760 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 3, MARCH 2003
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Abstract—in this paper, we develop robust methods for subset shown to outperform other subset selection algorithms in low
selection based on the minimization of diversity measures. A npoise environments.

Bayesian framework is used to account for noise in the data and Th | of thi hich d K ted |
a maximum a posteriori(MAP) estimation procedure leads to an € goal or this paper, which expands on work presented in

iterative procedure which is a regularized version of the FOCal [6] and [7], is to extend the FOCUSS algorithm so that it can
Underdetermined System Solver (FOCUSS) algorithm. The be used in subset selection problems where the signal-to-noise

convergence of the regularized FOCUSS algorithm is established ratio (SNR) is low. A formal methodology is developed for de-
and it is shown that the stable fixed points of the algorithm are  jying algorithms that can deal with noise in the data. Itis shown

sparse. . . - .
We investigate three different criteria for choosing the regular- how a Bayesian framework coupled with priors on the solution

ization parameter: quality of fit, sparsity criterion, and L-curve. COmponents consistent with tiig, <) diversity measure leads
The L-curve method, as applied to the problem of subset selec-to a regularized version of the FOCUSS algorithm. The con-

tion, is found not to be robust, and we propose a novel modified vergence of the regularized FOCUSS algorithm is established,

L-curve procedure that solves this problem. Each of the regular- T - ; ;
ized FOCUSS algorithms is evaluated through simulation of a de- :Sgrgels shown that the stable fixed points of the algorithm are

tection problem, and the results are compared with those obtained ) _ _ )
using a sequential forward selection algorithm termed orthogonal In practice, some method must be used in choosing the magni-

matching pursuit (OMP). In each case, the regularized FOCUSS tyde of the regularization parameter. Motivated by applications,
fl‘:gecr’]::hm is shown to be superior to the OMP in noisy environ- \ye explore three different ways of setting this parameter. First,

' o _ , we consider a discrepancy criterion that assures a certain quality
mé’:ﬂ%gTegmza?'vfégﬁ}’arggg‘gr‘:res‘s'pgps?t?/r 'Q‘Jg;ﬁ ‘;gg':ti”;ﬁ’ of fit in the representation as is typically required in signal rep-
undetermined sysiems. ’ ’ ' resentation problems [1_]. N_ext, we cons_,lder I|m|t|ng_the size of

the selected subset, which is important in compression; we term
this a sparsity criterion since the representation obtained uses a
. INTRODUCTION small number of vectors from the available dictionary. Finally,

UBSET selection algorithms have received a lot of atteM(e experiment with arL-curve criterion, which seeks to trade

ion in recent years because of the large number of aprfpiff the representation error and the size of the selection subset
cations in which they arise [1]. The task of a subset selectiffl, [9]- This criterion is applicable to the problem of dictio-
algorithm can be viewed, in many instances, as that of selectfgfy/frame learning as considered in [10] and [11]. However,
a small number of elements or vectors from a large collecti@$ applied to the problem of subset selection, we find that the
of elements (termed a dictionary) that are then used to repi[,;curve method did no_t _provide robust solutions. This _Ieads us
sent a signal of interest. The subset selection problem has bif€velop a novel modified-curve procedure to determine the
shown to be NP-hard and many algorithms have been propoggg]ularlgatlon parameter that mc_orporates a target SNR. _Thls
for finding suboptimal solutions to the problem, including all€sults in a robust procedure for implementing the regularized
gorithms based on forward sequential search or elimination fPCUSS algorithm when compared with theurve method of
elements from the full dictionary available [2]. In previous work8]: [9]- A detection problem is used to examine the implementa-
[3]-[5], an iterative algorithm termeBOCal Underdetermined tions of these regularized FOCUSS algorithms. The results ob-
SystemSolver (FOCUSS) has been developed based on the mi@ined using each of the regularized FOCUSS algorithms are
imization of diversity measures. This algorithm essentially réompared to the results of an improved sequential forward se-

moves elements from the dictionary in parallel and has bel&gtion algorithm termed orthogonal matching pursuit (OMP)
[12], [13]. We conclude that the regularized FOCUSS proce-

_ _ , . dures give much better results than OMP in detecting the correct
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the subset selection problem. This procedure can be viewed adgorithm have been examined in depth in [4], [5], and [18]. In-
regularized FOCUSS algorithm. The convergence of this algmtively, the algorithm can be explained by noting that there is
rithm is established, and it is shown that the stable fixed pointempetition between the columns.4to represent. In each it-
of the algorithm are sparse in Section IV. Practical methods feration, certain columns get emphasized while others are de-em-
the choice of the regularization parameter are considered in Sglsasized. In the end, a few columns survive to reprelsgm-
tion V, and a modified_-curve criterion is introduced. The dif- viding a sparse solution.
ferent choices of regularization parameter are examined throughtinteresting insight can be gained into (3) when it is viewed
simulation of a detection problem in Section VI, and the resulés a sequence of weighted minimumnorm problems [1].
obtained using OMP are also included for comparison. We drdvefining ¢ = ijrllaz, in each iteration of the FOCUSS algo-
some conclusions in Section VII. rithm, the solutionz;,; is computed as;+1 = Wrir1qr+1,
where
II. MINIMIZING DIVERSITY MEASURES .
_ ) ) ) qr+1 = argmin ||¢||* subject toAW;.,1q = b. 4
The subset selection problem can be written in matrix form q
and consists of solving annderdeterminedinear system of Therefore, the FOCUSS iteration is obtained as the minimum
equations of the form [1] norm solution to an underdetermined set of linear constraints.
A — b 1) Imposing the equality constraint i_n 4)is _equival_ent to assuming
the absence of noise. As we will see in Sections IlI-VI, ac-
whereA is anm x n matrix withm < n (and, usuallym < n), counting for noise means that an exact minimum norm solution
and rankA) = m. The columns ofd are formed from the ele- Of the form (4) is not sought, and instead, we find a solution at
ments of the dictionary in signal representation problems or @2Ch iteration step that minimizgig||* andapproximatelysat-
rived from the physics of the problem in linear inverse problengfies the set of constraints.
[1], [2]. There arananysolutions to the system of equations in
(1) and the subset selection problem corresponds to identifying  !ll- SUBSET SELECTION IN NOISY ENVIRONMENTS

a few columns of the matrixd, which can be used to represent The derivation of FOCUSS in [4], [5] was based on the
the data vectob [1], [2], [14]. This corresponds to finding a so-assumption that there was no noise in the data, i.e., the data
lution 2 with few nonzero entries that satisfies (1), and SUCh\/’éctorb in (1) is formed as arexactlinear combination of
solution is said to be sparse. ~a few columns fromA. Later, reasonable modifications to
Finding an optimal solution to this problem generally requirege algorithm were suggested to deal heuristically with noise
a combinatorial search that is computationally unattractivg.], [4]. Here, we take a formal approach and extend the
Therefore, suboptimal techniques are usually employed [1], [HOCUSS method to deal with noise in the measurements using
We discuss one such method called FOCUSS, which has bgeBayesian framework. This stochastic framework provides

extensively examined in [4] and [5]. The FOCUSS method waseoretical insights and assists in developing robust methods.
motivated by the observation that if a sparse solution is desired

then choosing a solution based on the smallgstorm is not A. Bayesian Formulation

appropriate. The minimunh,-norm criterion favors solutions  gqr this discussion, we assume that each of the measured data
with many small nonzero entries, which is a property that {&ctorsh consists of a linear combination of a small number of
contrary to the goal of sparsity [4], [15]. Consequently, theig)jumns froma4 together with additive noise:

is a need to consider the minimization of alternative measures

that promote sparsity. In this context, of particular interest are b=V +v=Az +v. (5)
diversity measures that are functionals that measure the lack o ) ) )
of concentration/sparsity and algorithms for minimizing thedtiS @ssumed in this formulation thais a random vector thatis
measures to obtain sparse solutions. There are many measpi@sse and independentafUnder these assumptions, a max-

of diversity [16], [17], but a set of diversity measures that h4§Um a posteriori(MAP) estimate ofr can be obtained as

been found to produce very good results as applied to the subset

IAP = In p(z|b
selection problem is th&,, <, diversity measure given by [5], TMAP = a1 Max np(zlb)

[18] = arg max [In p(blz) + In p(z)]
n =argmax [lnp, (b — Az) + Inp(z)].
E®) () = sgrip) Y _ [«[i]f", p<1. @ o _ o
i=1 This formulation is general and offers considerable flexibility.

Minimization of this diversity measure leads to the FOCUS%1 order to proqeeq fu_rther, howe"ef’ some assump'u'ons must be
made on the distributions of the noise componentsamd the

algorithm [4], [5]. The algorithm is iterative and produces inter- ;
. g . . components of the solution vecter
mediate approximate solutions according to
¥ B. Generalized Gaussian Priors
Thp1 = Wig1 (AWgy1)' b ) _ . o
Because, here, we are interested in a sparsbe distribu-
where W, 1 = diag |z [i]|*~®/?), andt is used to denote tion of v is not very critical to the approach except for analytical
the Moore—Penrose pseudoinverse [19]. The properties of thisd computational tractability. We assume thé a Gaussian
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random vector with independent identically distributed (i.i.d.
elements,i.e., each componenfi],i = 1,...,misdistributed 25} .
asp, ) (u) = cre—(W*/20%) \wheree, = 1/\/50, ands? is the
noise variance. The distribution ofis important for the gener-
ation of sparse solutions. Probability density functions (pdf’s 2f p=05 1
that are concentrated near zero but also have heavy tails are
propriate for this purpose [5], [17]. The elements] are as-
sumed to be i.i.d. random variables with a generalized Gauss'®[
distribution. The pdf of the generalized Gaussian distributic
family is defined as [20], [21]

fluip, B) = —L e (WP287) 50 (6)

whereI'(+) is the standard gamma function. The fagtoron-
trols the shape, and is a generalized variance. For instance . ‘
settingp = 1 reduces this generalized form to that of a Lapla-— -3
cian distribution that has been assumed as the prior dlstr|but|,98 1. Pdf of the generalized Gaussian distributioi = 1) for different
of z in [15] and [22]. If we sefp = 2 and = 1, this dis- values ofp: p = 10(---), p = 2(——) (standard normal distribution}, =
tribution reduces to the standard normal distribution. If a urfit—- =), » = 0.5 (solid).

variance distribution is desired, i.e:? = 1, then3 becomes a

05F

function ofp as given by components inz, gives rise to the standard regularized least
squares problem. With < 1, it will be shown in Section IV
5 e \p) ( ) that the minima of/(z) are sparsey controls the tradeoff be-
pe= () tween quality of fit|| Az — b|| and the degree of sparsity. Large

1

p
r(z)

P values ofy lead to sparser solutions, and small values lead to
gﬁtter fit and, hence, lower errfdz — b||.

Using the factored gradient approach developed in [5], an it-

ﬁ[atlve algorithm can be derived to minimiZéz). A necessary
condition for the optimum solution, is that it satisfies

Therefore, only one parameter characterizes the distributi
and Fig. 1 plots the pdf for different values @fvhens? = 1.
From the figure, it can be seen that the pdf moves toward a u
form distribution agp — oo and toward a very peaky distribu-
tion asp — 0.

A vectorz € R™ with elements that are distributed as gener-
alized Gaussian and are independent has the following pdf:

V.J(x.) = 24T Az, — 2ATb + 211 (2,)z. =0  (10)

where
» Ll _lple
() =pz(2[1],...,z[n]) = | ———— V=
2{/241 (l) 2 2 pv
and II(z) = diag|z[i]|’~2). For convenience, we define
X exp( % sgn(p) Z |[i ]|1") (8) the scaling matrixi¥ (z) = diag(|=[]|'~(®/?)). Substituting
II(x) = W~2%(z) in (10) and performing some simple manip-

where, for consistency with thig,< 1 diversity measure, sgp) ulations, we are left with

C. Algorithm Development Based on Gradient Factorization . . - (1)
Hence, the optimum solution satisfies

With the densities of the noiseand the solutior: chosen as
in the previous section, we can now proceed to find the MAR, — W () ((Aw(x*))T(AW(w*) n )\I)_l (AW ()",
estimate that is found from (12)

. This suggests the following iterative relaxation algorithm:
xpmap =argmin J(x)
xr

-1
whereJ (z) = [||Ag; —b))® + vE(P)(x)} Tt = Wit (Al Ak + M) A b (13)
with y= 2 (9) WhereAkH = AWk+1 with Wk+1 = dlaka[zﬂl‘(?/?)) and
ar A = (|p|/2)(?/8P). Using the fact that
-1 -1
and E®)(z) as defined in (2). We note that the substitution of AT (Ak+1Af+1 + )\I) _ (AZHAkH + )J) AkT-+1

p = 2, which is consistent with a Gaussian distribution of the
2When the elements of andb are complex, the transpose operation has to
IMore general Gaussian distributions can be also easily dealt with. be replaced by the Hermitian transpose
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algorithm (13) can be expressed as It has been shown in [17] and [18] that the local minima of the
. above optimization problem are necessarily sparse. Hence, the
Trp1 = Wi Af 4y (A1 AL+ M) b (14)  local minima of.J(z) are sparse. O

_ ) _ o The above proof and theorem also indicate how, in general,
When the noise level is reduced, i.e.— 0, this implies that nclusion of proper diversity measures as a regularizing com-
A — 0, and the algorithm reduces to the original FOCUSS glpnent can facilitate sparsity. Now, we show that the regular-
gorithm given in (3). Note that the algorithm (14) provides ged FOCUSS algorithm does indeed achieve the desired goal
solution to the problem (9), which is well-posed for the undeby showing that/(z) is a descent function for the algorithm.
determined case as well as the overdetermined case. Therefgiggre we prove that, we need a preparatory result that helps
even though we concentrate on the underdetermined case in &J?uiﬁnect](:p) to the quadratic cost function being minimized at
paper, the algorithm is also useful in the overdetermined contexhch iteration. This is presented next in Lemma 1, which spe-
_ _ cializes more general results to be found in [24] and [25].
D. Interpretation as Regularized FOCUSS Lemma 1:
The algorithm given in (14) has an interesting interpretation
as Tikhonov regularization [23] applied to (4). This can be E®)(z,) — E®)(z) SM (23 (21)72 — 21 (1) 1)
readily seen by rewriting (14) as.+1 = Wi+1qr+1, Where <12 (17)
qr+1 IS obtained as pP=
wherell(z) = W~2%(z) = diag|z[k][P~2).
Proof: Consider the scalar functigf(y) = sgn(p)|y[*/?,

i y > 0, andp < 1. Since it is concave [26
Alternately and equivalently;; can be shown to be the solu-’ = P s [26]

Qrt1 = argmqin [ AW 41q = bl1* + Allg]*. (15)

tion to the following optimization problem: Flya) = Fyr) < V() (e — u1).
Tk+1 =arg me Qr+1(z), where Hence
— 2
Qrt1(z) =[ Az — b + X || Wiy (16)

sgn(p)ly2|"/* — sgn(p) |y [P/* < %Iyll@/z)”m(w - ).
By the uniqueness of the minima d).:(z), we have
Qri1(Teg1) < Qrar(ay) for zp iy # xp. Substitutingy, = 22 andy; = w?, we have
Interestingly, this results in algorithm identical to that sug-
gested in [4]. In [4], this algorithm was proposed as a method of  sgn(p)|z|? — sgn(p)|w|? < Ip] lw|P~2(2* — w?).
making the 2-norm minimization problem of (4) more robust to 2
noise. The derivation given here provides formal support to thitie above inequality applies to each of the components of

approach. E®)(z) leading to
IV. CONVERGENCERESULTS - _
v HONVE _ E®)(2) — EP(2,) sz@rvlmv’ 2(Jaall] 2 — [ [01%)
Throughout this discussion, a sparse solution refers to a basic 1=1
or degenerate basic solution, i.e., a solution with less than or |p|

_ 7 T p _ T
equal tor nonzero entries where is the dimension of the data =3 (w2 W(w1)zz — 2y W(wr)a1) . O

vectorb. Another assumption we make is that anycolumns
of A are linearly independent. We present two key results in this
section. First, we show that the local minima of the regulariz

. . o — b2 (@) (; ' = g2
cost functionJ(z) [(9), cf. Section IlI-C] are sparse. This jus- Af_ l|)|||| C+ 7Edp (‘E)]' ff < tl" Wflth t71 -9 I/ﬂ_l’ (((jgl):’OCCfZ.USS
tifies minimization of the regularized cost function to achievgeC ion I11-C) is a descent function for the regularize

sparsity. Second, we show that the regularized FOCUSS alg%gorithm (cf. (14)). Furthermore, the stable fixed points of the
g

rithm does indeed reducgx) at each step and that the stabl orithm are sparse. . .
filxed pointsl of the algourﬁﬁ(r?are sparse P Proof: To show that/(z) is a descent function for the reg-

Theorem 1:If z* is a local minima of/(x), whereJ(z) is ularized FOCUSS algorithm,_we need to show thti1) <
the regularized cost functio(z) = [||Az — b||? + YE®)(z)] J(w), for x4, computed using (14) antk1 #
with E®)(z) = sgn(p) i, |=[i]|?, p < 1, andy > 0, then

Now, we present the main convergence result.
Theorem 2:The regularized cost function/(z) =

J(aksr) = T(wx) = [|Aziss = b2+ VED (wr41)]

x* is sparse.
Proof: Let Au* — b = ¢* or Az* = b+ ¢*. Sinces* is a _ [||A:rk —b|? + ’YE(p)(fEk)}
local minima ofJ(z), it is also a local minima to the optimiza- ) .
tion problem < [lAzkq1 = b])* + Azf 1 T (@k) Tht1 |
n — [l A2y = b|* + A 1wy )2
in E®(y) = 2lil|P
min B0 (x) =sgrtp) 3_ el p <1 win A =701

subjectto Az =e* + b. =Qr+1(Thy1) — Qry1(rr) <0.  (18)
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The first inequality follows from Lemma 1 and the last inthediscrepancy principlén [8]. Algorithmically, this reduces to
equality from (16). Thus,J(xz) is decreased at every iterationsolving the optimization problem
of the algorithm as desired.

Letz* be afixed point of the algorithm and, therefore, neces- min E®(z) subject toj| Az — b|| < e.
sarily a solution of (12). If:* is not sparse, then from Theorem . ) . o ) o
1, it is not a local minima of/(z). Using the notation of The- ASsuming that the inequality constraint is active, which is usu-
orem 1, it is therefore not a local minima &1?) (z:) subject to ally true, and following the approach used in deriving the reg-
Az = b+ e*. By the concavity property of ™) (z) on the pos- ularlz_ed sqlutlon, an iterative algorithm can be derived that at
itive orthant [17], [18], it can be shown that there are points af&ch iteration computes. 1 = Wiy1qxr+1, where
bitrarily close taz* that can reducé(z) [5]. Hence, nonsparse
x* are not stable fixed points, and only sparse solutions can be
stable fixed points. o o

Note that taking\ — 0 provides an alternate proof of theThis is m_the_form of a standard regularization problem, and the
convergence of the unregularized FOCUSS algorithm. In addRlution is given by [19]
tion, note the key role that Lemma 1 has in proving the descent P )
aspect of the algorithm. In particular, the RHS of (17) (and the Gor1 = Z ( ZbuL ) i
RHS of its consequent (18)) shows why the FOCUSS algorithm o \oi t Ak
formulated as a sequence of two-norm optimization problems ) . )
is capable of minimizing the more complex objective functioere is the rank of the matrixiy. o;, i = 1,...,p are the
[cf. the noiseless optimization case of (4) or the noisy case dfMinanty singular values of;, andu;, v; are the left and
(15) and (16)]. More general results on related FOCUSS-Iiki@ht singular values, respectively. > 0 is the regularization
algorithms and their convergence can be found in [24] and [2BRrameter that satisfies the equation [19]
The rate of convergence, the number of local minima, and their P/ \Th \ 2
basins of attraction is a complex functionpofSome discussion Z ( 2“i > = €2,
of these issues in the noiseless case can be found in [4]. - \oi T A

qr+1 = argmin ||¢||* subject to]| Ag, — b|| < .
q

B. Sparsity Criterion

V. METHODS FOR CHOOSING THE In some applications, we may have prior knowledge of the
REGULARIZATION PARAMETER \ number of vectors fromd that were used to produce the data
vector. As an example, in a compression algorithm, the number
The sparse solution obtained via the regularized version @fvectors used in the representation of a data vector would be
FOCUSS is governed by the choice)fand there remains thefixed [10], [11]. Therefore, another option is to chodsgo that
implementation-level problem of determining a proper value féhe solution produced has a predetermined number of nonzero
A. In addition, there appears to be no practical reason to lingitriesr. Note that upon convergence, the rankAf/y. ;1 is
the choice of\ to a fixed value for all the iterations; thereforegqual tor, i.e.,lim,_.o, ranK AWy 1) = r. Therefore, a de-
a value that is dependent on the iteration may be more appsiable approach would be to use a sequehgcéhat satisfies
priate. With this in mind, we suggest three approaches motivatéés limiting rank property while providing the best possible
by three different scenarios. In the first approach, we ensurditaUnfortunately, a reliable procedure for doing this is not yet
certain quality of fit in the signal representation. This may p@&vailable. However, one practical approach is to use a sequen-
tentially be motivated by the availability of some information ofial basis selection method like the OMP to first selecdlumns
the perturbations. The second approach ensures a certain defjese A [12]. Then, based on the representation obtained using
of sparsity in the solution, as would be required in applicatiorieese columns, a value for the ereocan be obtained, and this
like compression. Finally, in the third approach, we seek stabialue can be used in running the FOCUSS algorithm in the
sparse solutions without the need for much prior informatiomanner suggested in Section V-A. If the FOCUSS procedure
and a tradeoff is made between the sparsity of the solution diefurns more columns than desired, one can prune the selected
the representation error. Note that once the columns to be usgbset using OMP or a backward elimination procedure [27].
are identified, then finding a least square solution to the resultiAg this stage, we can choose to proceed using either the OMP
problem can avoid any regularization bias. This is the approa@hFOCUSS generated solution, depending on which is better.
used in the simulations. A drawback is the penalty that is in-
curred when the wrong columns are chosen. C. Modified L-Curve Method

A final possibility is that the number of dictionary vectors
used in forming the data vectors is variable, and some variability
in the representation error must also be allowed. Therefore, the

A potentially useful approach is to seek a sparse solutisparse nature of the solution must be controlled so that a tradeoff
that ensures a certain quality in the nature of the represertatween quality of fit and sparsity is made. In particular, this
tion, i.e.,||Az — b|| < e. For instance, in a signal representatioformulation of the problem is applicable to dictionary/frame
problem, this a very commonly used criterion [1]. This is termeéarning [10]. From our development above, this translates to

A. Quality-of-Fit Criterion/Discrepancy Principle
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finding a regularization parameter that makes a compromise bermine, there is neither direct control of how many vectors
tween minimizing the nornfjq||? and the error in the represen-are selected (i.e., the sparsity of the solution) nor a limit on the
tation || AWy, 1q — b||?. The use of such an approach was firstepresentation error. The-curve method seeks the value of
suggested in [4]. Thd.-curve was introduced in [8] and [9] that best minimizeboththese terms, i.e., it finds the best trade
as a method for finding the parameteiin the regularization off between accuracy and sparsity. In our proposed modified
problem L-curve method, we assume that we have some knowledge of
the variance of the noise or, alternatively, an approximate target
min{||Az — bl + All[|*}. (19) SNR that a representation must satisfy. From this knowledge
an upper and a lower target can be set on the residual norm
The regularization problem encountered in (15) can easily pe — || 45 — b)|2. Then, for every iteration in FOCUSS, the
translated to this form. upper and lower targets fe? are used to find upper and lower

As ) is increased, one obtains regularized soluti9ns}  pounds on the value ofthat are denoted BYimax AN\ min, re-
whose norms vary continuously and decrease monotonicallysgectivew‘ Thel-curve parametex corresponding to the max-

A is varied from 0 toco, |¢||* decreases monotonically fromimum curvature in the linear scale is also calculated in every
I(AWi11)T8]? to zero, and| AW,.;1¢ — b||? increases mono- FOCUSS iteration). is then compared with the limits estab-
tonically. The theory of thé.-curve proposes that a plot [bf||> lished, and if\. < Ay, thenA i, is used, and if\. > A yax,
versus| AW;,1q — b||? for different values of\ be shaped like then,,.. is used. Otherwise, the calculated value\pfmay

an L and that a good choice of value faris the one corre- pe usedThis adjustment of the value afensures that will
sponding to the corner in the. Furthermore, it is suggestedalways produce an acceptable representation even if there is no
that the corner of thé-shaped curve can be found by findingjistinct corner in thel.-curve.

the maximum curvature [8], [9], [28]. The plot ¢if||? versus

|AWi41q — b]|* can be shown to be convex [9], and the point VI. EXPERIMENTS AND RESULTS

of maximum curvature represents a tradeoff point between spar: . . . .
sity and accuracy. The curvature can be computed by mean?ho\f\ga. now conduct a series of_S|muIat|ons wher(_e We examine
the formula e different methpds pf choqsmg the regularization parameter
that we have outlined in Section V.

The matrix A is generated as a 2030 matrix. The entries
are first chosen randomly from a standard normal distribution,
) and then, each column is normalized to give the matriach
where, in our problemX (X) = [|[AWi11q — blI*, Y(X) = vectort, as given in (5), is obtained as a linear combination of
lql|*, and” and” denote the first and second derivatives res vectors from the matrixd, and the vectors are randomly se-
spectively. Alternatively, as in [9] and [28], the curvature cOMgcted and are equiprobable. In our experimenisset to 7, and
putation may be done in the log-log scale, thatis\) = he coefficients associated with these vectors are drawn from a
log{|[AWi41q=b[*}, Y (\) = log{||4||*}. The argument made gtandard normal distribution. The vectdris then normalized,
for the adoption of this scale in [9] is that the corner is foungq finally, a noise vectas is added td’ to produce the final
to be more distinct in the log-log scale. However, a probleghta vectob. The noise vector is generated from a Gaussian dis-
pointed out in [29] is that thé-curve in the log—log scale is, in tihytion with zero mean and variance determined by the SNR
general, no longer convex. In [30], alinear scaleurve is used, of the experiment. Two values of SNR (10 and 20 dB) are used
and in [31], both linear and log-log scalecurves are men- i the experiments. Each experiment is carried out using 100
tioned. In fact, experiments have shown that the log—log curMgferent data vectors.
often has several corners, and finding the maximum curvatureryg error measures were utilized in evaluating the success of
in this scale does not necessarily correspondXanith a good  tne gifferent algorithms. The first error measure compares the

tradeoff between sparsity and accuracy. . representation obtained using the algorithm, which is given by
We implemented our procedure in both the linear and tiie_ Az,14, to the data vectar and is denoted by

log—log scales and found that for this application, the log—log R
scale does not give good results. In fact, the algorithm ended up e = ||Azary — b||* = ||b — b]].
emphasizing the quality of fit at the expense of the sparsity of the

solution.L-curve experiments using the linear scale showed thhfiS measures the representation error and is the most impor-

the regularized FOCUSS algorithm can perform better in noilt measure when we are concerned with representing the data
than greedy algorithms such as the OMP, but it failed completéﬁcmr without trying to denoise the signal (as is the case in the

for some data vectors. The variance of the error was found to GMPression of data signals). However, in the case of interest

large, which indicates that the procedure is not very robust. Fijere, we are trying to get to the underlying (denoised) signal;

ther exploration of the results showed that fheurve approach therefore, an error measure that comparesthe underlying in-

failed because the data daest produce ari.-curve in each it- formation signal in the data vectti(i.e., the signal uncorrupted
eration of the FOCUSS algorithm by noise) is more informative. The error measure we consider is

XY - XYY
R (I VD EE

(20)

This led us to develop a novel solution to the regularization 2 = ||l3 s
problem that uses a combination of the discrepancy principle
and the linear scalé-curve method. We call this thmodified Of course, in practice, this measure is not readily computable,
L-curve methodWhen using the basif-curve method to de- but in the artificial simulations of Section VI-A, we know the
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TABLE |
r = 7: RESULTSOBTAINED USING THE DISCREPANCY PRINCIPLE IN THE FOCUSS (F) AGORITHM AND THE RESULTSFROM THE OMP (O) ALGORITHM
Clp | # #r mean €7 (107%) [ mean 2 (107%) [ € % e %
F | O F ] () F | O F|O F|O
SNR=20dB

08| 0 |93]586)558]| 8.0 12.3 4.4 7.4 57 (29| 24| 62
121 05|67 (544|537 | 9.6 16.9 9.8 14.4 30 | 33| 25 | 38
1510879584558 80 12.5 6.3 9.4 45 | 41 | 23 | 63
SNR=10dB
08| 0 |7.0] 421|410 | 782 84.0 49.6 42.7 55 | 32 | 22 | 65
1.0 0.5]5.3]3.99 | 3.78 | 84.4 90.9 73.9 70.0 38 | 31|50 | 38
1.0 | 0.8 | 64 | 428 | 4.09 | 79.1 84.1 58.7 51.3 41 | 41 |1 19 | 63

denoised signal. Therefore, we can evaluate this measure tifatectors selected by the FOCUSS algorithm, but we now de-
will then indicate how the algorithm will perform using morescribe the method we used to do this. For a given data véctor
realistic data. the OMP algorithm s first run, and the number of vectors used in
The three methods of choosing the regularization parametgaproximating is easily controlled so that the algorithm is ter-
that have been discussed in Section V were experimented witlinated after- vectors have been selected. The representation
and the results are given in Sections VI-A and B. In additioerrore? is calculated and used as the upper bound on the error
results were obtained using the OMP algorithm [12], [13] on tHer the FOCUSS algorithm. Once the representation error falls
same data sets so that the performance of this algorithm cohb&low this bound, the number of vectors used by the FOCUSS
be compared with that of the regularized FOCUSS algorithmalgorithmrgoc is obtained. Ifrroc > 7, the representation is
pruned down te by using OMP to seleat of therpoc vectors.
If rroc < 7, extra vectors are added using OMP until a total of
r vectors are again used in the representation. This means that
We first evaluate the performance of the discrepancy principdach algorithm will have a representation that utilizegctors
and sparsity criterion on a generated data set. In using the dism the matrixA.
crepancy principle to select a value oy we assume that we Results:
know something about the variance of the noise. This allows us Description of Table ParametersThe results obtained
to set a bound on the norm of the representation error as a fuasing the discrepancy principle and sparsity criterion are tab-
tion of the noise variance. Letting the variance of each noiséated in Tables | and Il for different values of SNR. In these
component[i], i = 1,2...m beo?, E{||n||*} = mo?, the tablesyp is an additional factor used in the FOCUSS algorithm
error bound is set t@'mo?, whereC is a parameter chosen inas given in (14) and can be used to trade off convergence speed
the experiment. When using this approach the number of vegainst sparsity [4], [5]C is the user chosen factor that deter-
torsr chosen from the matriXd to approximate a data vectbr mines the error bound used when running FOCUSS and using
will vary for different data vectors. In order to compare the reghe discrepancy principle to determikeThe column headed by
sults obtained using FOCUSS with those obtained using OM#Pgives the average number of vectors selected in representing
we have to either fix the error and compare the number of vettie data vectors, whereds- gives the average number of vec-
tors used or fix the number of vectors used and compare tioes selected for representibghat are identical to the vectors
error for each trial. It is not possible to obtain exactly the samesed in generating. The mean values obtained for the errors
error using regularized FOCUSS and OMP. However, we cahande? using FOCUSS(F) and OMP(O) are tabulated. In ad-
run an experiment in which the number of vectors selected Hition, ¢2% ande?% give the percentage of trials in which FO-
each algorithm is the same. The FOCUSS algorithm is run wi@lUSS performs better than OMP or vice-versa (note that the
an upper bound set for the representation error, and the numiatal is not 100% as there are some trials in which the algorithms
of vectors selectedroc is found. Then, the OMP algorithm is perform identically, as measured to an accuracy 60
run, which selects vectors sequentially froemThis algorithm Comment or? ande? Results: From Tables | and 11, we
is terminated onceroc vectors have been chosen. Thus, eadmd that meare? is lower in all cases for the FOCUSS algo-
algorithm has chosen the same number of vectors to repreggéhin than the OMP algorithm. This is in keeping with the theory
the data vector, and the representation errors can be compatbdt we have presented since FOCUSS tries to denoise the data
When the sparsity criterion is used in determining the regularector, whereas OMP does not. Looking at the figures given for
ization parametek, the number of vectors used in representing %, we note that again, FOCUSS performs better than OMP,
the data vector is fixed, i.e., the number of nonzero entries & measured by the number of trials in which it achieves a lower
the solution vectos that determines the representatlbﬂ Az value ofe?. In some cases, there is a very noticeable difference,
is fixed. In this experiment, we assume that the number of vess observed in the first line of Table I. However, meaiis in
tors used in forming the data vectbiis known to ber. The general a better indication of performance.
goal is to find the best possible approximation as measured byExamining the results for meaf, we see that with SNR=
the errore? using a linear combination of columns from the 20 dB, the FOCUSS algorithm does better than OMP. This is
matrix A. Unfortunately, it is not trivial to control the numberdespite the fact that the OMP does better in most trials than FO-

A. Discrepancy Principle and Sparsity Criterion
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TABLE I
r = 7: RESULTSOBTAINED USING THE SPARSITY CRITERION IN THE REGULARIZED FOCUSS (F) AGORITHM AND THE RESULTSFROM THE OMP (O) ALGORITHM
p | # #r mean €7 (107°) [ mean € (1073) [ €1 % e %
F ] O F ] O F | O FI]OJF]JO
SNR=20dB

0 | 7]547 | 529 | 15.0 17.9 13.5 16.2 38135 30 | 43
5.67 | 5.57 | 9.8 12.4 8.6 10.4 35 | 37 | 27 | 45
08 ] 7 |570|5.40 | 12.6 16.3 11.4 14.6 33 | 26 | 24 | 35
SNR=10dB
0 | 7426 4.13] 83.9 88.1 47.0 42.8 56 | 34 | 32 | 58
4.46 | 4.30 | 78.5 82.4 44.4 40.8 15 | 54 | 26 | 62
0.8 | 7 |443 | 418 | 79.8 82.9 45.2 44.9 39 | 32|29 | 42

e
o
-

o
o
-

50

CUSS as measured ky%. The reason for this is explained
by Fig. 2, which shows a histogram e, — €,,p corre-
sponding to the data used in generating the first two rows a
Table I, where the discrepancy principle is used in choosing
and SNR= 20dB,r = 7,p = 0, and in (2)C = 0.8 and (b)

C = 1.2. From the skewed nature of the plots in Fig. 2(a) an

(b), itis noted that when OMP performs better, it only perform 7 12 o1 008 006 004 -002 0 0.02
marginally better, but when FOCUSS performs better, it some
times performsignificantlybetter. Thus, the mean valuesf 20 , , ; . ;

which are given in Table I, favor the FOCUSS algorithm. A sim
ilar assessment can be made of the results presented in Tabl
When the SNR is reduced to 10 dB, as given in Tables | ar 10
11, the FOCUSS algorithm still does better than the OMP algc
rithm, as measured by meaf. However, it no longer gives a r
lower value for meanr?. This is expected since the regularizec
FOCUSS is acting to denoise the data vector and represent
underlying denoised vectaf, whereas the OMP does nothingrig. 2. Histogram 0f2,0 — €, » With SNR= 20 dB, r = 7,p = 0. (a)
to remove noise and represents the data vectdhis is also € = 0.8. (b)C = 1.2.
reflected in the figures given faf% ande?%.

Comment onr Results: Finally, we look at the results
given in the#r column of each of the tables. In Table | (discrepn its
ancy principle) and Table Il (sparsity criterion), it is observedrn
that the values for FOCUSS are better in all cases than those
for OMP. This shows that the regularized FOCUSS algorithm is €2 per =107 (X720 12 (21)
more successfully selecting the true underlying generating vec- 2 :10—(X+A2)/10||b”2. (22)
tors than the OMP. Clower

For each data vectéythe FOCUSS algorithmiis first run, and
B. Modified L-Curve Method rroc IS found. Then, the OMP algorithm is run on the same data
vector and is terminated after it has seleatedc vectors.

The modified Z-curve method requires some knowledge of Results: In the first simulations, the SNR is set to known
the noise level or the target SNR for the representation thatvisiues of 10 and 20 dB, and the algorithm peesciseknowledge
then used to find\,.. andA,in, as described in Section V-C. of the SNR. In contrast, in the second simulation, although the
The values ol\,,q., Amin, @ndA. are found in each FOCUSStrue SNR is 20 dB, we assume ttzpriori we are only able to
iteration. put upper and lower bounds on the SNR; the lower limitis set to

The noise vecton € R™ has Gaussian random entries, andl5 dB and the upper limit to 25 dB from which valuescgf

each component of the vector has variance||n||* has ax> ande’,,.. can be obtained. For each case, 100 different data
distribution, and the limits or? are chosen such th&((||n||> < vectors were generated, and the results are given in Tables IlI
e2.) = P(||n||* > €2,,.) = T for some threshold’, which and 1V, respectively.

was setto 0.1 inthese experiments. The value$ afe obtained Comment or? and ¢? Results: From Table I, we note

by using the SNR values, and for SNR 20 dB, the limits on that the mean value ef obtained using the FOCUSS algorithm
2 are found to be?, = 0.0062 ande2, . = 0.0142. These islower in every instance than the value obtained using the OMP
limits are increased by a factor of 10 for SNR 10 dB. If the algorithm. This result is further emphasized by the values of
true SNR of the data is unknown, targets for the SNR can be usét: For instance, withp = 0.8, FOCUSS gives a lower value

to decide the error limits. If the desired SNR is approximatelyf €2 in over 70% of the trials. In addition, it is noted th#t is

X dB, an upper error limit can be set usioy — A;) dB asan greater for FOCUSS than OMP in all rows of the table, which

0
e—0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

SNR target and a lower limit using¥ + A) dB leading to the
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TABLE Il
SNR IS ASSUMEDKNOWN AND r = 7: RESULTS OBTAINED USING THE MODIFIED L-CURVE CRITERION IN REGULARIZED FOCUSS (F) WrH PRECISE
KNOWLEDGE OF SNRAND OMP (O) ALGORITHMS

p | # | #r [ mean € (1073) [mean 2 (1073) | % | €%
SNR=20dB
F O F (0] F O F|{|O|F|O

0 7.04 | 535 5.06 | 9.7 19.2 10.3 17.6 53 | 47 | 42 | 51
05| 6.86 | 532 | 5.05 | 10.2 20.0 9.4 17.8 45| 55 | 36 | 55
0.8 | 10.69 | 597 | 5.68 | 8.3 11.7 3.6 4.9 74126 26| 74
SNR=10dB
F O F O F O FIO|F|O

0 4.08 | 3.46 | 3.06 | 117.1 | 1283 | 1152 | 1186 | 52| 39 | 39 | 48
0.5 | 434 | 3.58 | 3.22 | 99.1 108.7 93.8 116.8 [ 59 | 34 | 41 | 46
0.8 | 838 | 457 | 4.14 | 82.4 93.9 39.3 29.5 76 | 24|21 |77

TABLE IV
TRUE SNR Is20DB AND r = 7: RESULTS OBTAINED USING THE MODIFIED L-CURVE CRITERION, WHERE THE TARGET SNR IS TAKEN
TO BE BETWEEN 15 AND 25 DB

p | # #r mean ¢ (107°) [ mean €2 (1073) | & % e %

F O F (¢} F 0O F|O|F|O
0 | 548469 |4.67|204 22.4 21.1 23.1 44 | 50 | 42 | 46
0.5] 551493471163 21.8 174 21.5 50 | 45| 38 | 41

shows that we are correctly identifying more of the generatir
vectors using FOCUSS rather than OMP. In common with tt ™
results of Section VI-A, with SNR= 20 dB, meare? obtained »
for FOCUSS is lower than that obtained for OMP. Howeve
with SNR = 10 dB, the OMP achieves a lower value. As we
have previously stated, this is due to the fact that the regulariz
FOCUSS tries to represent the underlying denoised signal  °
rather than the data signal

In Table IV, mean? and mear? are both lower for FOCUSS oo
than OMP. However, the gap is not as large as that obsen oo
in the top half of Table IIl. This can be attributed to the lesy 00
accuratea priori knowledge in these simulations. The achieve °%
SNR can be calculated from meah Forp = 0, SNRroc 0018
is 16.8 dB, and fop = 0.5, it is 17.6 dB. The results give |
a lower SNR than the true SNR, but the number of selectt | . ‘ ‘ . . i i i ‘
vectors is approximately 5.5, whereas- 7 vectors were used oo s R T8
in generating the data vectors. Fig. 3. Modified L-curve FOCUSS algorithm for simulated data with true

Comment ore? versus Number of Selected Vectots: SNR = 20 dB and the target SNR bounds set to 15 and 25 dB. (a) Number

Fig. 3(a), we provide a plot of the number of vectors selected hselected vectors in each trial. (). for each trial.
each trial (the average over 100 trials gives # in the table); this
is found to vary between 3 and 11. We plot the corresponding VIl. CONCLUSION
value ofe? obtained in each trial in Fig. 3(b). First, it is seen
that the variance in the error is small, and this means that thdn this paper, we have tackled the problem of subset selec-
variance in the approximation quality for the different trials i§on in noisy environments. A formal methodology was devel-
also small. The achieved SNR for each trial varies between @ped using a Bayesian framework that led to the derivation of a
and 25 dB, which corresponds to the predetermined limits on tteggularized FOCUSS algorithm to solve this problem. The con-
SNR. Comparing Fig. 3(a) and (b), it can be seen that the erk@rgence of the regularized FOCUSS algorithm is established,
is, in general, not smaller for the trials where the number of sand it is shown that the stable fixed points of the algorithm are
lected vectors is large. This observation, together with the smslarse. We then considered the practical implementation of the
variance ofe?, indicates that the method we have developed afgorithm that involves the choice of the regularization param-
combining the target SNR with the linear scdlecurve works eter. Motivated by different applications, three methods were
well. The problem in the original-curve method that made noexamined for setting this parameter: The discrepancy principle
attempt to control the quality of the representation and often ledsures a certain quality of fit in the representation, the sparsity
to the choice of a regularization parameter that overemphasizeiierion enforces a certain subset size, andiikeurve crite-
either sparsity or representation error has been remedied by woin seeks a tradeoff between representation error and the size
algorithm, which produces more robust results. of the selection subset. We proposed a novel modifietlirve

6
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procedure, incorporating a target SNR, to determine the regyz21] M. K. Varanasi and B. Aazhang, “Parametric generalized Gaussian den-
larization parameter that was able to overcome the robustness Sity estimation,J. Acoust. Soc. Amewol. 86, no. 4, pp. 1404-15, Oct.

1989.

prOblemS we enqour_nered n applymg thecurve method di- [22] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete representa-
rectly to our application. tions,” Neural Comput.vol. 12, pp. 337—65, Nov 2001.
Through simulations, we showed that the regularized FOI[23] M. Foster, “Anapplication of the Wiener-Kolmogorov smoothing theory

to matrix inversion,"J. SIAM vol. 9, pp. 387-92, 1961.

CUSS a!gonthm can better 'dentlfy the ge_neratlng_vectors tha[h] J. Palmer and K. Kreutz-Delgado, “A globally convergent algorithm for
an algorithm based on a forward sequential selection of vectors = maximum likelihood estimation in the Bayesian linear model with non-

such as OMP. It must be stated that the OMP performance is still Gaussian source and noise priors,Piroc. 36th Asilomar Conf. Signals,

Syst. ComputMonterey, CA, Nov. 2002.

gOOd anq 1S adequate for.many appllcauons. The much great?ZrS] J. Palmer, “Function curvature, relative concavity, and a new criterion
complexity of the regularized FOCUSS algorithm means that ~ for sub- and super-gaussianity, Tech. Rep.,” Elect. Comput. Eng. Dept.,

it is not suitable for real-time processing; therefore, the OMP_ _ La Jolla, CA, 2002.

D. LuenbergerLinear and Nonlinear Programming Reading, MA:

. : 6]
algorithm would be preferred. However, when the detection of? Addison-Wesley, 1989.
the true underlying vectors is of foremost importance rather thafz7] S. Reeves, “An efficient implementation of the backward greedy algo-
the processing time, especially as encountered in some medical rithm for sparse signal reconstructionEEE Signal Processing Left.

vol. 6, pp. 266—268, Oct. 1999.

applications, th_e improved deteqt_ion _ab”ity of the rGQUIarizquS] M. Hanke, “Limitations of theL-curve method in discrete ill-posed
FOCUSS algorithm makes the utilization of the regularized FO-  problems,”BIT, 1996.

CUSS algorithm developed here attractive. [29] T. Reginska, “A regularization parameter in discrete ill-posed prob-
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