model centers cj. The centers are

redundant parameters given the source means, and are used only to maintain zero posterior source mean

given the model.

III. MAXIMUM LIKELIHOOD

In this section we assume that the model is given and suppress the subscript h. Given i.i.d. data

X = {x1,...,%xn}, we consider the ML estimate of W = A~!. For the density of X, we have,

N
p(X) = [T 1detW|ps(Wx,)
t=1

Let y; = Wx; be the estimate of the sources s;, and let ¢;(y;) be the density model for the ith source,
with q(y:) = [, ¢i(yit). We define,
filyie) & —1og qi(yit)

and f(y;) = >, fi(yit). For the negative log likelihood of the data then (which is to be minimized), we

have,
N

L(W) = ) —log|det W]+ f(y¢) (1)
t=1

The gradient of this function is proportional to,

N
VLW) o =W T4 S ] @
t=1

Note that if we multiply (2) by WT'W on the right, we get,

N
1 T
AW = (I—N;gm)w 3)
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where g; £ Vf(y;). This transformation is in fact a positive definite linear transformation of the matrix
gradient. Specifically, using the standard matrix inner product in R"*", (A, B) = tr(AB”), we have for
nonzero V,

(V,VWTW) = (VW' VW') >0 4)

when W is full rank. The direction (3) is known as the “natural gradient” [25].

A. Hessian

Denote the gradient (2) by G with elements g;;, each a function of W. Taking the derivative of (2),
we find,

0gij

Owpg

= W [W 1 + <f{’([WXt]k)$jt$lt5ik>N

where J;; is the Kronecker delta symbol, and < : >  denotes the empirical average % >~ -. To see how
this linear Hessian operator transforms an argument B, let C = 7 (B) be the transformed matrix. Then

we calculate,

Cij = Z Z[Wil]li[wil]jkbkl + <fz'//(yit)$jt Z bil$lt>N
ko1

l

The first term of ¢;; can be written,

S WTLWTBly = Y [WTuBTW T,
! !
= W'B'"W™];
Writing the second term in matrix form as well, we have for the linear transformation C = H(B),

C=WTBIW T+ (diag (/" (vo)Brox] ) N

where diag(f”(y¢)) is the diagonal matrix with diagonal elements f/'(y;;).
This equation can be simplified as follows. First, let us rewrite the transformation (5) in terms of the

source estimates y. We first write,
C = (BW ) W+ (diag(f"(y:)) BW yiy/ WT)
Now if we define C 2 CW7 and B 2 BW 1, then we have,

C=B"+ <diag(f”(yt))BytytT >N (6)

September 12, 2011 DRAFT



At the optimum, we may assume that the source density models ¢;(y;) are equivalent to the true source
densities p;(s;). Writing (6) in component form and letting N go to infinity we find for the diagonal

elements,

[C]zz = [B i T E{ (yi)>_x[B ]zkykyi} =1+ 772)[]3]21 (7N

where we define 7; = E{f"(y;)y?}. The cross terms drop out since the expected value of f”(y;)y;y is
zero for k # i by the independence and zero mean assumption on the sources. Now we note, as in [15],

[26], [27], that the off-diagonal elements of the equation (6) can be paired as follows,

[Cl;; = Blji + E{Lf (90) X Blinurys } = Bl + rio} [Bli

[Cly; = Blij + E{f (95)1Bljrynyi} = Blij + rj07 Blji
where we define k; = E{f(y;)} and 0? £ E{y?}. Again the cross terms drop out due to the expectation
of independent zero mean random variables. Putting these equations in matrix form, we have,
[(Nj]z'j _ |mioy 1 2 []~3]z'j ®
[Clji 1 rjoi | | [Blji
If we denote the linear transformation defined by equations (7) and (8) by C= 7:[(]:31), then we have,

C = HB) = HBW Hw 7 9)

Thus by an argument similar to (4), we see that H is asymptotically positive definite if and only if H is
asymptotically positive definite and W is full rank.
The conditions for positive definiteness of H can be found by inspection of equations (7) and (8).

With the definitions,

m 2 E{lf (i)}, w2 E{f(y)}, o] £ E{y}
the conditions can be stated [15] as,
1) 1+n >0, Vi
2) k; >0, Vi, and,
3) Kkikjoio —1>0 Vi#£j

B. Asymptotic stability

Using integration by parts, it can be shown that the stability conditions are always satisfied when

fly) = —logp(y), i.e. q(y) matches the true source density p(y). Specifically, we have the following.
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Theorem 1: If fi(y;) = —logqi(y;) = —logp;(y;), with [pily) = 1,7 =1,...,n, ie. the source
density models match the true source densities, and p;(y) is twice differentiable with E{f/(y)} and
E{y?} finite, i = 1,...,n, and at most one source is Gaussian, then the stability conditions hold.

Proof: For the first condition, we use integration by parts to evaluate,

B W) = [ ) ply) dy

with v = y?p(y) and dv = f"(y)dy. Using the fact that v = f'(y) = —p'(y)/p(y), we get

- [ S W) 2y — 21 W) ply) dy (10)

The first term in (10) is zero if p'(y) = o(1/y?) as y — oo. This must be the case for integrable
p(y), since otherwise we would have p/(y) — C/y?, and p(y) = O(1/y) and non-integrable. Then, since
[ p(y)dy = 1, we have,

1+ B ) = [ TP W) - 298 () + 1) py)dy
= B{(uf'p) -1} = 0

where equality holds only if p(y) o< 1/y, so strict inequality must hold for integrable p(y).

For the second condition,

E{f"(y)} >0

using integration by parts with v = p(y), dv = f”(y)dy, and the fact that p’(y) must tend to O as

y — +oo for integrable p(y), we get,

E{f"(y) / FW)?p(y)dy = E{f'(y)*} >0

Finally, for the third condition, we have,

E{*YE{f"(v)} = E{*}E{f'(v)*} > (E{uf'()})* =1

by the Cauchy Schwartz inequality, with equality only for f’(y) o y, i.e. p(y) Gaussian. Thus,

E{iYE{S () YE{TYE{f] ()} > 1

whenever at least one of y; and y; is nongaussian. [ ]
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C. Newton method

The inverse of the Hessian operator, from (9), will be given by,

B =HC) = H(CWIW (11)

The calculation of B = ’H_l(é) is easily carried out by inverting the transformation (7) and (8),

= Cli .

B, = Tt i=1,...,n (12)
i 22(Ci; — (€.,

[B]Z] _ /{JUz[ ]2]2 [ ]]z’ \V/Z#j (13)

KikjO;705F — 1

The Newton direction is given by taking C = —GQG, the gradient (2),

AW =H (- GWIW (14)
Let,
L X
LD eyl (15)
t=1
We have —GWT =1 — &. If we let B =H(—GWT), then
= 1—[®y; .
by = ————, =1,..., 1
1+mn ' " (10
- D). — ko2 [P,

KikjO;0; 1
Then
AW = BW (18)

IV. CRAMER-RAO LOWER BOUND

By the theorem on asymptotic efficiency of Maximum Likelihood estimation, we have that the asymp-
totic and minimum error covariance of the estimation of W is given by the inverse Fisher Information
matrix. Also, since the asymptotic distribution is Gaussian, we can determine the asymptotic distribution
linear transformations of W. In particular, we see that the asymptotic distribution of C £ WA, where
A = W1 is the true (unknown) mixing matrix. Remarkably, we find that this asymptotic distribution
does not depend on A, but only on the source density statistics.

Specifically, the inverse Fisher information matrix is 7!, and the asymptotic minimum error covari-
ance in the estimate is N~'%{~'. The minimum error covariance matrix for the pair of off-diagonals c;;

and cj; with a sample size N is given by,

52—
1 1 K;o; 1
N k.k.0202 —

Kikjo;o; — 1 1 "%%2'
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In particular, the asymptotic distribution of C is Normal with mean I, and variance,
1 HJ o? 5 11
——, FE{(é; —1
- NK%HJ —1’ {(é = N1

E { zg
For the Generalized Gaussian density, we have,

P2 -1/pm) UZ_F(S/pi) o
B (775 B X770 M

V. EM PARAMETER UPDATES

We define h; to be the random variable denoting the index of the model chosen at time ¢, producing
the observation x(¢), and define the random variables vy,
1, he=h

2
Uth =
0, otherwise

We define jp;; to be the random variable indicating the source density mixture component index that is
chosen at time ¢ (independently of h;) for the ith source of the hth model, and we define the random
variables up;;; by,

1

A Y

Jthi = j and hy = h
Uthij
0, otherwise

We employ the EM algorithm by writing the density of X as a marginal integral over “complete” data,
which includes U and V,

N M
p(X;0) = ZH Pv”’ = Z eXP(ththh)
V t=1h=1 V t=1
N M
= Zexp(zzvth 10g7h+10g|detwh| +Zzuth1thhzg)
u,v t=1 h=1 =1 j=1

where we make the definitions,
A
bth = Wh(xt — Ch)

Ythij £ V Bk ([bth]i - Mmj)
exp(Qthij) = hyij/ Brnij hnsj (Ythis)

d m
Py 2 yh\detWh}HZeXp(chij) £ exp(L,)
i1 j=1

The posterior expectation, @;Lt is given by,
Pl exp(L!
bty = B{og|x; 0'} = Plog, = 1|x4; 0] = th — = (Ltn) (19)
h'—l P Zh’—l eXP(Lth')
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10

For the aﬁnjt, we have,
uéhw = P[uthij =1]|xy; @l]
= P[uthzjzl|vht:1,xt;@l]P[vht:1\xt;@l}
= éihij@}th (20)
where éihij £ E{wpijlvin=1,x%,;0'}:

5 exp(Qf;)
Zthi
i~ Z?:l eXp(chij,)

The function to be maximized in the EM algorithm is then,

2n

N M d

m
Z Z [@ih (logyh +log | det Wy |) + Z Z i (108 kg + 5108 Brg — Fhig (Yinis))

t=1 h=1 i=1 j=1
where f,.; = —logqy,,;. Maximizing with respect to ;, subject to vy, >0, >, v, = 1, we get,

N

1

! ~1

Yt = N § ol (22)
t=1

We can then rearrange the likelihood as,

n m
Z yhlogdet Wil + YOS STl (logags + 4 log By — fkj(ythikhj)))

k=1 j=1 h:ig, >0

Maximizing with respect to ay; subject to ay; > 0, Z cag; = 1, we get,

O[l+1 Zh pn >0 Zt 1 vthzthlk; 7
k
! Zh:ikh>0 Zt:l th

We define the following expectations conditioned on the model h, in which G; are arbitrary functions of

(23)

Xt

e

B G Ih} & 20Ct poain iy e Lot Taniy
vl Z ul

t Vth t Ythij

We also define the following, conditioned on the component k, in which Gy, are arbitrary functions of

x; and parameters of model an arbitrary model h,

~1
> b ‘>0 Do Utthh
M
> “ien >0 >0 vth

Now we can rearrange the likelihood as,

Zv’“ log | det W,| + ch“ Za’“(é 10g Brj — Eu{ frj (v/Brj ([benlivs — 155))] k,j})
k=1

N
Zh ixn >0 Et thlkth
D i >0 2t U “thzku

E G |k} 2 EA{Gu |k, j} &
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11

where we define ¢ = > ;.. (7 to be the total probability of a context containing component £,

l+1 A Z ,yl"r]. (24)

hiign >0

If the source mixture component densities are strongly super-Gaussian, then we can maximize the

surro gate likelihood,

Zﬂy”l log | det Wj| + ZCl+1 Z Oél+1 <§ 10g Br; — 5 Br; Eu{gihikhj([bth]ikh - Nkj)2}>
k=1 j=1

where,
fk] (ythzkh])

gthlkhj
ythikh j

The location and scale parameter updates are then given by,

Ml+1 _ Eu{géh’ikhj[bth]ikh k?]} l 1 E, {fk] ythlkhj ’-7} (25)
ki T : = ﬁ
and, l
/BH_l _ 1 _ ﬁk’] (26)
- 2 N / l l ;
Eu{gihlkh] ([bth]ikh - Méw) } kvj} Eu{fkj (ythikhj) ythikhj k’]}
The Generalized Gaussian shape parameters are updated by,
Dpnij = 1= (Phi/ V(14 1/ks)) Bud [his it 5108 [y el 27
or if Pkj > 2,
Aprj = V(14 1/phi;)/ph; — B ynije| o108 [ynijel P |k, 5} (28)

A. ICA mixture model Newton updates

Since F' is an additive function of the W, the Newton updates can be considered separately. The

cost function for Wy, is,

log | det Wy| — Ev{ Z Z «%lthij Frnii Ytni) { h}

i=1 j=1

The gradient of this function is,
W, T+ Eo{gn(xe —cn)" | 1} (29)

where gy, is defined by,

m

[gnl; 2 Z Ztnii Brog Fo. i (Utnis) (30)
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12

Denote the matrix gradient (29) by Gy,. Taking the derivative of [Gy,];, with respect to [Wp]r\, we

get,
d[Ghliv _ _ - A
WZ]M\ = (Wi T Wil + 0k D BrigEo{ 2hnij S (yenig) (20t — [enl) (oxe = [enln) [ 1}

j=1

For the linear transformation C = H(B), we have,
C=W;, " B"W; T + E,{Dy,B(x; — c,)(x; — cz)" | h} (31)

where Dy, is the diagonal matrix with diagonal elements

m
D], = Z Ztnij Boncs Tt (Yenis) (32)
j=1
To simplify the calculation of the asymptotic value of the Hessian, we rewrite the second term on the
right hand side of (31) as,

E,{Dyu,BW, 'by,bf, W, " | h}
If we define C £ CW% and B £ BW,:l, then we have,

C=B"+ E,{Dy,Bbyb}, | h} (33)
Now we write the ¢th row of the second term in (33) as,

Zﬂkh B S 1 (yenis) [Bys]s b, | 1) (34)
7j=1

Since by, is zero mean given model 5, the Hessian matrix reduces to a 2 x 2 block diagonal form as in

the single model case. In the multiple model case we get,

m

Mhi 2> @t B Bu{ £ (Wenig) o)} | o5 }
7=1

Kpi = Z @%1 Brnig Bu{ F1 5 (Weniz) | 1y g }
j=1

on & Ey{[bw]}|h}

)

where o/“ E, {zth”| h} (sum weighted only by model A likelihood). If we define,

Mhig = Buf{ £ Winis) Yinij | b3 }

wnij = Bu{fi,;(Winig) | h 7}
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or, using integration by parts to rewrite the integrals,

Anij = L4+mn; = Euf (fl/ch,,;j(ythij)ythij - 1)2 |h,j}

Khij = EU{fllcmj(ythij)zyh’j}

then the expressions can be simplified to the following,

2
Ahi = Zah” (Anij + Bhij £nij i)
141
Kpi = Za;:{jﬂhijffhij
j=1

ohi = Bo{lbuli|h}

Define,
@, £ E,{gubiy|h}

We have —GhWT =1-— &, If we let,

B=H'(-G,Wi)=H"'(I-&,)
then we have,
~ 1— [Pyl
|, - %o
Ahi
- [®nlji — knjor [ ®nli; .,
[B]z’j = - 2] Qm ”7 Vi#j
KhikhjOh;Ohi — 1

Then
AW, = BW,,

The log likelihood of ©' given X is calculated as,
@l]X Zlog(Zexp ih )

VI. EXPERIMENTS
VII. CONCLUSION
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