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An Affine Scaling Methodology
for Best Basis Selection
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Abstract—A methodology is developed to derive algorithms algorithm does not result in effective sparse representations
for optimal basis selection by minimizing diversity measures [7], [13], [14]. Another effective approach to basis selection
proposed by Wickerhauser and Donoho. These measures |ncludewas developed in [8] and [9] in the context of special dictio-
the p-norm-like ({(,<1)) diversity measures and the Gaussian . .
and Shannon entropies. The algorithm development methodology N@ri€s, wavelet packets, and cosine packets. An entropy-based
uses a factored representation for the gradient and involves measure of sparsity was used to choose the optimal basis, and
successive relaxation of the Lagrangian necessary condition. Thisan efficient algorithm was developed, exploiting the special
¥ie|dsfalgor¥hm&s,Atg% gre ir(ljtima:ﬁlydrelated to tlhe Affilne Sdcg“r;ﬁ structure in the dictionary vectors. The general problem of

ransformation ased methods commonly employed by the . . . .
interior point approach to nonlinear optimization. The algorithms basis selection was addressed in [10] and [11]', Where!ﬁl an
m|n|m|z|ng the [(PSU d|vers|ty measures are equiva|ent to a norm measure was Used as a measure Of SparSIty BaSIS vectors
recently developed class of algorithms called FOCal Underde- were chosen that resulted in a representation with the smallest
termined System Solver (FOCUSS). The general nature of the ¢, norm, and the method was shown to be quite effective.
methodology provides a systematic approach for deriving this Interestingly, the problem of basis selection arises in

class of algorithms and a natural mechanism for extending them. L .

It also facilitates a better understanding of the convergence Many other applications, and researchers in other areas have
behavior and a strengthening of the convergence results. The also attempted to define diversity measures and to compute
Gaussian entropy minimization algorithm is shown to be equiv- sparse/concentrated solutions based on minimizing them
alent to a well-behavedp = 0 norm-like optimization algorithm. [15]-[19]. The use of the term “diversity” in this paper

Computer experiments demonstrate that thep-norm-like and the . . . . .
Gaussian entropy algorithms perform well, converging to sparse refers to a measure of antisparsity and is consistent with

solutions. The Shannon entropy algorithm produces solutions that the terminology used in several research areas [33]. Note that
are concentrated but are shown to not converge to a fully sparse minimizing diversity (antisparsity) is equivalent to maximizing

solution. concentration (sparsity). Our own interest in this problem was
initially motivated by the biomagnetic imaging problem [20].

|. INTRODUCTION Basis selection has applications to linear inverse problems

. where the solution is known or required to be sparse, e.g.,

e D e ot e, et Soscn caing 21), banciite exraposton and speca
* ~estimation [22], [23], direction-of-arrival estimation [16],

part|cul_ar_ interest to us is the approach of using an overco 4], functional approximation [25]-[27], failure diagnosis
plete dictionary to represent a signal [7]-[11]. The motivatio . : : .

) . . 8], and pattern recognition for medical diagnosis [19]. We
for such an approach is that a minimal spanning set of baSis

vectors is usually only adequate to efficiently represent a sm%ﬂn gxplon th? advances in these d.|sparate areas to develop
ective solutions to the best basis selection problem. It

class of signals while forming an overcomplete dictionar% | that ttocti lution 1o thi bl h .
using a carefully chosen set of redundant basis vectors t yeear that an eflective solution fo this problem has wide

can represent a larger class of signals compactly. Popular d%r-‘g'nr?_ consequences. h like (¢ di .
tionaries used are the Wavelet and Gabor dictionaries, amonégt is paper, we use thg-norm-like (£,<y)) diversity

others [7], [12]. The problem of basis selection, i.e., choosifgasures and the Gaussian and Shannon entropy diversity

a proper and succinct subset of vectors from the dictionafyy€asures proposed in [9] and [10] as the starting point for

naturally arises in this case, and developing algorithms fBfveloping optimal basis selection methods. A novel method-
optimal basis selection is a subject of current research, ~ ©109y is developed and employed to minimize these sparsity

A sequential basis selection method called the matchiffgg@sures and to develop algorithms for basis selection. An
pursuit method was developed in [7]. This method is conflPortant outcome of this work is that it provides a deeper
putationally simple and quite effective. However, becaustderstanding of a class of algorithms called FOCal Under-

the algorithm is greedy, there are situations where the badR{ermined System Solver (FOCUSS), which was recently
developed in [16] and [24]. An intuitive and informal approach
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starting from other diversity measures. For example, we de-The representation problem has many solutions. Any solu-
velop a variant of the FOCUSS algorithm to minimize thédon can be expressed as

Shannon entropy diversity measure of [9]. Another important
contribution of the paper is that the algorithms are shown to be

equivalent to Affine Scaling Transformation (AST) algorithm%herexmn is the minimum 2-norm solution (i.e., solution with

L= Tmn +V

which have recently received attention in the literature ge smallest’; nornt defined ag|z||2 = Y7, =[i]?) and is
interior point optimization methods [29]—-[31]. given byz,,, = Atb, whereA* denotes the Moore—Penrose

The outline of the paper is as follows. In Section Il, Weseydoinverse. The vectoris any vector that lies ioV(A),
present thg-norm-like (p < 1, includingp negative) diversity \yhich is the null space aft. In this caseA has a nontrivial
measures and the Gaussian and Shannon entropy measur%“gpace of dimensiofn —m). In many situations, a popular
sparsity proposed in [9] and [10]. We then define the beébproach has been to set= 0 and to selectr,,, as the
basis selection problem as the problem of minimizing theggsjred solution, e.g., the method of frames [4]. However, the
measures subject to the constraint that the signal vector ha$,igimum 2-norm criteria favors solutions with many small
basis representation. In Section Ill, a methodology to deriygn;ero entries, which is a property that is contrary to the
an iterative algorithm that selects a sparse representationda@ of sparsity/concentration [11], [16]. Consequently, there
minimizing thep-norm-like sparsity measures, excluding (M 5 need to define other functionals that, when optimized,
porarily) the case = 0, is presented. The iterative algorithmgaq 1o sparse solutions.
is based on successive relaxation of the Lagrangian necessafy,g question of good diversity measures has been studied in

conditions for a minimum. Additional insight into the resultingy,o past, and a good discussion can be found in [9] and [10]
algorithm is obtained by interpreting the algorithm as solving &, in the literature on linear inverse problems [15], [17], [18].
succession of constrained weighted minimum norm prOble'ﬂﬁlpopular diversity measure &) (x), where

and as an AST-based gradient descent method. The AS
interpretation shows that a natural scaling matrix is associated
with a choice of value fop. In Section 11I-C and Appendix A,

a detailed convergence analysis of the algorithm is performed,
expanding the scope of the convergence results previou¥¥ extend this class to include negative valueg,ofeading
prescribed in [24] and [32]. In Section IV, we focus on th&o the general class of diversity measures

casep = 0. We show that the-norm-like algorithm obtained

E@(z)=>"|afi]]’, 0<p<1.
=1

by settingp — 0 and the algorithm obtained from minimizing E®(z) =sen(p) Y _ |zfi]]’, p<1

the Gaussian entropy are identical and argue that this algorithm i=1

effectively minimizes the numerosity measure described in 3 =lelE, 0<p<1 5
[10]. In Section V, we develop an algorithm to minimize the - {— Dm0 2P, p <O @)

Shannon entropy and discuss why this algorithm does not fully
converge to a completely sparse solution. Section VI giVgshere sgfp) = {+1: 0<r=! " The diversity measures
computer simulations comparing the performance of the sparsze —L p<0

basis selection algorithms developed in the paper. Finally, ?(x) for 0 < p < 1 are the general family of entropy-like
conclusions are given in Section VII. measures defined in [9] and [10], as well as those discussed

in [15] and [17] to compute sparse solutions. The motivation
for these diversity measures is that their minimization subject
to the constraint (1) results in sparse solutions. Due to the
) ) close connection td, norms, we refer to these measures as
The problt_em_ of basis selectlor_1 can be formulated a}s“@pgl) diversity measures” and often, more simply, as the
problem of finding a sparse solution to an underdeter.m'”@ﬂ(—norm-like diversity measures.” It is well known that for
system of_equatlons _[11], [14]. Let be anm x n matrix ;1 ¢, is not a true norm [15].

formed using the basis vectors from the dictionary. Since weTphe diversity measure fos = 0, which is thenumerosity
have an overcomplete dictionany, < n, and it is assumed giscyssed in [10], is of special interest because it diract

that rankA) = m. Denoting the given signal to be representegheasure of sparsity, providing a count of the number of
by b, which is anm x 1 vector representation df, requires nonzero elements of a vectar

solving for z, which is ann x 1 vector, such that
EO(a) = #{i : «[i] # 0}

Az =b. (1) Finding a global minimum to the humerosity measure requires
an enumerative search and is NP hard [26]. Consequently,

The problem of basis selection and that of efficient reprélternate diversity measures that are more amenable to opti-
sentation ofb requires thatr be sparse, i.e., most of themization techniques are of interest. TR&)(z) measures for
entries of z are zero. Equation (1) ensures thatis a p < 1, p # 0 are useful candidate measures in this context
consistent representation f and the sparsity requirementand are indirectly related to sparsity in thahen minimized
ensures tha_t the solution is concentrated and, hence, an efﬁCieq{or simplicity, by default||- || will denote the 2-norm, and all other norms
representation. will be explicitly indicated.

Il. PROBLEM FORMULATION



RAO AND KREUTZ-DELGADO: AFFINE SCALING METHODOLOGY FOR BEST BASIS SELECTION 189

they yield sparse solutions. However, these measures ha@veAlgorithm Derivation
the disadvantage that they can have many local minima,;g minimize the#,,<;, diversity measures subject to the

which can result in optimization algorithms converging t@qajity constraints (1), we start with the standard method of
suboptimal solutions, i.e., solutions with more nonzero entrigg

X ; range multipliers (see, e.g., [29], [36], and [37]). Define

than absolutely necessary. This problem can be aIIewath:@g LagrangianL(z, \)

somewhat with the use of a good initial condition, which is

likely to be available in engineering applications. For a more L(z,\) = E®(z) + AT (Az — b)

detailed discussion of these diversity measure®ferp < 1, _ o

see [9], [10], and [15]. Additional discussion can be found iWhere A is the m x 1 vector of Lagrange multipliers. A

[33]. At this juncture, to avoid potential confusion, it is usefuf€cessary condition for a minimizing solution to exist is

to note that minimization o2 (z) is considerably different that (z, A.) be stationary points of the Lagrangian function,

from the standard,, optimization problemmin, ||Az — b|[, €.

pz 134 VoL, A) = Vo E® (2,) + ATA, =0
The diversity measure&®)(z) for p < 0 are also good

(indirect) concentration measures. For example congider VaL(ws, As) = Az, —b=0.

-1,

()

The gradient of the diversity measuk&?) () with respect to
elementz[i] can be readily shown to be

n

(D) — _ 1
@ =2 ar Vo EO (@) = lpl|e P22 i)

=1
(1) . L ) i Substituting this in (5) results in a nonlinear equation in
B () will be minimized by making the entries afsmall, o yariable with no simple solution being evident. To

thereby encouraging sparsity. remedy the situation, we suggest using a partictaatored

Many other diversity measures can be defined [33], [35]. Wgresentatiorfor the gradient vector of the diversity measure,
only examine here the Shannon entropy and Gaussian entrqpy,

which are two other diversity measures described in [8]-[10]. "

The Shannon entropy diversity measuig(x) is defined as V. EWP (z) = a(z)(x)x (6)
n l[] 2 wherea(z) = |p|, andII(z) = diag |z[{]|"~2).2 From (5) and
Hs(z)=—>_ &[i]In&[i], wherei[i] = TR (3) (6), the stationary points satisfy
=1

alz, ) (e )zs + ATN, =0 and Az, —b=0. @)
The Gaussian entropy diversity measiifg(«x) is defined as
Note that forp < 1, II7(z,) = diag |z[{]|>~") exists for all

n ) z. From (7), we have
Hg(z) =Y In|zfi]]*. (4) .
i=1 Ty = — I Y(z,) AT )\, (8)
Il. £(,<1) CONCENTRATION MEASURES Substituting forz.. in the second equation of (7) and solving

In this section, we develop a novel methodology for derivin]:j)r A results in

algorithms to minimize thé <) class of diversity measures Ao = —al@ ) (AT Yz, )AT) 1, 9)
defined by (2) subject to the linear constraint (1). For now, we

exclude the casp = 0; the details pertaining to this specialSubstituting this expression fox, in (8) then results in
case are provided in Section IV. The algorithm is derived using . T . —

successive relaxation of the Lagrangian necessary conditions Ty = 17 (2 ) AT (AT (24)A7) 770, (10)

in Section llI-A. Interestingly, the approach turns out to be a Equation (10) is not in a convenient form for computation
systematic procedure for deriving a class of algorithms calleog the right side depends an. However, it indicates the
FOCUSS developed in [24]. Additionally, the methodology,hition that the stationary point must satisfy and also

employed provides a mechanism for generalizing and derivuggggeStS the iterative procedure for computingas
FOCUSS-like algorithms to other situations. More insight into

the methodology is obtained by interpreting the approach as a Tpqr = I Yap) AT (AIT Y (z) AT) Lo, (11)
method of solving successive weighted constrained minimum

norm problems. In Section III-B, we recast the algorithnfhe computation of7 () = diag(|zx[i]|*~#)) for p < 1

as an affine scaling transformation (AST)-based gradiesfl0€S not pose any implementation problems, even as entries
descent optimization method. Sections 1ll-A and B provideonverge to zero (as is desired, the goal &parsestationary

the foundation for a general affine scaling methodology f&int z.). Note that if any element[:] is zero, then the
deriving best basis selection algorithms. In Section I1I-C arfPrresponding diagonal term ilf—* is also zero.

Atp%?n(;jix A, the convergence behavior of the algorithm iszMore generally, as will be seen in Section &is an explicit function of
studied. 2
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1) Interpretation of MethodologyWe now explore related which the weighting matrix is arrived. The weighting matrix
optimization strategies that provide more insight into th&(z,) is defined by the relationship (6). Due to the simple
approach. The need to solve the difficult nonlinear equatioture oflI(z; ), it may be tempting to believe that an iterated
(5) is a standard occurrence in optimization problems. Sevevatighted least squares formulation can be obtained directly
creative methods have been developed to address this probfesm the cost function (rather than its gradient). Unfortunately,
in the nonlinear programming literature [29], [36]-[38]. Ofuch an approach to defining the weighting matrix does not
particular interest to us in this context are the methods e#sily generalize to more complicated measures. For example,
finding iterative solutions by a relaxation approach whemne might propose to use the direct approach to form

the Lagrangian is modified, and a related simpler problem is n n
solved. In such iterative methods, one generates a sequence of E<f’)(x) = sgn(p) Z |z[d]]? = Zw[i]2|x[i]|2
estimates of the parameter vectgy, along with estimates of i=1 i=1

the Lagrange multiplier vectok;, which is usually expressed
in terms of the current iterate; [38]. The feasibility of the
vector z;, is usually ensured at each step with the goal being wli]?® = sgn(p)|z[i]|P~2
that z;, — z. and A\, — A..

From this perspective, note that the iterative algorithm (1i’
can be viewed as arising from a successive relaxation of
Lagrangian necessary condition (7) at stépt+ 1) to

where

ielding E®)(z) = 2T II(x) and a weighting matrixl (z) =

@Qw[i]Q). However, this results in a positive definite weight-

ing matrix for positivep but not for negativep. It is easy

to generate other examples with similar negative conclusions.

VeLiii(x, A) = alzp)  (zp)z + ATX = 0. More general evidence that the relationship (6) is a natural
and effective way to derive weighting matrices can be found

Then, solving for the stationary point at stgp+ 1) reduces i, [33]. The algorithm developed in Section V for minimizing

to solving a linear system of equations of the form the Shannon entropy also uses the weighting malfix; )
o) () AT} [x} [0} defined by the gradient relationship (6).
A 0 |[x] " |b

. . i o B. An AST Connection
which can be easily done in a manner similar to that used

in computing(z., A«) [cf., (7)—(10)]. Note that at each step,
Zr+1 generated from (11) is feasible, i.edxr+1 = b, @s is
easily demonstrated

The algorithm proposed in the previous subsection is closely
related to the AST-based methods used by the interior point
approach to solving linear and nonlinear programming prob-
lems [29]-[31]. A significant and interesting outcome is that

Axpqy = A () AT (AL (2)AT) the II(x) matrix defined from the gradient relationship (6)
= (AT (21) ATY (AL () AT) 1D suggests aatural affine scaling matrix. To see this connection,
_ let us define the symmetric scaling matiiX by
W (x) £ 1l (x) = diag(|[d]| %) (12)

Given zy, the sequence of Lagrange multiplier estimates
naturally follow from (9) A\, = —a(zs ) (AT~ (x)AT)~1b.  with W(z) = diag(|=[i]|*~%). For the (k + 1)th iteration
The convergence of the iterates — =, is proved in Section of the algorithm (11), let thé/” matrix, now denoted by
[lI-C and Appendix A. Wy41, be evaluated at the present solutien (i.e., Wi =
Continuing this scrutiny further, we see that an appropriatiad |zx[¢]|* %)) and used to define a scaled variaple
approximate Lagrangian at each stép+ 1) is given by ¢=Wkhe equivalentlys = Wiiq. (13)
Lyy1(x, ) = @xipﬂ(wk)x +XT(Az - b). With this transformation, the optimization problem inis
transformed to an optimization problem in the scaled variable
This approximation corresponds to replacing the problem gf namely
minimizing the original cost functio&‘?(z) by a sequence of _ .
constrained weighteghinimum nornproblems. This is closely min E®)(Wiy1q) subject tod,ig =0
related to the algorithms developed in the context of £he
optimization problem of minimizingl Az —b|[2, p > 1[34]. In  where 4,1, is the rescaledd matrix defined byA;., =
the £, optimization problem, there are no constraints, and it i8Ws+1.
customary to deal with an overdetermined system of equationsFollowing the AST methodology [29]-[31], the gradient
relaxation of the necessary condition for the minima leads tondth respect tog is projected into the null space ofy.; to
sequence of weighteldast-squareproblems. The algorithm obtain a feasible descent directidithe gradient with respect
developed [cf., (11)] can be viewed as an extension of th@ the scaled variable is given by
methodology to the underdetermined problem. o o
For this procedure to be sound, it is necessary that thequ(p)(WkHQ) = Wi Vo B (@) = a(0)We 1T (@)a.
weighting matrixII(z;) be positive definite at each iteration, 3P_rojection_of the gradient onto the nullspace of a constraint matrix to
. . . . . obtain a feasible descent direction is well-known as the gradient projection
which is true for thep-norm-like diversity measures. The

. . X ) method of Rosen [37]. AST methods additionally rescale the constraint matrix
contribution of the approach developed lies in the manner ateach step [29].
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Evaluating this gradient at the current value of the itergte We emphasize that algorithms (11) and (15) are entirely equiv-
(equivalently aty;, = W, Jrlla:k) and projecting it into the null alent becuase they are related by the scaling transformation

space ofA; results in the search directidp, where (13). The algorithms are initialized by a suitably chosen
feasiblexzg. As mentioned in Section Il and experimentally
h=(- At+1Ak+1)“(xk)WkHH(xk)xk demonstrated in Section VI, the choice .af determines the

= ofz)({ — A§+1Ak+1)Wk+1W,Lf1 Wit14), sparse solution to which the iterations converge; therefore, care

= ) (I — Afy 1 Awrr) g must be ta}(en in making this choice. Often, thg minimum 2-

norm solution has been found to be a useful initial starting

The new solutiongy,;; andzy; are computed as point [11], [24]. Note that unlike standard gradient descent
) algorithms, there is no need to compute a step size at each

Tet1 = G — Pl iteration of (15), which can significantly speed up the compu-

tation. For very large scale problems, a direct implementation
of (15) can be onerous, and efficient implementations of
the algorithm may become necessary. In particular, it is of
interest to note that the algorithm (15) has an interpretation

wherey;, is a positive step size. i is now chosen to equal as an interior point optimization method [33]; this is a fact
ﬁ then that can enable the use of recent breakthroughs in applying
interior point methods to large scale problems similar to the

Qi1 = A A1 ar = AL AW W e = AL D p = 1 optimization problem described in [12]. Some additional
(14) details on initialization and computation can be found in [16],

and [24], and [39].

and

Trr1 = Wit @rr1 = o — Wil

Trr1 = Wig1Qeyr = Wip1 Af 1
1
= Wk+1A£+1 (Ak+1A£+1) b

= W2, AT (AW, AT)

C. Convergence Analysis

Having proposed and motivated tig,<;)-class of algo-
rithms given by (11) [equivalently by (15)], we now turn

which is precisely the iterative procedure given by (11). to thel ISsue O]: ehxammmg |ts_ convergence behawoa The
A closer examination of the scaling matri (z) — special case of the numerosity measure, corresponding to

diag(|[i]|*~%) is worthwhile. In the standard AST methods? = 0, needs special attention and is deferred to the next
usually, the scaling matrid¥(z) = diag|z[i]]) 2 X(z) section. A convergence analysis of the FOCUSS class of
is used [29], [30]. For the algorithm suggested hetd/x) algorithms was earlier c_arri_ed qut in [_32],_ [24]._ Hoyvever,

naturally defines a scaling matr¥ () via the relationship the convergence analysis in this earlier investigation was
(12), which is more generally dependent on the choice imited, and in certain instances, more restrictive conditions

p. For p — 1, which corresponds to thé, norm, (12) Were imposed than necessary. We follow the descent-function
results in the scaling matrixV(z) = diag(|z[i]|z), which

based analytical path proposed in [24] and [32] and improve on
differs from the commonly used weighting matriX (x); the results. The solution methodologies introduced here also
for p = 0, we obtain the standard affine scaling m:,mifnable a convergence analysis for the optimization of other
W — dia ) = X(z), and forp = —1, we get sparsity measures, such as the Shannon entropy (3). As in
thegxs)caling mg(t|rgi6>£1ﬁ/|)(a:) _ d(izgﬂa:[i]ﬁ) P g [24], the convergence of the algorithm is established with the

The AST derivation naturally leads to the following inter—help of the global convergence theorem [36], [37]. The main

esting algorithmic interpretation. Examination of (14) show/sesuIt is as follows.

that at each step of the algorithm, we effectively solve fort% Thleorgtr;: L Slgartln_g_fr(_)m atboundqu fea_?ble solutiap, d
minimum 2-norm solution with respect tg i.e., € algorithm (15) minimizes th,,<,) diversity measure an
converges almost surely to a relative minimum, which for

5

min ||¢||3 subject to Ayy1q = b. p < 1is a basic or degenerate basic solution with at most
m nonzero entries.
Having found the minimum 2-norm solutiogy 11 = A, b, For the analysis, the assumption that we make aboutithe
Tp41 IS then computed a1 = Wiy1qrt1. matrix is that its rank ben. No assumption of independence

The overall algorithm, which is equivalent to the FOCUSS$s required about any: columns selected fromi. Here, we
algorithm originally proposed in [16] and [24], can be sumenly describe some of the key aspects of the analysis, and the
marized as details are relegated to Appendix A. The main features of the

. P analysis are as follows.
Wiy 1 = diag(|zx[d]|' 2 . . . . .
htL +g(|$’“M| ) 1) The analysis requires one to first determine a solution
Qi1 = Ay b, where Ay, = AWgy,y (15) setI" to which the algorithm converges, which in this
Tht1 = Wra1Grt1- case is defined as containing the stationary points (10).
4Actually X () = diag«[i]) is typically used, but this has the same effect It is shown that the relevant and interesting stationary

asW = diag |z[¢]|) sinceW always appears a¢'2 in the computation of points of the algorithm i§ a SUbset. af, Wh_iCh i$
. denoted byl',, which contains the basic solutions, i.e.,
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solutions with no more tham nonzero entries that arethat there are even stronger connections, algorithmically and
obtained by selecting» columns of A and solving the analytically, of thep = 0 algorithm to the Gaussian entropy.
corresponding linear system of equations, if it exists. Algorithmically, we can consider minimizing directly the
There are potentially ) such solutions. The systematicGaussian entropy or the monotonically related (and hence
approach used in deriving the algorithm enables a simmguivalent) cost function EXpig(z)) = [I._, |=[{]|?. The

and direct proof of the unstable nature of the sparsatter one is preferable if we are interested in a function that
solutions with more thamn entries. is bounded from below. However, the Gaussian entropy is

2) The next important step required for establishing comdequate for the discussion to follow.

vergence is finding a descent function for the algorithm. An AST algorithm can be derived to minimize the Gaussian
The descent function for these algorithms is the diversigntropy following along the lines outlined in Section IlI-B;
measure itself, and it is shown in the Appendix that merely replaceE®) (z) with Hg(x) in the analysis. The only

new quantity required is the gradient Ht;(x), which can be
EP (wp41) < E®(ay), ap g1 readily shown to be

In [24], to prove convergence of the FOCUSS class of V.Hg(z) = ag(x)g(x)z
algorithms, the/;,,«,y diversity measures were also used )
as descent fun(cpti_ogls. However, fpr< 1 andp # 0, whereag(z) = 2 andlg(x) = diad 7). The scalar factor

the decrease of the descent function was establist@(®) does not affect the algorithm, anfl(z) leads to
under limited conditions [24, Th. 4]. In addition, the?n affine scaling algorithm with a scaling matrix given by
convergence result presented in [24, Th. 2] appears (@) = diag(z[¢]|). Note that this is same scaling matrix as
be true only forp = 0. We show decrease in the descerffiat obtained by setting = 0 in algorithm (15), which was
function starting from anyz, € R™. derived for the minimization of thé <, diversity measure

3) Another requirement for the convergence analysis §Sumingy # 0. A similar algorithmic %°”C|U$i2” is reached
to show that the sequence lies in a compact set. We/Ve {ry to minimize ExgHe(x)) = IT;—, |=[dl°.

establish this fact by providing a direct proof of the nterestingly, r}he monotonically  related  functional
boundedness of the sequence Exp(Hc(z)) = [1, |=[i]|* provides an analytic connection

In addition to the convergence analysis, rate of convergentgetheli(f’ﬁl) d'|verS|ty measures via the arithmetic-geometric
an inequality [40]

is another important revealing aspect of an algorithm. Results

about the rate of convergence are available in [24], where it n o>l

i 71|17 < 2117

is shown that the order of convergence(2s— p). <£[1 |z [4]| ) < - ; |[4]|
IV. NUMEROSITY AND GAUSSIAN ENTROPY This implies that for allp and |z[¢]| > 0

1

We now pay special attention to the case where- 0, 1, = L 1 .
which, as previously discussed, yields a numerosity meaSI.GergE(p )(37)) < [Exp(He(x))]?" < <5E(p )($)>
that exactly counts the number of nonzero entries

1
pT

N where p¥ > 0 and p— < 0. We have equality in the
E© — 0 2l £ 0V = 1zl limit p — 0, establishing a connection between the Gaussian
() = iz oli] # 0} ; (=l entropy and the(,,«, diversity measures, i.e.,

1
where ez He(@) _ im <lE(p)($)> P_ (16)
1) = {12 o
0, z[¢=0" We can also relate the Gaussian entropy to fhe)

diversity measures via a Taylor series expansion. This follows

This is the_ measure we ideally would prefer to r_ninimize_z %ong the lines of the argument used in [10] to link the
observed in [9], [10], and [15]. Unfortunately, this function,,merosity measure to the Shannon entropy. The diversity

is not directly suitable for minimization as the function i$,casures=® are continuous and differentiable with respect
discontinuous in the regions of interest (when affij goes to to p. It can be shown that

zero) and has a gradient of zero everywhere else. However, the

class of AST algorithms given by (15) [equivalently, by (11)] dE®) (x) zn: 2 [i][P In [2[]]
yields a well-behaved algorithm, even whegn= 0. Indeed, dp ~ '
letting p = 0 in (15) yields the basic FOCUSS algorithm of .

[16] and [24] and involves the use of a well-defined scalin{@King the limit asp — 0, we get

matrix W{z) = diag|z[¢]|). Although the algorithm (15) dEW) () 1

is well defined forp = 0, the convergence analysis differs T dp = 5HG($)'
somewhat from the # 0 analysis described in Section IlI-C.
In [24] and [32], a convergence analysis is given, and it Rerforming a Taylor series expansion abput 0, we get
shown that the basi¢p = 0) FOCUSS algorithm minimizes » (0 P

the Gaussian entropf(x) defined by (4). Here, we show B (@) ~ B (@) + 2HG($)' (47

p—0
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As p gets small, the diversity measu®)(x) begins to Identity 2: Let z;, be feasible, i.e.Az; = b; then

behave like the Gaussian entropy (except at sparsity points . AT T .

where the otherwise constant numerosity meastif® (x) (1) s (@r)er = ay Us(er)e)

jumps discontinuously), establishing another point of contact = ($Z+1)Tﬂs($k)$§;+1

between Gaussian entropy afti)(z)|, .o minimization. Ty g1 -1
The convergence of the algorithm (11) for the case 0 =b (AHS (zx)A ) b.

can be proved using the global convergence theorem. In fact, proof:

most of the results discussed in Section I1I-C and derived in - N

Appendix A hold true, except that we need to identify a proper %k 1s(xy )41

descent function (the almost everywhere constant, otherwise = x{ﬂs(xk)ﬂgl(xk)AT (Aﬂgl(xk)AT)_lb

discontinuous, functio®(®) () being unsuitable). In [24], it is T T A1 -1

shown that the Gaussian entropy functifia(z) is a suitable = wp A (AL () A")

descent function, which is a fact now further supported by =" (AHgl(a:k)AT)_lb.

the relationships (16) and (17). The fact t&(z) is a valid

descent function can be shown from (15) using the observatib

that ||gx||*> < » and the inequalitjogt < ¢t — 1, t > 0. See

[24] for details. Lemma 1:

Re other expressions can be shown in a similar manner.
O

y  s(x)y
V. SHANNON ENTROPY Hs(y) = Hs(x) < llyll?
In this section, we develop an algorithm for minimizing Proof:

the Shannon entropy diversity measufg(x) defined by (3) n o 12
and discussed in [8]-[10]. The approach follows the steps y” [Is(x)y = —||y||?Hs(z) — ||y||22 Y [Ll ln |x[L]|2
employed in Section Ill-A to minimize thé -, diversity = lwll ]
norms. This necessitates taking the gradient of the diversity > |lyl|*(Hs(y) — Hs(z)).
measure, which in this case can be shown to equal

The last inequality follows from the fact that, p log pr —
VoHs(z) = as(z)s(z)x S, pi log gz > 0 with equality if and only if for allk, we have
pr = qx, Where herep andq are probabilities [9], [41]. O

where as(z) = - and

ll=I12

diad H a0 hereali |z[4]|? B. Modified Algorithm
[s(w) = ~diag Hs(w) +Inilil) - wherezli] = [EE Using the above results, we consider the following form of

Retracing the argument given in Section IlI-A through (11§n algorithm for minimizing the Shannon entropy (3)

suggests that we focus on the iteration Tr1 = Tk + ok ( Tk — Thyy) -

ey = 5w AT (AL (21) AT) H0, If ) is feasible, then it can be readily shown that; is
L , feasible. The increment; — ., then provides a feasible
'!'he superscript Is l_Jsed r_lere bet_:quse, unllke_thm(_)r_m- direction of descent, and by proper choice of the step size
I|ke.case wherd! (z) is positive definite /s (x) is mdeﬂmtel, s, which we explore next, we can ensure tHat(x) is
calling for some modifications in order to develop an algor'th'??]inimized at each step. By Lemma 1, it is sufficient to

that provably converges. In the next subsection, we develg&ectuk such thata:f_i_lﬂs(a:k)a:kﬂ < 0 as this ensures

some prel_irr_ﬁnary results for 'Fhis_purpose. Note that we assume, Hs(wxs1) < Hs(wr). Examininga?, | s(xy)ar1, and
the invertibility of IZ5(x), which is a generic property. simplifying it using the above identities, it can be shown that

r AT ”
A. Preparatory Results Thpy Hs(ap)wrgr = = (pn + 2) (hyy)” Hs(r)hy, .
In (_)rde_r to _d_erive the modified algorithm, we need the | (23,1)" s(zx)zy,, < 0, then we need to select a value
following identities. of i, such thatuy (i, +2) is negative. To obtain a potentially
Identity 1: optimum step size, we can chogsgto equal the value where
xfﬂs(xk)xk —0. uk(uk_-l- 2) attains its minimum. This chmce Ieaqls tp the
selection ofy;, = —1, resulting inz; 41 = 73, and yielding
Proof: an iteration step equivalent to (11). We should mention that
n 2 in practice, we have found the terfw;_ )" ITs(xy )z, tO
o} Hs(zp)zn = —of opHs(zr) — fo[t] In [l be always negative. Some reasoning as to why this should be

=1 [lxl? true is available, but a detailed explanation would take us too
,~ |2> far astray, and we refrain from doing so. However, lacking

"L 22[ Trlt
= —||lax|? <Hs(a:k) + Z il |]2 In el a rigorous proof that this term is indeed always negative, for
completeness, it is necessary to check and to deal with the

k
1
= —||lzx|*(Hs(zx) — Hs(x1)) = 0. O case when(zj )" IIs(zy)xy,, > 0, which we do next.
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If (x,1) T Is(xr)z},, > 0, then any positive value qfy 10 —r—57 100 -
is acceptable. We can choogg optimally by trying to ensure Ructess rate 96% gﬁbcess rate 100%
a large decrease in the Shannon entrélgy(«). For simplicity, 50 50
we suggest the choicg, = 1. The overall algorithm then is
0 0
” s T ”
ey = {$k+17 (vh) s(oain <O g ol
20y — xhyys (whyr) s(zw)zh, > 0. success rate 100% Success rate 100%
50 50
C. Stationary Points
. . 0 0
Algorithm (18) is guaranteed to decrease the Shannon 1000 2 4 6 | 000 2 4 6
entropy Hs(z). The stationary points of the algorithm are sﬁ'c6cess rat'e99% I gﬁbscessrate97%
given by (10) and satisfy the necessary first order condition ¢, 50
for a local minimum, viz., that the gradient at is in the
range space ofi”. With the gradient proportional tél (), 0 - : 0
an equivalent statement is 1000 ?p-25 4 6 1000 2 7 4 6
-~ 1 Success rate 91% I gﬁc'cess rate 87%
Y 2 Hs(z )z, = AT (Al (2,)A) b= ATB,..  (19) 50 5
The nature of the stationary solutions can be ascertained by 0 0 0 il
examining this condition more closely. Examining ttieentry 100() 2 4 6 1000 2 4 6
yeli] of y, we have Kl rle 85% 1 S e
Yu[f] = =z [)|Hs(24) — @[] In Z..[4]. 5 5
If the solution is sparse, i.e., many of the entrie§/] are zero, 00 ) i 1 ! 00 2 4 . 6

then the corresponding entrigs[:] must be zero. However,

(19) shows this can only be true if by using linear combinatidfd- 1. Performance (histogram of 100 trials) of thg<,) measures are
T . . shown forp = 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.25, 0, —0.5, and —1. The

of m columns ofA*, we can find a vector with a large numb‘:)'barameters used in the simulation ane= 20, n = 30, sparsityr = 4, and

of zeros. This is, in general, not possible, and therefore, tihe algorithms are initialized by the minimum 2-norm solution = ATb.

stationary points of the minimum Shannon entropy solutiofe » = 0 algorithm is equivalent to the Gaussian entropy algorithm.

cannot generally be completely sparse, as our simulations

in Section VI demonstrate. However, consistent with thgsed to generate the data, is computed. Algorithms with a
discussion given in [9], they do tend to have a large numbgigundancy index histogram concentrated aroummticate a

of entries with very small (albeit nonzero) amplitudes. Agood procedure.

explanation as to why complete sparsity is not attained for gxperiment 1:In this experiment,4 is chosen to be a
the Shannon entrop¥fs(+) and possible ways to rectify this o 4 30 matrix, i.e.,m = 20 andn = 30. Figs. 1 and 2 detalil

situation is given in [33]. the results for sparsity = 4 andr = 7, respectively. The-
norm-like diversity measures are optimized fervaluesp =
VI. COMPUTER SIMULATIONS 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.25, 0, —0.5 and—1. Recall that

In order to gain insight into the behavior of the algorithm#ep = 0 and the Gaussian Entropy algorithms are equivalent.
discussed in this paper, we perform a simulation study &he histogram results shown are obtained by thresholding the
their behavior on a synthetic test case. A randemx n solution obtained at the end of 50 iterations. A threshold of
matrix A is created whose entries are each Gaussian randd@f was used in these simulations, and components of the
variables with mean zero and variange The columns of Solution with magnitude less than the threshold are taken to
A are then normalized to have a 2-norm of 1. A Sparg@ zero. The number of iterations is chosen to ensure the
solution z, with a specified number of nonzero entriess convergence of the slowest variant of the<,) algorithms,
then created; the indices, i.e., location, of thesentries is Which in this case is thé; variant. Success rate is defined
random, and their amplitudes are random. The veétds as the percentage of trials in which the redundancy index was
then computed a8 = Az,. For convenience in interpretingl. From the simulations, it can be seen that the results are
the results,b and z, are then suitably rescaled such thasuperior when a value qf close to 1 is used. However, they
I6]l2 = 1. With a known sparse solutiom;,, which now is have slower convergence compared with lower valugsaofd,
at hand to provide a benchmark, the algorithms are run fi@ p = 1, may not be able to reduce the entries sufficiently
select the optimal basis vectors (columnsA)f The number quickly. In this case, external monitoring procedures may be
of vectors chosen are compared with the actual numhesed necessary to null out small entries. The rate of convergence
to generate the data. The experiment is repeated 100 timasalysis given in [24] indicates that lower valuesyohave
with algorithm initialized each time by the minimum 2-nornprovably faster convergence rate. It may be possible to develop
solution zo = A*b. The histogram of theedundancy index faster algorithms with high reliability by trying to combine
which is defined as the ratio of the number of distinct columrbe faster convergence behavior of small valueg wfith the
chosen by the method to the number of columns actuaByperior basis selection ability of the larger valuegpofhe
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100 100

%ﬁl’coess rate 61% %fl'cgcess rate 91%
50 l 50
00 1 2 H;ﬂ_ 4 00 1 2 ng 4
10— 100 -
success rate 87% %ﬁ'ccess rate 82%
50 50
0 0 0 X 0
1 2 3 4
1000 ! -26 3 4 1000 55
7 success rate 78% o 'sliccess rate 74%
50 50
: i A
4 1 2 3 4
foo— pfzs ! 1o =
_'suceess rate 63% Suceess rate 50%
50 50 —l _
00 1 2 HS 4 00 1 2 3 4
100 — 100 =
Rocess rate 51% Qiccess rate 45%
50 M H 50 H N
0 0

] 1 2 3 4 0 1 2 3 4

Fig. 2. Performance (histogram of 100 trials) of the <,y measures are
shown forp = 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.25, 0, —0.5, and —1. The
parameters used in the simulation are= 20, n = 30, sparsityr = 7, and
the algorithms are initialized by the minimum 2-norm solutien = A™b.
The p = 0 algorithm is equivalent to the Gaussian entropy algorithm.

TABLE |
CORRELATION BETWEEN THE A MATRIX COLUMNS SELECTED BY THE
ALGORITHM AND THE COLUMNS PRESENT IN THE TRUE SPARSE SOLUTION ARE
TABULATED. THE PARAMETERS ARE 1 = 20, n = 30 AND SPARSITYr = 7.
SucCESSCORRESPONDS TO THESEVEN COLUMNS OF THE TRUE SPARSE SOLUTION
BEING INCLUDED IN THE SET OF COLUMNS CHOSEN BY THE ALGORITHM

p | Successes Failures
Match 6 | Match 5 | Match 4
1 91 8 1 0
9 91 6 3 0
.8 87 9 4 0
7 82 13 5 0
.6 78 15 7 0
.5 74 19 7 0
.25 69 22 8 1
0 59 31 9 1
-5 51 35 13 1
-1.0 45 43 12 0

methods employed fof; norm minimization in [11], [29],

and [30] can be viewed as employing such an approach 3

195

TABLE I
CORRELATION OF THESUCCESSFULTRIALS BETWEEN VARIOUS
[(z)éU ALGORITHMS, I..E, COMPUTES THE NUMBER OF
TRIALS IN WHICH BOTH ALGORITHMS WERE SUCCESSFUL

p|1]9|8|.7/6}|.5].25[0]|-5]-1
1 J91|89(85(81|75|72| 67 |57|49 |44
9 |189(91 |87 (8277|7468 |58]| 50|44
.8 |85 |87 |87 81|76 |73 |67 57|49 |43
7 |81 (82818276 |73 |67 |57|49 |44
6 |75 |77 |76 (76|78 | 73| 68 | 58| 51|45
S5 | 72741737373 |74 68 | 58|50 | 44
.25 | 67|68 |67 |67[68|68| 69 | 58|50 | 44
0O |57 (58|57 |57 |58 |58 |58 |59](49 |43
-5 |49 50|49 (49|51 |50 | 50 | 49| 51 | 44
-1.0144 (44 (43 |44 (4544 | 44 | 43| 44 | 45

labeled “Match 6” indicate the number of times only six
columns of the true solutions were included in the computed
solution. At no time was there a match of less than 4 for any
of the variants. Here, success is defined as a trial where the
solution obtained selected all the seven columns in the true
sparse solution, even though the redundancy index may be
greater than 1. The correlation of thg<,) variants is also
examined by comparing the number of trials in which two
different diversity measures both lead to the correct choice
of including all the seven desired columns. These results are
tabulated in Table Il. Although there is a strong correlation
between the methods, and the diversity measures with
closer tol exhibit superior (more reliable) performance, there
are trials where diversity measures with lower valuespof
identified the correct solution, whereas the measure with a
larger value ofp did not.

Experiment 2: An important feature of choosing less
than 1 is that the diversity measures potentially then have
multiple local minima with each minimum having a basin
of attraction. The choice of initial condition then decides the
minimum attained. The use of different initial conditions to
obtain different sparse solutions can be a valuable attribute
when sparsity alone is not of paramount importance [24]. For
computing sparse solutions, performance can then be improved
by multiple reinitialization. The results of reinitialization for
sparsity 7 are shown in Fig. 3 far= 0. The histogram of the
redundancy index for the procedure initialized by the minimum
2-norm solution has been shown in Fig. 2. Fig. 3(a) shows the
redundancy index fop = 0 with a random initial condition,
and Fig. 3(b)-(d) show the results of repeated initialization.
Note that forp = 0, it is possible to achieve 100% success by
repeated reinitialization. In this experiment, the minimum 2-
norm solution was first used, and then, after detecting a failure,
dom initialization was used. A histogram of the number

are potentially extensible for minimizing the other diversitys jniializations required to obtain a successful outcome and

measures.

the histogram of the total complexity are also shown. Total

To get a better understanding of the performance of tegmplexity is measured by taking all the initializations, as well
method, we checked the correlation between the columasthe number of iterations per initialization, into account. The
selected by the algorithms and the actual columns usednigmber of iterations is controlled by examining thevector
generate the true sparse solution. These results are tabul@#igd5). The entries of the vector in thep = 0 case converge
in Table | for the sparsity = 7 case. The entries under columrto either O or 1, enabling easy identification of convergence
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Fig. 3. Experiments with initial conditions and the= 0, p-norm-like algorithm, which is equivalent to the basic FOCUSS algorithm of [24] and the
Gaussian entropy algorithm. Parameters mre= 20, » = 30, andr = 7. (a) Success rate with a random initial condition. This can be compared with
the p = 0 result in Fig. 2, where the minimum 2-norm solution was used for initialization. (b) Success rate after repeated initialization. If the minimum
2-norm initialization failed, thereafter, repeated random initialization was used. (c) Histogram of the number of initializations needeé suecesss. (d)
Histogram of the total number of iterations (summing over all reinitializations) needed for eventual success.

[39]. As can be seen, the number of reinitializations needefithe true sparse solution are denoted &and the minimum
is usually less than 10, and the total number of iterations $hannon entropy solution by dotted lines. As is evident from
less than 100. A closer examination of the iterations suggést). 4, the algorithm does produce concentration but not truly
that successful initializations require fewer iterations than tleparse solutions, i.e., has many very small (albeit nonzero)
failed ones. amplitudes. To test that the algorithm indeed minimized the
Experiment 3: A similar simulation study of algorithm (18) entropy measure, we compared the entropy of the converged
was conducted for the algorithm developed for minimizing theolution to that of the entropy of the known true sparse
Shannon entropy. As suggested by the discussion in Sectsmiution. Out of 100 trials, the converged solution had lower
V-C, the solution does not converge to a true sparse solutientropy in 96 trials. In the remaining four trials, the algorithm
but does result in concentration. A typical solution obtaindtad converged to a local minima of the entropy function with
by the algorithm, for sparsity = 4 and» = 7, and the a value larger than that of the true sparse solution.
corresponding true sparse solution are shown in Fig. 4. A basén summary, the simulations provide interesting insight into
10 logarithm scale is used in these plots. The nonzero entribe algorithms and provide support to the theoretical analysis.



RAO AND KREUTZ-DELGADO: AFFINE SCALING METHODOLOGY FOR BEST BASIS SELECTION 197

-2

-3} i

10 20 30 o 10 20 30
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Fig. 4. Typical results (ifog 10 scale) obtained using the Shannon entropy algorithm, which is denoted by the dotted line, are shown for (a) spatsity
and (b) for sparsity = 7. The nonzero entries of the true sparse solution are denoted:.by “

More extensive application-based study is still necessary itoprove on the results and, for brevity, concentrate on the
understand the methods more fully. Some results in thgeneralizations/simplifications that are facilitated by the new
context are already available [11], [24]. In particular, detailsystematic framework employed in this paper. The conver-
of the application of FOCUSS to the biomagnetic imagingence analysis is based on the global convergence theorem
problem can be found in [20] and [24]. We expect to condu¢GCT) discussed in [36] and [37]. We first state the GCT for
additional application-based evaluations in the near future acoimpleteness before conducting the analysis.
are optimistic that this work will stimulate other researchers Theorem 2 (Global Convergence Theorem) [36], [3T]et
to also conduct such experiments. A be an algorithm on a seX, and suppose that, given, the
sequence i 172, IS generated, satisfying
VII. CONCLUSION

41 = Alx).
We have developed a novel methodology to develop algo- Thetd ()

rithms for best basis selection. The procedure yields algorithing; 5 solution sef' ¢ X be given, and suppose the following.
that are intimately related to the affine scaling transformation 1) All points 2 are contained in a compact S8tC X

(A_ST)-based methods _commonl_y _employed by the interior ) There is a continuous function (the descent functign)

point approach to nonlinear optimization. The methodology on X such that

is quite general and is used to develop effective algorithms to . )

minimize several well-known diversity measures, e.g., ghe a) ifz ¢ T, then Z(y) < Z(x), Vy € A(z);

norm-like diversity measures and the Gaussian and Shannon D) if # € I', thenZ(y) < Z(z), ¥y € Az).

entropies proposed in [9] and [10]. A detailed convergence3) The mappingA is closed at points outsidE.

analysis of the algorithm for minimizing(,<;y diversity Then, the limit of any convergent subsequencezpfis a

measures, which are equivalent to the FOCUSS-class of algotution, andZ(z3) — Z(x,) for somex, € I'.

rithms, is conducted, showing them to be provably convergent.The convergence analysis is now carried out by showing that

Both the theoretical evidence and the computer simulatiotie sequence generated by the algorithmspfot 1, p # 0

show the algorithms developed to be quite effective arstisfies all the conditions required by the theorem. For ease

promising for optimal basis selection. Generalizations of thd exposition, the convergence analysis is subdivided into four

algorithms and results presented here can be found in [33]stages. They include the following: 1) Defining the solution set

I', 2) identifying the descent function, 3) refining the solution

APPENDIX A set, and 4) establishing the boundedness of the sequences. We

In this Appendix, we examine the convergence behavior strart W'Fh the c.iefmmon O.f the SO'.Ut'On s_et. .
: . ...~ Solution Set:The solution sel” is obtained by collecting
the algorithm (11) [equivalently (15)] developed to minimize . . . .
. . . . aI{ the stationary solutions of the algorithm. More precisely
the/(, <1 diversity measures. These algorithms are equivalen
to the FOCUSS-class of algorithms [24], [32]. As noted in I = {x* Az, =b
Section IlI-C, a convergence analysis of FOCUSS can be ) T
found in [24] and [32]. However, the convergence analysis {here
this earlier investigation was limited, and in certain instances,

more restrictive conditions were imposed than necessary. We W, = diag(|a:*[i]|1—§)}.

and z. = W.(AW.)"b
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This set contains precisely those that satisfy (10). It can
be shown to contain the sé&%, which contains all the basic <Z |5 L]|P> <Z |k L]|P> (25)
and degenerate basic solutions, i.e., solutions with no more
than m nonzero entries that are obtained by selecting n
columns ofA and solving the corresponding linear system of Z wldl" = EW (k) (26)
equations whenever it exists [30]. There are potentiglly) =1
such solutions. Later, we will examine more closely and where the second strict inequality follows from (21). Thus, we
show thatl’, is the more relevant set. have shown that the diversity measugé&” (z;,) is reduced in
Descent Function:The next important step is the determieach iteration fol0 < p < 1.
nation of the descent function. It is shown that the descentThe proof can similarly be shown fgr< 0. Note that this
function for the algorithm is the diversity measuB? (z) time, the Holder inequality is reversed but is compensated for
itself, i.e., forz; generated by the algorithm (15), we have by the negative sign arising from the factor gghnincluded in
) @) the diversity measure (2), making (23) still valid, except that
EY (rq1) < EW(x1), wpq1 # o (20)  the term on the right-hand side is negated. To successfully
carry through the proof, it is necessary to make use of the fact
that p is negative in (25).
Another useful observation to make is that the above descent
<%‘unctlon is actually valid fop < 2, p # 0 and not justp < 1,
p # 0. Therefore, the FOCUSS algorlthm can actually also be
used to minimize thé, norm of z for 1 < p < 2. We have
20> 1 3+ =1 then not emphasized this prange pfbecause of their inability to
N generate truly concentrated solutions.
inyi < <Z a:j) <Z y5> . Refi_nement of Sqlution SeHere, we show that th_e p(_)ints
P P to which the algorithm converges almost surely lies in the
set I',, which contains solutions with a maximum of
The inequality is reversed far < 1 (r # 0), assuming that nonzero entries. A useful observation in this context is to note
x;,y; > 0 (strict positivity). In each case, equality holds if andhat in the FOCUSS algorithm, once an entry becomes zero,
only if the sets(z") and(y*) are proportional. it remains zero in the rest of the iterations. Therefore, we
We first consider the cade < p < 1. Recall from Section concentrate only on the nonzero entries. Let us suppose that
lI-A that x; generated by (11) is feasible (i.edxy = b) for x, hasr nonzero entries. Lett(") be them x » matrix formed
all k, and note from (15) thaj,1 is obtained as the optimal by collecting the selected basis vectors, andagt, w ",
minimum 2-norm solut|on to the probleriVy.41¢ = b, where and 17(z{"”) be the corresponding quantities extracted from
Wi = diag|ex[d]|"Z"). In addition, note that feasibility of z,, W,, and I1(x.), respectively. Then, we can redefine the
z, implies thatg defined byg[i] = sgn(zx[i])|=zx[i]|2 is @ solution setl’ and T, as
feasible (but nonoptimal) solution tdW;.1q = b, assuming

To show the validity of (20), we make use of thedlHer
inequality. Since we use a more general form of thidddr
inequality than is commonly presented in textbooks, we st
it here for completeness.

Theorem 3 (Generalizeddiler Inequality) [40]: If z;,y;

3=
w =

r r r r )\t
Tr41 7 z1 (NONconvergence of (11)). Therefore I'={z s Ael? =b, and &l = W )(A( Wi ))
" 1<r< n}
a3 < llally = > lzali]”- @) Ty={z.:42” =b, and &) = w7 (AOW)T
=1 1<r< m}.

The entries ofcy+1 = Wit1¢r+1 €an be written agy41[é] =

q12=2 X I', contains solutions with a maximum @f nonzero entries
|zx[{]] = qrt1[¢]. Hence

and is the solution set of interest. They will be shown to be
stable fixed points and the remaining stationary pointd’in
E® (2341) Z |z p41[€]7 to be saddle points or unstable fixed points. Such conclusions
were also reached in [24]. The insights gained by the approach
used in Section Il to derive the algorithm provides an alternate
= Z |2k L” |Qk+1[L]|p (22)  direct approach to showing these results. For brevity, we only
show that stationary points with the number of nonzero entries
Let » = 2, and defines by L 1 ; — 1. Therefore, we have betweenm andn are saddle points, i.e., fen < r < n. Note
that the stationary points satisfy

s = Applylng the I-blder mequahty to (22), we have
ADL — b and 11(27)2 € R(AMT).
E®) (z1,41) < ) <Z|Qk+1 (][ ) (23) Form < r < m, such points are indeed rare. This can be
seen by examining closely what is required of the stationary

2 5 points. For example, if we consider the case 0, thenz{",
L]Ip> <Z |qr11[2]| ) (24) whichis a vector inR", lies in a linear variety of dimension
(r —m) = dim(AN(A™)),, and it is simultaneously required

(2
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that ther-dimensional vectorI (z{")a{"”, which is obtained The vectorz, is bounded. Ifz; — oo, then there exists an

by inverting element wise the entriesof”, lie in R(AMT),
which is anm-dimensional subspace. Generic solutions to
A™ 2" = b will not satisfy this condition. Not only are these

solutions rare, but they are saddle points. This can be seen
Note thatry, +1 = Wi, +1qx,+1 and that]|gx, +1||? is smallest

by performing a simple Taylor series expansion/sf? (z(™)

iteration indexk; such that

|Try w1l > |=elle]l, 7=1,...,m. (30)

about the feasible solutioni”. Let 2 = (" + ;id, whered  of all solutions toAW),, 1q = b. Defineq’ as

is any vector in the null space df"). Note that we are looking
at perturbations that do not change the sparsityﬁb)f. Since
r > m, a nontrivial null space ford(" exists. Then

E® (a:(”))
= E® (a:&”) + /¢L|p|a:ir)TH(a:ir))d
+ ol (p — D diag (|27 [P ) d + O°)

(27) B
= E® («{7) + 12|p|(p — 1)d diag(|2{"[i]P~2)d Y
+ O(u?’). (28)

The simplification of (27) to (28) is possible becauge
and 1I(z{")z{"” are orthogonal asd € A(A®) and
(22 € R(AMTY. Forp < 1, E® (2 < E® (2{7)
in an arbitrarily small neighborhood of”. Thus,z{"” must
be a local maximum along directions € A/ (A). On the
other hand, perturbingi”) such that the number of nonzero
entries increases can be shown to incre&8e(z). Therefore, [4]
2. m < r < n are saddle points. They are not a sources;
of much concern as they are hard to get to, and a small
perturbation can nudge the algorithm away from these pointé‘?]
Furthermore, they are easy to identify from the fact thatm  [7]
for these points. More generally rapk™) # r.

Boundedness of the Sequenge We now prove that the 4
sequence generated by (11) [equivalently, (15)] is contained in
a compact set by showing that the sequelheg| is bounded. o]
This is fairly easy to show if we restrigh to be positive.
Based on the descent fulnction analysis, ox p < 1, we [10]
have z.[i]] < (E®(z0))”.

Now, we concentrate on the cage< 0. The proof is [11]
somewhat more involved and is by contradiction. Suppose that
the sequence;, is unbounded. This implies that at least ongi2)
elementz;[l;] — oo. Then, sincedx;, = b, rearranging the
equations, we have

(1]
(2]

(13]
A/.I;C =b-— alla:k[ll] (29)

(14]
where A’ is the matrixA with the [;th columna,, removed,
and zj, is the z;, vector with thel;th entry z[l1] deleted. If
xzr[lh] — oo, then by (29), certain elements of must also
tend to infinity. Let those elements bgl[l.],» = 2,...,s —
1. If we assume that anyn columns of A are linearly
independent, then genericallys > m. Note that the vectors
ar,,7 = 1,...,m form a basis set, and let, be the basic [17]
solution corresponding to this set, which solves

Z a,. Ty [l,] =b.
r=1

5This assumption is not really necessary and is made to simplify the proof.

(18]

[16]

(18]

[19]

q'[{] = qr, +1[{] R[]

where

xp -]

Rm:{gim?

7

r=1,...,m

31
otherwise (31)

Note thaty’ is a feasible solution, i.e., satisfiddV;, 1 1¢" = b.

(30) and (31), it can be concluded thiR[:]| < 1,

and hence||¢||* < |lgx,+1]|>. This contradicts the fact that
llgr,+1|] is the smallest.
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