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Abstract. We propose an extension of the mixture of factor (or independent
component) analyzers model to include strongly super-gaussian mixture source
densities. This allows greater economy in representation of densities with (multi-
ple) peaked modes or heavy tails than using several Gaussians to represent these
features. We derive an EM algorithm to find the maximum likelihood estimate of
the model, and show that it converges globally to a local optimum of the actual
non-gaussian mixture model without needing any approximations. This extends
considerably the class of source densities that can be used in exact estimation,
and shows that in a sense super-gaussian densities are as natural as Gaussian
densities. We also derive an adaptive Generalized Gaussian algorithm that learns
the shape parameters of Generalized Gaussian mixture components. Experiments
verify the validity of the algorithm.

1 Introduction

We propose an extension of the mixture of factor [2], or independent component [6]
analyzers model that enlarges the flexibility of the source density mixture model while
maintaining mixtures of strongly super-gaussian densities. Mixture model source den-
sities allow one to model skewed and multi-modal densities, and optimization of these
models is subject to convergence to local optima, the mixture model is a generalization
of the unimodal model and may be built up by starting with uni- or bi-modal source
models, then adding components and monitoring the change in likelihood [8316].

Variational Gaussian mixture models, proposed in [8l2l6l5]], are ultimately mixtures
of Student’s ¢ distributions after the random variance is integrated out [19/3]. In [[12] a
mixture generalization of the Infomax algorithm is proposed in which a mixture model
is employed over sets basis vectors but not for the source component density models.
The means are updated by gradient descent or by a heuristic approximate EM update.
In [16] a variance mixture of Laplacians model is employed over the source densities,
in which the Laplacian components in each mixture have the same mean, but differing
variances. An EM algorithm is derived by exploiting the closed form solution of the
M-step for the variance parameters. In [17] a mixture of Logistic source density model
is estimated by gradient descent.

The property of strongly super-gaussian densities that we use, namely log-convexity
in 22, has been exploited previously by Jaakkola [TI0/T1] in graphical models, and Giro-
lami [9]] for ICA using the Laplacian density. The model we propose extends the work
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in [9] in applying more generally to the (large) class of strongly super-gaussian densi-
ties, as well as mixtures of these densities. We also take the approach of [3] in allowing
the scale of the sources vary (actually a necessity in the mixture case) and fixing the
scale of the de-mixing filters to unity by an appropriate transformation at each iteration
in order to avoid the scale ambiguity inherent in factor analysis models.

The proposed model generalizes all of these algorithms, including Gaussian, Lapla-
cian, Logistic, as well as Generalized Gaussian, Student’s ¢, and any mixture combi-
nation of these densities. The key to the algorithm is the definition of an appropriate
class of densities, and showing that the “complete log likelihood” that arises in the EM
algorithm can be guaranteed to increase as a result of an appropriate parameter update,
which thus guarantees increase in the true likelihood. It is thus a “Generalized EM”
(GEM) algorithm [7]. For a given number of mixture components, the EM algorithm
estimates the location (mode) and scale parameters of the mixture component.

Using the natural gradient [1]] to update the un-mixing matrices (the inverses of
the basis matrices), we can further guarantee (in principle) increase of the likelihood.
Furthermore, it is possible, for densities that are parameterized besides the location
and scale parameters such that all densities in a range of the additional parameter are
strongly super-gaussian, e.g. Generalized Gaussian shape parameters less than 2, to up-
date these parameters according to the gradient of the complete log likelihood, remain-
ing within the GEM framework and guaranteeing increase in the data likelihood under
the model. The un-mixing matrices and any other shape parameters will require a step
size to be specified in advance, but the mixture component locations and scales will be
updated in closed form. In the Gaussian case, the algorithm reduces to the classical EM
algorithm for Gaussian mixtures.

The practical situation in which we shall be interested is the analysis of EEG/MEG,
the characteristics of which are a large number of channels and data points, and mildly
skewed, occasionally multi-modal source densities. The large number of channels con-
strains the algorithm to be scalable. This along with the large number of data points sug-
gests the natural gradient maximum likelihood approach, which is scalable and asymp-
totically efficient. The large amount of data also dictates that we limit computational
and storage overhead to only what is necessary or actually beneficial, rather than doing
Bayesian MAP estimation of all parameters as in the variational Bayes algorithms [3l6].
Also for computational reasons we consider only noiseless mixtures of complete bases
so that inverses exist.

In §2 we define strongly super-gaussian densities and mixtures of these densities. In
§3-5 we derive the EM algorithm for density estimation. In §6 we introduce an adaptive
generalized Gaussian algorithm. §7 contains experimental verification of the theory.

2 Strongly Super-Gaussian Mixtures

Definition 1. A symmetric probability density p(x) is strongly super-gaussian if g(x)
= —log p(\/x) is concave on (0, ), and strongly sub-gaussian if g(x) is convex.

An equivalent definition is given in [4], where the authors define p(z) = exp(—f(z))
to be super-gaussian (sub-gaussian) if f’(x)/x is increasing (decreasing) on (0, c0).
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This condition is equivalent to f(z) = g(x?) with g concave, i.e. g’ decreasing, where
g'(x?) = f'(z)/z.

In [15] we have discussed these densities in some detail, and derived relationships
between them and the hyperprior representation used in the evidence framework [13]
and the Variational Bayes framework [2]]. Here we limit consideration to strongly super-
gaussian mixture densities. If p(s) is strongly super-gaussian, we have f(s) = g(s?),
with g concave on (0, c0). This implies that, V¢,

!
£ - £(5) = a) () < gD -5 = D@2y
Examples of densities satisfying this criterion include: (i) Generalized Gaussian
exp(—|z|?), 0 < B < 2, (ii) Logistic &< 1/ cosh®(x/2), (iii) Student’s t o (1 +
22 /v)~+D/2 1y > 0, and (iv) symmetric a-stable densities (having characteristic
function exp(—|w|*), 0 < a < 2). The property of being strongly sub- or super-
gaussian is independent of scale.
Mixture densities have the form,

m S—M'
p(S):Z%’pj( G'J>, Zajzl,oj>0
j=1 J j

The probability density of the j;th mixture component of the ith source is denoted
Dij(8ij,), with mode p;5,, and scale o5, .

3 The EM Algorithm

We follow the framework of [18l14] in deriving the EM algorithm, which was originally
derived rigorously in [7]. The log likelihood of the data decomposes as follows,

N Lt p(z,x; 6‘)
logp(x, 0) - /q(z‘x7 9 )logq(z|x’ 9/)

= —F(q;0) + D(qllpo)

where ¢ is an arbitrary density and D is the Kullback-Leibler divergence. The term
F(q;0) is commonly called the variational free energy [18l14]]. This representation is
useful if F'(g;0) can easily be minimized with respect to . Since the KL divergence is
non-negative, we have,

dz + D(q(zlx;0")| p(zlx;0))

—log p(x;6) = min F(q; 0)
q

where equality is obtained if and only if ¢(z|x;6") = p(z|x; ). The EM algorithm at
the [th iteration, given ¢! and ', performs coordinate descent in ¢ and 6,

91+1 — inF l. 0 1+1 _ . 9l+1
min F(q'30), ¢ =p(zlx0"")
This algorithm is guaranteed to increase the likelihood since,

—logp(x;0') = F(q';0') > F(¢";0""") > F(¢;0') = —log p(x; 6'11)
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Note however, that it is not necessary to actually minimize F' to guarantee that the like-
lihood increases. It is enough simply to guarantee that F'(¢';6') > F(¢';6'*1), i.e.to
guarantee that F' decreases as a result of updating 6. This leads to the Generalized EM
(GEM) algorithm [[7], and is the approach we follow here. We maintain the global con-
vergence (to a local optimum) property of the EM algorithm however by guaranteeing
a decrease in F’ by an efficient closed form update for the source density parameters.

4 1ICA with Strongly Super-Gaussian Mixture Sources

Let the data x, K = 1, ..., N be given, and consider the model,
X = ASk

where A € R™*™ is non-singular, and the sources are independent mixtures of inde-
pendent strongly super-gaussian random variables s;;,, j; = 1, ..., m;, where we allow
the number of source mixture components m; to differ for different sources.

The source mixture model is equivalent to a scenario in which for each source s;, a
mixture component j; is drawn from the discrete probability distribution P[j; = j] =
a;j, 1 < j < my, then s; is drawn from the mixture component density p;;,. We define
Jix to be the index chosen for the ¢th source in the kth sample.

We wish to estimate the parameters W = A~! and the parameters of the source
mixtures, so we have,

ez{wiyaijm,uijiyo-iji}7 i=1...,n, Ji = N ]

where w; is the ith column of W, We define X = [x; - - - xx].
To use the EM algorithm, we define the random variables z;;, as follows,

o L, Jik=1Ji
ijik = .
" 0, otherwise

Let Z = {z;;z}. Then we have,
Z H | det W| H H g [ L (wixe — i, ot
e alj1 i l]i Uij~
Z k=1 i=17;=1 i
For the variational free energy, F', we have,
N w!xy — 1
o i &k T Mg,
Fit) =33 3 dun | lopass, ~ ooy, + fip (P10 )
— £ ij
— Nlog|det W| (2)

where ¢ is the discrete distribution defining the expectation Z;;% = FE[zi;x|Xx], and
where we define f;;, = —logpj,.
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Let us define,
wilx), — ul.
LW iji
Yijike = 7 3)
Tiji
The 2}, = P[zij, = 1|xx; 0'] are determined as in the usual Gaussian EM algorithm,

l
g pxklzige = L0 Plrge = 100 piaYie) o, /o, 4)
ijik i 1. -

Y Zm 1P(Xk|%'k =10 )P [Zij,gk = 1,91] ngzl piji(yﬁj;k) Ofij;/af-j;

as are the optimal oy,

N
N Zk 1 m _ 1 sl

iji ijik
ZJ =1 Zk 1 zm’k N k=1
Now, since the p;;, are strongly super gaussian, we can use the inequality (1) to
replace fi;,(yijx) in @ by (f7;(Yi;4)/29550) (Wijx — Yijy)- Defining,

! . fzj(yijk)
gk = T 1 &)
Yijan

we replace F' by,

n  m; . Txs — )
Z E : Ziik | —logay;, —logoy;, + ~L& Wi Xk — Hiji
2 i,

k=1i=1 j;=1

— Nlog | det W|
Minimizing F with respect to pu;;, and o;;, guarantees, using the inequality (I)), that,

F(q;0") — F(q;0) < F(g; 0" — F(g;0) < 0

and thus that F'(g; 0) is decreased as required by the EM algorithm.

As in the Gaussian case, the optimal value of j1;;, does not depend on o;;,, and we
can optimize with respect to p;;,, then optimize with respect to o;;, given p;;,, and
guarantee an overall increase in the likelihood. The updates, using the definitions (3)),
@) and (@), are found to be,

N 4 l 1T N 5 1 T I+1\2 1/2
1 _ D k=1 Zijkgijkwi Xk I+1 D k=1 Zijkgijk(wi Xk — Hyj )?
Hig N A ¢l v Oy = N 4
D k=1 Zijkfijk D k=1 Zijk
(6)

We adapt W according to the natural gradient of F' (equivalently of F). Defining the
vector u', such that,

Z ZULk: 171 yz_]L )/ z_]L (7)

ji=1

we have,

N
( Zuk PWH )Wl ®)
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S Full ICA Mixture Model with Super-Gaussian Mixture Sources

We now consider the case where the data are generated by a mixture of mixing matrices,

p(x; 0 Z%p xi;0n) , th—1,7h>0
h=1 h=1

where now we have,
0= {'yh,whi,ahij,uhij,ahij}, h=1,....M,i=1,....n,5=1,...,mp;

The EM algorithm for the full mixture model is derived similarly to the case of source
mixtures. Due to space constraints the details are omitted.

6 Adaptive Generalized Gaussian Mixture Model

We can obtain further flexibility in the source model by adapting mixtures of a parame-
terized family of strongly super-gaussian densities. In this section we consider the case
of Generalized Gaussian mixtures,

1
D(Sij.s Mijss Tigir Big,) = T, €XP (
20, T (1 n m)

The parameters (3;;, are adapted by scaled gradient descent. The gradient of F' with

respect to 35, is,
1 1
—5 W(l + )
. Bij,

dﬁb]l Z Zijik [yzjl

We have found that scaling this by 37, / (W(l + 53“ SN he1 Zijik ) which is positive,
leads to faster convergence. The update is then,

B
m Zk 1 Zijik |Yige| 794 10g |Yigan

‘I’(l + ﬁm) s ik

Bisilog ysj

ABij; = -1

7 Experiments

We verified the convergence of the algorithm with toy data generated from Generalized
Gaussian mixtures with randomly generated parameters. Below we show an example
of a super-gaussian mixture that was learned by the adaptive Generalized Gaussian
mixture algorithm, including the shape parameter update, on a real EEG separation
problem. Five mixture components per were used per source. The shape parameters
were initialized to 1.5, the location and scale parameters were randomly initialized.
The data was sphered and the unmixing matrix initialized to identity.
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model 1 component 37

Fig. 1. Example of adaptive convergence of super-gaussian mixture model
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Fig. 2. Log likelihood is monotonically increasing
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