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AMICA: An Adaptive Mixture of Independent

Component Analyzers with Shared Components
Jason A. Palmer, Ken Kreutz-Delgado, and Scott Makeig

Abstract

We derive an asymptotic Newton algorithm for Quasi Maximum Likelihood estimation of the ICA

mixture model, using the ordinary gradient and Hessian. The probabilistic mixture framework can

accommodate non-stationary environments and arbitrary source densities. We prove asymptotic stability

when the source models match the true sources. An application to EEG segmentation is given.
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I. INTRODUCTION

A. Related Work

The Gaussian liner model approach is described [1]–[3]. Non-Gaussian sources in the form of Gaussian

scale mixtures, in particular Student’s t distribution, were developed in [4]–[6]. A mixture of Gaussians

source model was employed in [7]–[11]. Similar approaches were proposed in [12], [13]. These models

generally include noise and involve computationally intensive optimization algorithms. The focus in these

models is generally on “variational” methods of automatically determining the number of mixtures in a

mixture model during the optimization procedure. There is also overlap between the variational technique

used in these methods, and the Gaussian scale mixture approach to representing non-Gaussian densities.

A model similar to that proposed here was presented in [14]. The main distinguishing features of the

proposed model are,
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1) Mixtures of Gaussian scale mixture sources provide more flexibility than the Gaussian mixture

models of [7], [11], or fixed density models used in [14]. Accurate source density modeling is

important to take advantage of Newton convergence for the true source model, as well as to

distinguish between partially overlapping ICA models by posterior likelihood.

2) Implementation of the Amari Newton method described in [15] greatly improving the convergence,

particularly in the multiple model case, in which prewhitening is not possible (in general a different

whitening matrix will be required for each unknown model.)

3) The second derivative source density quantities are converted to first derivative quantities using

integration by parts related properties of the score function and Fisher Information Matrix. Again

accurate modeling of the source densities makes this conversion possible, and makes it robust in

the presence of other (interfering) models.

The proposed model is readily extendable to MAP estimation or Variational Bayes or Ensemble

Learning approaches, which put conjugate hyperpriors on the parameters. We are interested primarily

in the large sample case, so we do not pursue these extensions here.

The probabilistic framework can also be extended to incorporate Markov dependence of state parameters

in the ICA and source mixtures.

We have also extended the model to include mixtures of linear processes [16], where blind deconvo-

lution is treated in a manner similar to [17]–[20], as well as complex ICA [21] and dependent sources

[21]–[23]. In all of these contexts the adaptive source densities, asymptotic Newton method, and mixture

model features can all be maintained.

II. ICA MIXTURE MODEL

In the standard linear model, observations x(t) ∈ Rm, t = 1, . . . , N , are modeled as linear combinations

of a set of basis vectors A , [a1 · · ·an] with random and independent coefficients si(t), i = 1, . . . , n,

x(t) = As(t)

We assume for simplicity the noiseless case, or that the data has been pre-processed, e.g.by PCA, filtering,

etc., to remove noise. The data is assumed however to be non-stationary, so that different linear models

may be in effect at different times. Thus for each observation x(t), there is an index ht ∈ {1, . . . ,M}, with

corresponding complete basis set Ah with “center” ch, and a random vector of zero mean, independent

sources s(t) ∼ qh(s), where,

qh(s) =

n∏
i=1

qhi(si)
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such that,

x(t) = Ahs(t) + ch

with h = ht. We shall assume that only one model is active at each time, and that model h is active with

probability γh. For simplicity we assume temporal independence of the model indices ht, t = 1. . . . , N .

Since the model is conditionally linear, the conditional density of the observations is given by,

p(x(t) |h) = |detWh| qh
(
Wh(x(t)− ch)

)
where Wh , A−1

h .

The sources are taken to be mixtures of (generally nongaussian) Gaussian Scale Mixtures (GSMs), as

in [24],

qhi
(
si(t)

)
=

m∑
j=1

αhij

√
βhij qhij

(√
βhij(si(t)− µhij) ; ρhij

)
where each qhij is a GSM parameterized by ρhij .

Thus the density of the observations X , {x(t)}, t = 1, . . . , N , is given by,

p(X; Θ) =

N∏
t=1

M∑
h=1

γhp(x(t) |h),

γh ≥ 0,
∑M

h=1 γh = 1. The parameters to be estimated are,

Θ =
{
Wh, ch, γh, αhij , µhij , βhij , ρhij

}
,

h = 1, . . . ,M, i = 1, . . . , n, and j = 1, . . . ,m.

A. Invariances in the model

Besides the accepted invariance to permutation of the component indices, invariance or redundancy

in the model also exists in two other respects. The first concerns the model centers, ch, and the source

density location parameters µhij . Specifically, we have p(X; Θ) = p(X; Θ′), Θ = {. . . , ch, µhij , . . .},

Θ′ = {. . . , c′h, µ′
hij , . . .}, if

c′h = ch +∆ch, µ′
hij = µhij − [Wh∆ch]i, j = 1, . . . ,m

for any ∆ch. Putting c′h = E{x(t) |h}, we make the sources s(t) zero mean given the model. The zero

mean assumption is used in the calculation of the expected Hessian for the Newton algorithm.
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There is also scale redundancy in the row norms of Wh and the scale parameters of the source densities.

Specifically, p(X; Θ) = p(X; Θ′), where Θ = {Wh, µhij , βhij , . . .}, Θ′ = {W′
h, µ

′
hij , β

′
hij , . . .}, if for

any τhi > 0,

[W′
h]i: = [Wh]i:/τhi,

µ′
hij = µhij/τhi, β′

hij = βhijτ
2
hi, j = 1, . . . ,m

where [Wh]i: is the ith row of Wh. We use this redundancy to enforce at each iteration that the rows

of Wh are unit norm by putting τhi = ∥[Wh]i:∥.

These “reparameterizations” constitute the only updates for the model centers ch. The centers are

redundant parameters given the source means, and are used only to maintain zero posterior source mean

given the model.

III. MAXIMUM LIKELIHOOD

In this section we assume that the model is given and suppress the subscript h. Given i.i.d. data

X = {x1, . . . ,xN}, we consider the ML estimate of W = A−1. For the density of X, we have,

p(X) =

N∏
t=1

| detW| ps(Wxt)

Let yt = Wxt be the estimate of the sources st, and let qi(yi) be the density model for the ith source,

with q(yt) =
∏

i qi(yit). We define,

fi(yit) , − log qi(yit)

and f(yt) ,
∑

i fi(yit). For the negative log likelihood of the data then (which is to be minimized), we

have,

L(W) =

N∑
t=1

− log |detW|+ f(yt) (1)

The gradient of this function is proportional to,

∇L(W) ∝ −W−T +
1

N

N∑
t=1

∇f(yt)x
T
t (2)

Note that if we multiply (2) by WTW on the right, we get,

∆W =

(
I− 1

N

N∑
t=1

gty
T
t

)
W (3)
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where gt , ∇f(yt). This transformation is in fact a positive definite linear transformation of the matrix

gradient. Specifically, using the standard matrix inner product in Rn×n, ⟨A,B⟩ = tr(ABT ), we have for

nonzero V, ⟨
V,VWTW

⟩
=

⟨
VWT ,VWT

⟩
> 0 (4)

when W is full rank. The direction (3) is known as the “natural gradient” [25].

A. Hessian

Denote the gradient (2) by G with elements gij , each a function of W. Taking the derivative of (2),

we find,
∂gij
∂wkl

= [W−1]li[W
−1]jk +

⟨
f ′′
i

(
[Wxt]k

)
xjtxltδik

⟩
N

where δik is the Kronecker delta symbol, and
⟨
·
⟩
N

denotes the empirical average 1
N

∑
·. To see how

this linear Hessian operator transforms an argument B, let C = H(B) be the transformed matrix. Then

we calculate,

cij =
∑
k

∑
l

[W−1]li[W
−1]jkbkl +

⟨
f ′′
i (yit)xjt

∑
l

bilxlt

⟩
N

The first term of cij can be written,∑
l

[W−1]li[W
−1B]jl =

∑
l

[W−T ]il[B
TW−T ]lj

= [W−TBTW−T ]ij

Writing the second term in matrix form as well, we have for the linear transformation C = H(B),

C = W−TBTW−T +
⟨

diag(f ′′(yt))Bxtx
T
t

⟩
N

(5)

where diag(f ′′(yt)) is the diagonal matrix with diagonal elements f ′′
i (yit).

This equation can be simplified as follows. First, let us rewrite the transformation (5) in terms of the

source estimates y. We first write,

C = (BW−1)TW−T+
⟨

diag
(
f ′′(yt)

)
BW−1yty

T
t W

−T
⟩
N

Now if we define C̃ , CWT and B̃ , BW−1, then we have,

C̃ = B̃T +
⟨

diag
(
f ′′(yt)

)
B̃yty

T
t

⟩
N

(6)
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At the optimum, we may assume that the source density models qi(yi) are equivalent to the true source

densities pi(si). Writing (6) in component form and letting N go to infinity we find for the diagonal

elements,

[C̃]ii = [B̃]ii + E
{
f ′′
i (yi)

∑
k[B̃]ikykyi

}
= (1 + ηi)[B̃]ii (7)

where we define ηi , E{f ′′(yi)y
2
i }. The cross terms drop out since the expected value of f ′′(yi)yiyk is

zero for k ̸= i by the independence and zero mean assumption on the sources. Now we note, as in [15],

[26], [27], that the off-diagonal elements of the equation (6) can be paired as follows,

[C̃]ij = [B̃]ji +E
{
f ′′
i (yi)

∑
k[B̃]ikykyj

}
= [B̃]ji + κiσ

2
j [B̃]ij

[C̃]ji = [B̃]ij + E
{
f ′′
j (yj)

∑
k[B̃]jkykyi

}
= [B̃]ij + κjσ

2
i [B̃]ji

where we define κi , E{f ′′
i (yi)} and σ2

i , E{y2i }. Again the cross terms drop out due to the expectation

of independent zero mean random variables. Putting these equations in matrix form, we have,[C̃]ij

[C̃]ji

 =

κiσ2
j 1

1 κjσ
2
i

[B̃]ij

[B̃]ji

 (8)

If we denote the linear transformation defined by equations (7) and (8) by C̃ = H̃(B̃), then we have,

C = H(B) = H̃
(
BW−1

)
W−T (9)

Thus by an argument similar to (4), we see that H is asymptotically positive definite if and only if H̃ is

asymptotically positive definite and W is full rank.

The conditions for positive definiteness of H̃ can be found by inspection of equations (7) and (8).

With the definitions,

ηi , E{y2i f ′′
i (yi)}, κi , E{f ′′

i (yi)}, σ2
i , E{y2i }

the conditions can be stated [15] as,

1) 1 + ηi > 0, ∀ i

2) κi > 0, ∀ i, and,

3) κiκjσ
2
i σ

2
j − 1 > 0, ∀ i ̸= j

B. Asymptotic stability

Using integration by parts, it can be shown that the stability conditions are always satisfied when

f(y) = − log p(y), i.e. q(y) matches the true source density p(y). Specifically, we have the following.
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Theorem 1: If fi(yi) , − log qi(yi) = − log pi(yi), with
∫
pi(y) = 1, i = 1, . . . , n, i.e. the source

density models match the true source densities, and pi(y) is twice differentiable with E{f ′′
i (y)} and

E{y2i } finite, i = 1, . . . , n, and at most one source is Gaussian, then the stability conditions hold.

Proof: For the first condition, we use integration by parts to evaluate,

E{y2f ′′(y)} =

∫ ∞

−∞
y2f ′′(y)p(y)dy

with u = y2p(y) and dv = f ′′(y)dy. Using the fact that v = f ′(y) = −p′(y)/p(y), we get

−y2p′(y)
∣∣∞
−∞ −

∫ ∞

−∞
f ′(y)

(
2y − y2f ′(y)

)
p(y) dy (10)

The first term in (10) is zero if p′(y) = o(1/y2) as y → ±∞. This must be the case for integrable

p(y), since otherwise we would have p′(y) → C/y2, and p(y) = O(1/y) and non-integrable. Then, since∫
p(y)dy = 1, we have,

1 + E{y2f ′′(y)} =

∫ ∞

−∞

(
y2f ′(y)2 − 2yf ′(y) + 1

)
p(y)dy

= E
{(

yf ′(y)− 1
)2} ≥ 0

where equality holds only if p(y) ∝ 1/y, so strict inequality must hold for integrable p(y).

For the second condition,

E{f ′′(y)} > 0

using integration by parts with u = p(y), dv = f ′′(y)dy, and the fact that p′(y) must tend to 0 as

y → ±∞ for integrable p(y), we get,

E{f ′′(y)} =

∫ ∞

−∞
f ′(y)2p(y)dy = E

{
f ′(y)2

}
> 0

Finally, for the third condition, we have,

E{y2}E{f ′′(y)} = E
{
y2
}
E
{
f ′(y)2

}
≥

(
E{yf ′(y)}

)2
= 1

by the Cauchy Schwartz inequality, with equality only for f ′(y) ∝ y, i.e. p(y) Gaussian. Thus,

E{y2i }E{f ′′
i (yi)}E{y2j }E{f ′′

j (yj)} > 1

whenever at least one of yi and yj is nongaussian.
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C. Newton method

The inverse of the Hessian operator, from (9), will be given by,

B = H−1(C) = H̃−1
(
CWT

)
W (11)

The calculation of B̃ = H̃−1(C̃) is easily carried out by inverting the transformation (7) and (8),

[B̃]ii =
[C̃]ii
1 + ηi

, i = 1, . . . , n (12)

[B̃]ij =
κjσ

2
i [C̃]ij − [C̃]ji

κiκjσ2
i σ

2
j − 1

, ∀ i ̸= j (13)

The Newton direction is given by taking C = −G, the gradient (2),

∆W = H̃−1
(
−GWT

)
W (14)

Let,

Φ , 1

N

N∑
t=1

gty
T
t (15)

We have −GWT = I−Φ. If we let B̃ = H̃−1(−GWT ), then

b̃ii =
1− [Φ]ii
1 + ηi

, i = 1, . . . , n (16)

b̃ij =
[Φ]ji − κjσ

2
i [Φ]ij

κiκjσ2
i σ

2
j − 1

, ∀ i ̸= j (17)

Then

∆W = B̃W (18)

IV. CRAMER-RAO LOWER BOUND

By the theorem on asymptotic efficiency of Maximum Likelihood estimation, we have that the asymp-

totic and minimum error covariance of the estimation of W is given by the inverse Fisher Information

matrix. Also, since the asymptotic distribution is Gaussian, we can determine the asymptotic distribution

linear transformations of Ŵ. In particular, we see that the asymptotic distribution of C , ŴA, where

A = W−1 is the true (unknown) mixing matrix. Remarkably, we find that this asymptotic distribution

does not depend on A, but only on the source density statistics.

Specifically, the inverse Fisher information matrix is H̃−1, and the asymptotic minimum error covari-

ance in the estimate is N−1H̃−1. The minimum error covariance matrix for the pair of off-diagonals cij

and cji with a sample size N is given by,

1

N

1

κiκjσ2
i σ

2
j − 1

κjσ2
i −1

−1 κiσ
2
j


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In particular, the asymptotic distribution of C is Normal with mean I, and variance,

E{ĉ2ij} ≥ 1

N

κjσ
2
i

κiκjσ2
i σ

2
j − 1

, E{(ĉii − 1)2} ≥ 1

N

1

1 + ηi

For the Generalized Gaussian density, we have,

κi =
ρ2i Γ(2− 1/ρi)

Γ(1/ρi)
, σ2

i =
Γ(3/ρi)

Γ(1/ρi)
, ηi = ρi − 1

V. EM PARAMETER UPDATES

We define ht to be the random variable denoting the index of the model chosen at time t, producing

the observation x(t), and define the random variables vht,

vth ,

1, ht = h

0, otherwise

We define jhit to be the random variable indicating the source density mixture component index that is

chosen at time t (independently of ht) for the ith source of the hth model, and we define the random

variables uhijt by,

uthij ,

1, jthi = j and ht = h

0, otherwise

We employ the EM algorithm by writing the density of X as a marginal integral over “complete” data,

which includes U and V,

p(X; Θ) =
∑
V

N∏
t=1

M∏
h=1

P vth

th =
∑
V

N∏
t=1

exp
( M∑

h=1

vthLth

)

=
∑
U,V

exp
( N∑

t=1

M∑
h=1

vth
(
log γh + log |detWh|

)
+

d∑
i=1

m∑
j=1

uthijQthij

)
where we make the definitions,

bth , Wh(xt − ch)

ythij ,
√

βkhij

(
[bth]i − µkhij

)
exp(Qthij) , αkhij

√
βkhij qkhij

(
ythij

)
Pth , γh

∣∣detWh

∣∣ d∏
i=1

m∑
j=1

exp(Qthij) , exp(Lth)

The posterior expectation, v̂lht is given by,

v̂lth = E{vth|xt; Θ
l} = P

[
vth = 1|xt; Θ

l
]
=

P l
th∑M

h′=1 P
l
th′

=
exp(Ll

th)∑M
h′=1 exp(L

l
th′)

(19)
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For the ûlhijt, we have,

ûlthij = P
[
uthij=1 |xt; Θ

l
]

= P
[
uthij=1 | vht=1,xt; Θ

l
]
P
[
vht=1 |xt; Θ

l
]

= ẑlthij v̂
l
th (20)

where ẑlthij , E
{
uthij | vth=1,xt, ; Θ

l
}

:

ẑlthij =
exp(Ql

thij)∑m
j′=1 exp(Q

l
thij′)

(21)

The function to be maximized in the EM algorithm is then,
N∑
t=1

M∑
h=1

[
v̂lth

(
log γh + log |detWh|

)
+

d∑
i=1

m∑
j=1

ûlthij
(
logαkhij +

1
2 log βkhij − fhij(ythij)

)]
where fkhij , − log qkhij . Maximizing with respect to γh subject to γh ≥ 0,

∑
h γh = 1, we get,

γl+1
h =

1

N

N∑
t=1

v̂lth (22)

We can then rearrange the likelihood as,
M∑
h=1

γl+1
h log |detWh| +

n∑
k=1

m∑
j=1

∑
h:ikh>0

ûlthikhj

(
logαkj +

1
2 log βkj − fkj(ythikhj)

))
Maximizing with respect to αkj subject to αkj ≥ 0,

∑
j αkj = 1, we get,

αl+1
kj =

∑
h:ikh>0

∑N
t=1 v̂

l
thẑ

l
thikhj∑

h:ikh>0

∑N
t=1 v̂

l
th

(23)

We define the following expectations conditioned on the model h, in which Gt are arbitrary functions of

xt

Ev{Gt |h} ,
∑

t v̂
l
thGt∑

t v̂
l
th

, Eu{Gt |h, j} ,
∑

t û
l
thijGt∑

t û
l
thij

We also define the following, conditioned on the component k, in which Gth are arbitrary functions of

xt and parameters of model an arbitrary model h,

Ev{Gth | k} ,
∑

h:ikh>0

∑
t v̂

l
thGth∑

h:ikh>0

∑
t v̂

l
th

, Eu{Gth | k, j} ,
∑

h:ikh>0

∑
t û

l
thikhj

Gth∑
h:ikh>0

∑
t û

l
thikhj

Now we can rearrange the likelihood as,
M∑
h=1

γl+1
h log |detWh| +

n∑
k=1

ζ l+1
k

m∑
j=1

αl+1
kj

(
1
2 log βkj − Eu

{
fkj

(√
βkj

(
[bth]ikh

− µkj

))
| k, j

})
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where we define ζk =
∑

h:ikh>0 γh to be the total probability of a context containing component k,

ζ l+1
k ,

∑
h:ikh>0

γl+1
h (24)

If the source mixture component densities are strongly super-Gaussian, then we can maximize the

surrogate likelihood,
M∑
h=1

γl+1
h log |detWh| +

n∑
k=1

ζ l+1
k

m∑
j=1

αl+1
kj

(
1
2 log βkj − 1

2 βkj Eu

{
ξlthikhj

(
[bth]ikh

− µkj

)2})
where,

ξlthikhj ,
f ′
kj(y

l
thikhj

)

ylthikhj

The location and scale parameter updates are then given by,

µl+1
kj =

Eu

{
ξlthikhj

[bth]ikh
| k, j

}
Eu

{
ξlthikhj

| k, j
} = µl

kj +
1√
βl
kj

Eu

{
f ′
kj(y

l
thikhj

)| k, j
}

Eu

{
f ′
kj(y

l
thikhj

)/ylthikhj
| k, j

} (25)

and,

βl+1
kj =

1

Eu

{
ξlthikhj

(
[bth]ikh

− µl
kj

)2∣∣ k, j} =
βl
kj

Eu

{
f ′
kj(y

l
thikhj

) ylthikhj
| k, j

} (26)

The Generalized Gaussian shape parameters are updated by,

∆ρhij = 1 −
(
ρlkj/Ψ

(
1 + 1/ρlkj

))
Eu

{
|yhikhjt|ρ

l
kj log |yhikhjt|ρ

l
kj

∣∣ k, j} (27)

or if ρkj > 2,

∆ρkj = Ψ
(
1 + 1/ρlhij

)
/ρlkj − Eu

{
|yhijt|ρ

l
kj log |yhijt|ρ

l
kj

∣∣ k, j} (28)

A. ICA mixture model Newton updates

Since F l is an additive function of the Wh, the Newton updates can be considered separately. The

cost function for Wh is,

log |detWh| − Ev

{ n∑
i=1

m∑
j=1

ẑlthij fkhij(ythij)
∣∣h}

The gradient of this function is,

−W−T
h + Ev

{
gth(xt − ch)

T |h
}

(29)

where gth is defined by,

[gth]i ,
m∑
j=1

ẑlthij
√

βkhij f
′
khij

(
ythij

)
(30)
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Denote the matrix gradient (29) by Gh. Taking the derivative of [Gh]iν with respect to [Wh]kλ, we

get,

∂ [Gh]iν
∂ [Wh]kλ

=
[
W−1

h

]
λi

[
W−1

h

]
νk

+ δik

m∑
j=1

βhijEv

{
ẑlthij f

′′
hij(ythij)(xνt − [ch]ν)(xλt − [ch]λ)

∣∣h}
For the linear transformation C = H(B), we have,

C = Wh
−TBTWh

−T + Ev

{
DthB(xt − ch)(xt − ch)

T
∣∣h} (31)

where Dth is the diagonal matrix with diagonal elements[
Dth

]
ii
=

m∑
j=1

ẑlthij βkhij f
′′
hij

(
ythij

)
(32)

To simplify the calculation of the asymptotic value of the Hessian, we rewrite the second term on the

right hand side of (31) as,

Ev

{
DthBW−1

h bthb
T
thW

−T
h

∣∣h}
If we define C̃ , CWT

h and B̃ , BW−1
h , then we have,

C̃ = B̃T + Ev

{
DthB̃bthb

T
th

∣∣h} (33)

Now we write the ith row of the second term in (33) as,
m∑
j=1

βkhijEv

{
ẑlthijf

′′
khij

(
ythij

)
[B̃bth]i b

T
th

∣∣h} (34)

Since bth is zero mean given model h, the Hessian matrix reduces to a 2× 2 block diagonal form as in

the single model case. In the multiple model case we get,

ηhi ,
m∑
j=1

ᾱl+1
hij βkhijEu

{
f ′′
khij(ythij)[bth]

2
i

∣∣h, j}
κhi ,

m∑
j=1

ᾱl+1
hij βkhijEu

{
f ′′
khij(ythij)

∣∣h, j}
σ2
hi , Ev

{
[bth]

2
i |h

}
where ᾱl+1

hij = Ev{ẑlthij |h} (sum weighted only by model h likelihood). If we define,

ηhij , Eu

{
f ′′
khij(ythij) y

2
thij |h, j

}
κhij , Eu

{
f ′′
khij(ythij) |h, j

}
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or, using integration by parts to rewrite the integrals,

λhij , 1 + ηhij = Eu

{(
f ′
khij(ythij)ythij − 1

)2 |h, j}
κhij = Eu

{
f ′
khij(ythij)

2 |h, j
}

then the expressions can be simplified to the following,

λhi =

m∑
j=1

ᾱl+1
hij

(
λhij + βhij κhijµ

2
hij

)
κhi =

m∑
j=1

ᾱl+1
hij βhij κhij

σ2
hi = Ev

{
[bht]

2
i |h

}
Define,

Φh , Ev

{
gthb

T
th

∣∣h} (35)

We have −GhW
T
h = I−Φh. If we let,

B̃ = H̃−1
(
−GhW

T
h

)
= H̃−1

(
I−Φh

)
then we have,

[B̃]ii =
1− [Φh]ii

λhi
, i = 1, . . . , n (36)

[B̃]ij =
[Φh]ji − κhjσ

2
hi[Φh]ij

κhiκhjσ
2
hiσ

2
hj − 1

, ∀ i ̸= j (37)

Then

∆Wh = B̃Wh (38)

The log likelihood of Θl given X is calculated as,

L
(
Θl|X

)
=

N∑
t=1

log
( M∑

h=1

exp(Ll
th)

)
(39)

VI. EXPERIMENTS

VII. CONCLUSION
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