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An Affine Scaling Methodology
for Best Basis Selection
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Abstract—A methodology is developed to derive algorithms
for optimal basis selection by minimizing diversity measures
proposed by Wickerhauser and Donoho. These measures include
the p-norm-like (`(p�1)) diversity measures and the Gaussian
and Shannon entropies. The algorithm development methodology
uses a factored representation for the gradient and involves
successive relaxation of the Lagrangian necessary condition. This
yields algorithms that are intimately related to the Affine Scaling
Transformation (AST) based methods commonly employed by the
interior point approach to nonlinear optimization. The algorithms
minimizing the `(p�1) diversity measures are equivalent to a
recently developed class of algorithms called FOCal Underde-
termined System Solver (FOCUSS). The general nature of the
methodology provides a systematic approach for deriving this
class of algorithms and a natural mechanism for extending them.
It also facilitates a better understanding of the convergence
behavior and a strengthening of the convergence results. The
Gaussian entropy minimization algorithm is shown to be equiv-
alent to a well-behavedp = 0 norm-like optimization algorithm.
Computer experiments demonstrate that thep-norm-like and the
Gaussian entropy algorithms perform well, converging to sparse
solutions. The Shannon entropy algorithm produces solutions that
are concentrated but are shown to not converge to a fully sparse
solution.

I. INTRODUCTION

RECENTLY, there has been a great deal of interest in
finding efficient representations of signals [1]–[6]. Of

particular interest to us is the approach of using an overcom-
plete dictionary to represent a signal [7]–[11]. The motivation
for such an approach is that a minimal spanning set of basis
vectors is usually only adequate to efficiently represent a small
class of signals while forming an overcomplete dictionary
using a carefully chosen set of redundant basis vectors that
can represent a larger class of signals compactly. Popular dic-
tionaries used are the Wavelet and Gabor dictionaries, among
others [7], [12]. The problem of basis selection, i.e., choosing
a proper and succinct subset of vectors from the dictionary,
naturally arises in this case, and developing algorithms for
optimal basis selection is a subject of current research.

A sequential basis selection method called the matching
pursuit method was developed in [7]. This method is com-
putationally simple and quite effective. However, because
the algorithm is greedy, there are situations where the basic
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algorithm does not result in effective sparse representations
[7], [13], [14]. Another effective approach to basis selection
was developed in [8] and [9] in the context of special dictio-
naries, wavelet packets, and cosine packets. An entropy-based
measure of sparsity was used to choose the optimal basis, and
an efficient algorithm was developed, exploiting the special
structure in the dictionary vectors. The general problem of
basis selection was addressed in [10] and [11], wherein an
norm measure was used as a measure of sparsity. Basis vectors
were chosen that resulted in a representation with the smallest

norm, and the method was shown to be quite effective.
Interestingly, the problem of basis selection arises in

many other applications, and researchers in other areas have
also attempted to define diversity measures and to compute
sparse/concentrated solutions based on minimizing them
[15]–[19]. The use of the term “diversity” in this paper
refers to a measure of antisparsity and is consistent with
the terminology used in several research areas [33]. Note that
minimizing diversity (antisparsity) is equivalent to maximizing
concentration (sparsity). Our own interest in this problem was
initially motivated by the biomagnetic imaging problem [20].
Basis selection has applications to linear inverse problems
where the solution is known or required to be sparse, e.g.,
speech coding [21], bandlimited extrapolation and spectral
estimation [22], [23], direction-of-arrival estimation [16],
[24], functional approximation [25]–[27], failure diagnosis
[28], and pattern recognition for medical diagnosis [19]. We
can exploit the advances in these disparate areas to develop
effective solutions to the best basis selection problem. It
is clear that an effective solution to this problem has wide
ranging consequences.

In this paper, we use the-norm-like diversity
measures and the Gaussian and Shannon entropy diversity
measures proposed in [9] and [10] as the starting point for
developing optimal basis selection methods. A novel method-
ology is developed and employed to minimize these sparsity
measures and to develop algorithms for basis selection. An
important outcome of this work is that it provides a deeper
understanding of a class of algorithms called FOCal Under-
determined System Solver (FOCUSS), which was recently
developed in [16] and [24]. An intuitive and informal approach
was used in [16] and [24] to develop these algorithms, and their
usefulness was then justified by applications and subsequent
analysis. In this paper, we develop a formal and systematic
framework for deriving and justifying them as-norm-like
diversity measure minimizers. In addition, our methodology
provides a natural mechanism for deriving similar algorithms
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starting from other diversity measures. For example, we de-
velop a variant of the FOCUSS algorithm to minimize the
Shannon entropy diversity measure of [9]. Another important
contribution of the paper is that the algorithms are shown to be
equivalent to Affine Scaling Transformation (AST) algorithms,
which have recently received attention in the literature on
interior point optimization methods [29]–[31].

The outline of the paper is as follows. In Section II, we
present the -norm-like ( , including negative) diversity
measures and the Gaussian and Shannon entropy measures of
sparsity proposed in [9] and [10]. We then define the best
basis selection problem as the problem of minimizing these
measures subject to the constraint that the signal vector has a
basis representation. In Section III, a methodology to derive
an iterative algorithm that selects a sparse representation by
minimizing the -norm-like sparsity measures, excluding (tem-
porarily) the case , is presented. The iterative algorithm
is based on successive relaxation of the Lagrangian necessary
conditions for a minimum. Additional insight into the resulting
algorithm is obtained by interpreting the algorithm as solving a
succession of constrained weighted minimum norm problems
and as an AST-based gradient descent method. The AST
interpretation shows that a natural scaling matrix is associated
with a choice of value for . In Section III-C and Appendix A,
a detailed convergence analysis of the algorithm is performed,
expanding the scope of the convergence results previously
prescribed in [24] and [32]. In Section IV, we focus on the
case . We show that the -norm-like algorithm obtained
by setting and the algorithm obtained from minimizing
the Gaussian entropy are identical and argue that this algorithm
effectively minimizes the numerosity measure described in
[10]. In Section V, we develop an algorithm to minimize the
Shannon entropy and discuss why this algorithm does not fully
converge to a completely sparse solution. Section VI gives
computer simulations comparing the performance of the sparse
basis selection algorithms developed in the paper. Finally,
conclusions are given in Section VII.

II. PROBLEM FORMULATION

The problem of basis selection can be formulated as a
problem of finding a sparse solution to an underdetermined
system of equations [11], [14]. Let be an matrix
formed using the basis vectors from the dictionary. Since we
have an overcomplete dictionary, , and it is assumed
that rank . Denoting the given signal to be represented
by , which is an vector representation of, requires
solving for , which is an vector, such that

(1)

The problem of basis selection and that of efficient repre-
sentation of requires that be sparse, i.e., most of the
entries of are zero. Equation (1) ensures that is a
consistent representation of, and the sparsity requirement
ensures that the solution is concentrated and, hence, an efficient
representation.

The representation problem has many solutions. Any solu-
tion can be expressed as

where is the minimum 2-norm solution (i.e., solution with
the smallest norm1 defined as ) and is
given by , where denotes the Moore–Penrose
pseudoinverse. The vectoris any vector that lies in ,
which is the null space of . In this case, has a nontrivial
nullspace of dimension . In many situations, a popular
approach has been to set and to select as the
desired solution, e.g., the method of frames [4]. However, the
minimum 2-norm criteria favors solutions with many small
nonzero entries, which is a property that is contrary to the
goal of sparsity/concentration [11], [16]. Consequently, there
is a need to define other functionals that, when optimized,
lead to sparse solutions.

The question of good diversity measures has been studied in
the past, and a good discussion can be found in [9] and [10],
and in the literature on linear inverse problems [15], [17], [18].
A popular diversity measure is , where

We extend this class to include negative values of, leading
to the general class of diversity measures

(2)

where sgn . The diversity measures

for are the general family of entropy-like
measures defined in [9] and [10], as well as those discussed
in [15] and [17] to compute sparse solutions. The motivation
for these diversity measures is that their minimization subject
to the constraint (1) results in sparse solutions. Due to the
close connection to norms, we refer to these measures as
“ diversity measures” and often, more simply, as the
“ -norm-like diversity measures.” It is well known that for

, is not a true norm [15].
The diversity measure for , which is thenumerosity

discussed in [10], is of special interest because it is adirect
measure of sparsity, providing a count of the number of
nonzero elements of a vector

Finding a global minimum to the numerosity measure requires
an enumerative search and is NP hard [26]. Consequently,
alternate diversity measures that are more amenable to opti-
mization techniques are of interest. The measures for

are useful candidate measures in this context
and are indirectly related to sparsity in thatwhen minimized,

1For simplicity, by default,k�k will denote the 2-norm, and all other norms
will be explicitly indicated.
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they yield sparse solutions. However, these measures have
the disadvantage that they can have many local minima,
which can result in optimization algorithms converging to
suboptimal solutions, i.e., solutions with more nonzero entries
than absolutely necessary. This problem can be alleviated
somewhat with the use of a good initial condition, which is
likely to be available in engineering applications. For a more
detailed discussion of these diversity measures for ,
see [9], [10], and [15]. Additional discussion can be found in
[33]. At this juncture, to avoid potential confusion, it is useful
to note that minimization of is considerably different
from the standard optimization problem

[34].
The diversity measures for are also good

(indirect) concentration measures. For example consider

will be minimized by making the entries ofsmall,
thereby encouraging sparsity.

Many other diversity measures can be defined [33], [35]. We
only examine here the Shannon entropy and Gaussian entropy,
which are two other diversity measures described in [8]–[10].
The Shannon entropy diversity measure is defined as

where (3)

The Gaussian entropy diversity measure is defined as

(4)

III. CONCENTRATION MEASURES

In this section, we develop a novel methodology for deriving
algorithms to minimize the class of diversity measures
defined by (2) subject to the linear constraint (1). For now, we
exclude the case ; the details pertaining to this special
case are provided in Section IV. The algorithm is derived using
successive relaxation of the Lagrangian necessary conditions
in Section III-A. Interestingly, the approach turns out to be a
systematic procedure for deriving a class of algorithms called
FOCUSS developed in [24]. Additionally, the methodology
employed provides a mechanism for generalizing and deriving
FOCUSS-like algorithms to other situations. More insight into
the methodology is obtained by interpreting the approach as a
method of solving successive weighted constrained minimum
norm problems. In Section III-B, we recast the algorithm
as an affine scaling transformation (AST)-based gradient-
descent optimization method. Sections III-A and B provide
the foundation for a general affine scaling methodology for
deriving best basis selection algorithms. In Section III-C and
Appendix A, the convergence behavior of the algorithm is
studied.

A. Algorithm Derivation

To minimize the diversity measures subject to the
equality constraints (1), we start with the standard method of
Lagrange multipliers (see, e.g., [29], [36], and [37]). Define
the Lagrangian

where is the vector of Lagrange multipliers. A
necessary condition for a minimizing solution to exist is
that be stationary points of the Lagrangian function,
i.e.,

(5)

The gradient of the diversity measure with respect to
element can be readily shown to be

Substituting this in (5) results in a nonlinear equation in
the variable with no simple solution being evident. To
remedy the situation, we suggest using a particularfactored
representationfor the gradient vector of the diversity measure,
i.e.,

(6)

where , and diag .2 From (5) and
(6), the stationary points satisfy

and (7)

Note that for , diag exists for all
. From (7), we have

(8)

Substituting for in the second equation of (7) and solving
for results in

(9)

Substituting this expression for in (8) then results in

(10)

Equation (10) is not in a convenient form for computation
as the right side depends on . However, it indicates the
condition that the stationary point must satisfy and also
suggests the iterative procedure for computingas

(11)

The computation of diag for
does not pose any implementation problems, even as entries
converge to zero (as is desired, the goal is asparsestationary
point ). Note that if any element is zero, then the
corresponding diagonal term in is also zero.

2More generally, as will be seen in Section V,� is an explicit function of
x.
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1) Interpretation of Methodology:We now explore related
optimization strategies that provide more insight into the
approach. The need to solve the difficult nonlinear equation
(5) is a standard occurrence in optimization problems. Several
creative methods have been developed to address this problem
in the nonlinear programming literature [29], [36]–[38]. Of
particular interest to us in this context are the methods of
finding iterative solutions by a relaxation approach where
the Lagrangian is modified, and a related simpler problem is
solved. In such iterative methods, one generates a sequence of
estimates of the parameter vector, along with estimates of
the Lagrange multiplier vector , which is usually expressed
in terms of the current iterate [38]. The feasibility of the
vector is usually ensured at each step with the goal being
that and .

From this perspective, note that the iterative algorithm (11)
can be viewed as arising from a successive relaxation of the
Lagrangian necessary condition (7) at step to

Then, solving for the stationary point at step reduces
to solving a linear system of equations of the form

which can be easily done in a manner similar to that used
in computing [cf., (7)–(10)]. Note that at each step,

generated from (11) is feasible, i.e., , as is
easily demonstrated

Given , the sequence of Lagrange multiplier estimates
naturally follow from (9) .
The convergence of the iterates is proved in Section
III-C and Appendix A.

Continuing this scrutiny further, we see that an appropriate
approximate Lagrangian at each step is given by

This approximation corresponds to replacing the problem of
minimizing the original cost function by a sequence of
constrained weightedminimum normproblems. This is closely
related to the algorithms developed in the context of the
optimization problem of minimizing [34]. In
the optimization problem, there are no constraints, and it is
customary to deal with an overdetermined system of equations;
relaxation of the necessary condition for the minima leads to a
sequence of weightedleast-squaresproblems. The algorithm
developed [cf., (11)] can be viewed as an extension of the
methodology to the underdetermined problem.

For this procedure to be sound, it is necessary that the
weighting matrix be positive definite at each iteration,
which is true for the -norm-like diversity measures. The
contribution of the approach developed lies in the manner at

which the weighting matrix is arrived. The weighting matrix
is defined by the relationship (6). Due to the simple

nature of , it may be tempting to believe that an iterated
weighted least squares formulation can be obtained directly
from the cost function (rather than its gradient). Unfortunately,
such an approach to defining the weighting matrix does not
easily generalize to more complicated measures. For example,
one might propose to use the direct approach to form

sgn

where

sgn

yielding and a weighting matrix
diag . However, this results in a positive definite weight-
ing matrix for positive but not for negative . It is easy
to generate other examples with similar negative conclusions.
More general evidence that the relationship (6) is a natural
and effective way to derive weighting matrices can be found
in [33]. The algorithm developed in Section V for minimizing
the Shannon entropy also uses the weighting matrix
defined by the gradient relationship (6).

B. An AST Connection

The algorithm proposed in the previous subsection is closely
related to the AST-based methods used by the interior point
approach to solving linear and nonlinear programming prob-
lems [29]–[31]. A significant and interesting outcome is that
the matrix defined from the gradient relationship (6)
suggests anaturalaffine scaling matrix. To see this connection,
let us define the symmetric scaling matrix by

diag (12)

with diag . For the th iteration
of the algorithm (11), let the matrix, now denoted by

, be evaluated at the present solution (i.e.,
diag ) and used to define a scaled variable

equivalently (13)

With this transformation, the optimization problem in is
transformed to an optimization problem in the scaled variable
, namely

subject to

where is the rescaled matrix defined by
.

Following the AST methodology [29]–[31], the gradient
with respect to is projected into the null space of to
obtain a feasible descent direction.3 The gradient with respect
to the scaled variable is given by

3Projection of the gradient onto the nullspace of a constraint matrix to
obtain a feasible descent direction is well-known as the gradient projection
method of Rosen [37]. AST methods additionally rescale the constraint matrix
at each step [29].
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Evaluating this gradient at the current value of the iterate
(equivalently at ) and projecting it into the null
space of results in the search direction, where

The new solutions and are computed as

and

where is a positive step size. If is now chosen to equal
, then

(14)
and

which is precisely the iterative procedure given by (11).
A closer examination of the scaling matrix

diag is worthwhile. In the standard AST methods,
usually, the scaling matrix diag
is used4 [29], [30]. For the algorithm suggested here,
naturally defines a scaling matrix via the relationship
(12), which is more generally dependent on the choice of
. For , which corresponds to the norm, (12)

results in the scaling matrix diag , which
differs from the commonly used weighting matrix ;
for , we obtain the standard affine scaling matrix

diag , and for , we get
the scaling matrix diag .

The AST derivation naturally leads to the following inter-
esting algorithmic interpretation. Examination of (14) shows
that at each step of the algorithm, we effectively solve for a
minimum 2-norm solution with respect to, i.e.,

subject to

Having found the minimum 2-norm solution,
is then computed as .

The overall algorithm, which is equivalent to the FOCUSS
algorithm originally proposed in [16] and [24], can be sum-
marized as

diag

where (15)

4ActuallyX(x) = diag(x[i]) is typically used, but this has the same effect
asW = diag(jx[i]j) sinceW always appears asW 2 in the computation of
x.

We emphasize that algorithms (11) and (15) are entirely equiv-
alent becuase they are related by the scaling transformation
(13). The algorithms are initialized by a suitably chosen
feasible . As mentioned in Section II and experimentally
demonstrated in Section VI, the choice of determines the
sparse solution to which the iterations converge; therefore, care
must be taken in making this choice. Often, the minimum 2-
norm solution has been found to be a useful initial starting
point [11], [24]. Note that unlike standard gradient descent
algorithms, there is no need to compute a step size at each
iteration of (15), which can significantly speed up the compu-
tation. For very large scale problems, a direct implementation
of (15) can be onerous, and efficient implementations of
the algorithm may become necessary. In particular, it is of
interest to note that the algorithm (15) has an interpretation
as an interior point optimization method [33]; this is a fact
that can enable the use of recent breakthroughs in applying
interior point methods to large scale problems similar to the

optimization problem described in [12]. Some additional
details on initialization and computation can be found in [16],
[24], and [39].

C. Convergence Analysis

Having proposed and motivated the -class of algo-
rithms given by (11) [equivalently by (15)], we now turn
to the issue of examining its convergence behavior. The
special case of the numerosity measure, corresponding to

, needs special attention and is deferred to the next
section. A convergence analysis of the FOCUSS class of
algorithms was earlier carried out in [32], [24]. However,
the convergence analysis in this earlier investigation was
limited, and in certain instances, more restrictive conditions
were imposed than necessary. We follow the descent-function
based analytical path proposed in [24] and [32] and improve on
the results. The solution methodologies introduced here also
enable a convergence analysis for the optimization of other
sparsity measures, such as the Shannon entropy (3). As in
[24], the convergence of the algorithm is established with the
help of the global convergence theorem [36], [37]. The main
result is as follows.

Theorem 1: Starting from a bounded feasible solution,
the algorithm (15) minimizes the diversity measure and
converges almost surely to a relative minimum, which for

is a basic or degenerate basic solution with at most
nonzero entries.

For the analysis, the assumption that we make about the
matrix is that its rank be . No assumption of independence
is required about any columns selected from . Here, we
only describe some of the key aspects of the analysis, and the
details are relegated to Appendix A. The main features of the
analysis are as follows.

1) The analysis requires one to first determine a solution
set to which the algorithm converges, which in this
case is defined as containing the stationary points (10).
It is shown that the relevant and interesting stationary
points of the algorithm is a subset of, which is
denoted by , which contains the basic solutions, i.e.,
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solutions with no more than nonzero entries that are
obtained by selecting columns of and solving the
corresponding linear system of equations, if it exists.
There are potentially such solutions. The systematic
approach used in deriving the algorithm enables a simple
and direct proof of the unstable nature of the sparse
solutions with more than entries.

2) The next important step required for establishing con-
vergence is finding a descent function for the algorithm.
The descent function for these algorithms is the diversity
measure itself, and it is shown in the Appendix that

In [24], to prove convergence of the FOCUSS class of
algorithms, the diversity measures were also used
as descent functions. However, for and ,
the decrease of the descent function was established
under limited conditions [24, Th. 4]. In addition, the
convergence result presented in [24, Th. 2] appears to
be true only for . We show decrease in the descent
function starting from any .

3) Another requirement for the convergence analysis is
to show that the sequence lies in a compact set. We
establish this fact by providing a direct proof of the
boundedness of the sequence.

In addition to the convergence analysis, rate of convergence
is another important revealing aspect of an algorithm. Results
about the rate of convergence are available in [24], where it
is shown that the order of convergence is .

IV. NUMEROSITY AND GAUSSIAN ENTROPY

We now pay special attention to the case where ,
which, as previously discussed, yields a numerosity measure
that exactly counts the number of nonzero entries

where

This is the measure we ideally would prefer to minimize as
observed in [9], [10], and [15]. Unfortunately, this function
is not directly suitable for minimization as the function is
discontinuous in the regions of interest (when any goes to
zero) and has a gradient of zero everywhere else. However, the
class of AST algorithms given by (15) [equivalently, by (11)]
yields a well-behaved algorithm, even when . Indeed,
letting in (15) yields the basic FOCUSS algorithm of
[16] and [24] and involves the use of a well-defined scaling
matrix diag . Although the algorithm (15)
is well defined for , the convergence analysis differs
somewhat from the analysis described in Section III-C.
In [24] and [32], a convergence analysis is given, and it is
shown that the basic FOCUSS algorithm minimizes
the Gaussian entropy defined by (4). Here, we show

that there are even stronger connections, algorithmically and
analytically, of the algorithm to the Gaussian entropy.

Algorithmically, we can consider minimizing directly the
Gaussian entropy or the monotonically related (and hence
equivalent) cost function Exp . The
latter one is preferable if we are interested in a function that
is bounded from below. However, the Gaussian entropy is
adequate for the discussion to follow.

An AST algorithm can be derived to minimize the Gaussian
entropy following along the lines outlined in Section III-B;
merely replace with in the analysis. The only
new quantity required is the gradient of , which can be
readily shown to be

where and diag . The scalar factor
does not affect the algorithm, and leads to

an affine scaling algorithm with a scaling matrix given by
diag . Note that this is same scaling matrix as

that obtained by setting in algorithm (15), which was
derived for the minimization of the diversity measure
assuming . A similar algorithmic conclusion is reached
if we try to minimize Exp .

Interestingly, the monotonically related functional
Exp provides an analytic connection
to the diversity measures via the arithmetic-geometric
mean inequality [40]

This implies that for all and

Exp

where and . We have equality in the
limit , establishing a connection between the Gaussian
entropy and the diversity measures, i.e.,

(16)

We can also relate the Gaussian entropy to the
diversity measures via a Taylor series expansion. This follows
along the lines of the argument used in [10] to link the
numerosity measure to the Shannon entropy. The diversity
measures are continuous and differentiable with respect
to . It can be shown that

Taking the limit as , we get

Performing a Taylor series expansion about , we get

(17)
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As gets small, the diversity measure begins to
behave like the Gaussian entropy (except at sparsity points
where the otherwise constant numerosity measure
jumps discontinuously), establishing another point of contact
between Gaussian entropy and minimization.

The convergence of the algorithm (11) for the case
can be proved using the global convergence theorem. In fact,
most of the results discussed in Section III-C and derived in
Appendix A hold true, except that we need to identify a proper
descent function (the almost everywhere constant, otherwise
discontinuous, function being unsuitable). In [24], it is
shown that the Gaussian entropy function is a suitable
descent function, which is a fact now further supported by
the relationships (16) and (17). The fact that is a valid
descent function can be shown from (15) using the observation
that and the inequality . See
[24] for details.

V. SHANNON ENTROPY

In this section, we develop an algorithm for minimizing
the Shannon entropy diversity measure defined by (3)
and discussed in [8]–[10]. The approach follows the steps
employed in Section III-A to minimize the diversity
norms. This necessitates taking the gradient of the diversity
measure, which in this case can be shown to equal

where and

diag where

Retracing the argument given in Section III-A through (11)
suggests that we focus on the iteration

The superscript is used here because, unlike the-norm-
like case where is positive definite, is indefinite,
calling for some modifications in order to develop an algorithm
that provably converges. In the next subsection, we develop
some preliminary results for this purpose. Note that we assume
the invertibility of , which is a generic property.

A. Preparatory Results

In order to derive the modified algorithm, we need the
following identities.

Identity 1:

Proof:

Identity 2: Let be feasible, i.e., ; then

Proof:

The other expressions can be shown in a similar manner.

Lemma 1:

Proof:

The last inequality follows from the fact that
with equality if and only if for all , we have

, where here, and are probabilities [9], [41].

B. Modified Algorithm

Using the above results, we consider the following form of
an algorithm for minimizing the Shannon entropy (3)

If is feasible, then it can be readily shown that is
feasible. The increment then provides a feasible
direction of descent, and by proper choice of the step size

, which we explore next, we can ensure that is
minimized at each step. By Lemma 1, it is sufficient to
select such that as this ensures
that . Examining and
simplifying it using the above identities, it can be shown that

If , then we need to select a value
of such that is negative. To obtain a potentially
optimum step size, we can chooseto equal the value where

attains its minimum. This choice leads to the
selection of , resulting in and yielding
an iteration step equivalent to (11). We should mention that
in practice, we have found the term to
be always negative. Some reasoning as to why this should be
true is available, but a detailed explanation would take us too
far astray, and we refrain from doing so. However, lacking
a rigorous proof that this term is indeed always negative, for
completeness, it is necessary to check and to deal with the
case when , which we do next.
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If , then any positive value of
is acceptable. We can choose optimally by trying to ensure
a large decrease in the Shannon entropy . For simplicity,
we suggest the choice . The overall algorithm then is

(18)

C. Stationary Points

Algorithm (18) is guaranteed to decrease the Shannon
entropy . The stationary points of the algorithm are
given by (10) and satisfy the necessary first order condition
for a local minimum, viz., that the gradient at is in the
range space of . With the gradient proportional to ,
an equivalent statement is

(19)

The nature of the stationary solutions can be ascertained by
examining this condition more closely. Examining theth entry

of , we have

If the solution is sparse, i.e., many of the entries are zero,
then the corresponding entries must be zero. However,
(19) shows this can only be true if by using linear combination
of columns of , we can find a vector with a large number
of zeros. This is, in general, not possible, and therefore, the
stationary points of the minimum Shannon entropy solution
cannot generally be completely sparse, as our simulations
in Section VI demonstrate. However, consistent with the
discussion given in [9], they do tend to have a large number
of entries with very small (albeit nonzero) amplitudes. An
explanation as to why complete sparsity is not attained for
the Shannon entropy and possible ways to rectify this
situation is given in [33].

VI. COMPUTER SIMULATIONS

In order to gain insight into the behavior of the algorithms
discussed in this paper, we perform a simulation study of
their behavior on a synthetic test case. A random
matrix is created whose entries are each Gaussian random
variables with mean zero and variance. The columns of

are then normalized to have a 2-norm of 1. A sparse
solution with a specified number of nonzero entriesis
then created; the indices, i.e., location, of theseentries is
random, and their amplitudes are random. The vectoris
then computed as . For convenience in interpreting
the results, and are then suitably rescaled such that

. With a known sparse solution, , which now is
at hand to provide a benchmark, the algorithms are run to
select the optimal basis vectors (columns of). The number
of vectors chosen are compared with the actual numberused
to generate the data. The experiment is repeated 100 times,
with algorithm initialized each time by the minimum 2-norm
solution . The histogram of theredundancy index,
which is defined as the ratio of the number of distinct columns
chosen by the method to the number of columns actually

Fig. 1. Performance (histogram of 100 trials) of the`(p�1) measures are
shown for p = 1; 0:9; 0:8; 0:7; 0:6; 0:5; 0:25; 0; �0:5, and�1. The
parameters used in the simulation arem = 20; n = 30, sparsityr = 4, and
the algorithms are initialized by the minimum 2-norm solutionx0 = A+b.
The p = 0 algorithm is equivalent to the Gaussian entropy algorithm.

used to generate the data, is computed. Algorithms with a
redundancy index histogram concentrated aroundindicate a
good procedure.

Experiment 1: In this experiment, is chosen to be a
matrix, i.e., and . Figs. 1 and 2 detail

the results for sparsity and , respectively. The -
norm-like diversity measures are optimized for-values

and . Recall that
the and the Gaussian Entropy algorithms are equivalent.
The histogram results shown are obtained by thresholding the
solution obtained at the end of 50 iterations. A threshold of
10-8 was used in these simulations, and components of the
solution with magnitude less than the threshold are taken to
be zero. The number of iterations is chosen to ensure the
convergence of the slowest variant of the algorithms,
which in this case is the variant. Success rate is defined
as the percentage of trials in which the redundancy index was
. From the simulations, it can be seen that the results are

superior when a value of close to 1 is used. However, they
have slower convergence compared with lower values ofand,
for , may not be able to reduce the entries sufficiently
quickly. In this case, external monitoring procedures may be
necessary to null out small entries. The rate of convergence
analysis given in [24] indicates that lower values ofhave
provably faster convergence rate. It may be possible to develop
faster algorithms with high reliability by trying to combine
the faster convergence behavior of small values ofwith the
superior basis selection ability of the larger values of. The
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Fig. 2. Performance (histogram of 100 trials) of the`(p�1) measures are
shown for p = 1; 0:9; 0:8; 0:7; 0:6; 0:5; 0:25; 0; �0:5, and�1. The
parameters used in the simulation arem = 20; n = 30, sparsityr = 7, and
the algorithms are initialized by the minimum 2-norm solutionx0 = A+b.
The p = 0 algorithm is equivalent to the Gaussian entropy algorithm.

TABLE I
CORRELATION BETWEEN THEA MATRIX COLUMNS SELECTED BY THE

ALGORITHM AND THE COLUMNS PRESENT IN THE TRUE SPARSE SOLUTION ARE

TABULATED. THE PARAMETERS AREm = 20; n = 30 AND SPARSITY r = 7.
SUCCESSCORRESPONDS TO THESEVEN COLUMNS OF THETRUE SPARSESOLUTION

BEING INCLUDED IN THE SET OF COLUMNS CHOSEN BY THE ALGORITHM

methods employed for norm minimization in [11], [29],
and [30] can be viewed as employing such an approach and
are potentially extensible for minimizing the other diversity
measures.

To get a better understanding of the performance of the
method, we checked the correlation between the columns
selected by the algorithms and the actual columns used to
generate the true sparse solution. These results are tabulated
in Table I for the sparsity case. The entries under column

TABLE II
CORRELATION OF THESUCCESSFULTRIALS BETWEEN VARIOUS

`(p�1) ALGORITHMS, I..E., COMPUTES THE NUMBER OF

TRIALS IN WHICH BOTH ALGORITHMS WERE SUCCESSFUL

labeled “Match 6” indicate the number of times only six
columns of the true solutions were included in the computed
solution. At no time was there a match of less than 4 for any
of the variants. Here, success is defined as a trial where the
solution obtained selected all the seven columns in the true
sparse solution, even though the redundancy index may be
greater than 1. The correlation of the variants is also
examined by comparing the number of trials in which two
different diversity measures both lead to the correct choice
of including all the seven desired columns. These results are
tabulated in Table II. Although there is a strong correlation
between the methods, and the diversity measures with
closer to exhibit superior (more reliable) performance, there
are trials where diversity measures with lower values of
identified the correct solution, whereas the measure with a
larger value of did not.

Experiment 2: An important feature of choosing less
than 1 is that the diversity measures potentially then have
multiple local minima with each minimum having a basin
of attraction. The choice of initial condition then decides the
minimum attained. The use of different initial conditions to
obtain different sparse solutions can be a valuable attribute
when sparsity alone is not of paramount importance [24]. For
computing sparse solutions, performance can then be improved
by multiple reinitialization. The results of reinitialization for
sparsity 7 are shown in Fig. 3 for . The histogram of the
redundancy index for the procedure initialized by the minimum
2-norm solution has been shown in Fig. 2. Fig. 3(a) shows the
redundancy index for with a random initial condition,
and Fig. 3(b)–(d) show the results of repeated initialization.
Note that for , it is possible to achieve 100% success by
repeated reinitialization. In this experiment, the minimum 2-
norm solution was first used, and then, after detecting a failure,
random initialization was used. A histogram of the number
of initializations required to obtain a successful outcome and
the histogram of the total complexity are also shown. Total
complexity is measured by taking all the initializations, as well
as the number of iterations per initialization, into account. The
number of iterations is controlled by examining thevector
in (15). The entries of the vector in the case converge
to either 0 or 1, enabling easy identification of convergence
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(a) (b)

(c) (d)

Fig. 3. Experiments with initial conditions and thep = 0; p-norm-like algorithm, which is equivalent to the basic FOCUSS algorithm of [24] and the
Gaussian entropy algorithm. Parameters arem = 20; n = 30; and r = 7: (a) Success rate with a random initial condition. This can be compared with
the p = 0 result in Fig. 2, where the minimum 2-norm solution was used for initialization. (b) Success rate after repeated initialization. If the minimum
2-norm initialization failed, thereafter, repeated random initialization was used. (c) Histogram of the number of initializations needed to ensure success. (d)
Histogram of the total number of iterations (summing over all reinitializations) needed for eventual success.

[39]. As can be seen, the number of reinitializations needed
is usually less than 10, and the total number of iterations is
less than 100. A closer examination of the iterations suggest
that successful initializations require fewer iterations than the
failed ones.

Experiment 3: A similar simulation study of algorithm (18)
was conducted for the algorithm developed for minimizing the
Shannon entropy. As suggested by the discussion in Section
V-C, the solution does not converge to a true sparse solution
but does result in concentration. A typical solution obtained
by the algorithm, for sparsity and , and the
corresponding true sparse solution are shown in Fig. 4. A base
10 logarithm scale is used in these plots. The nonzero entries

of the true sparse solution are denoted by “” and the minimum
Shannon entropy solution by dotted lines. As is evident from
Fig. 4, the algorithm does produce concentration but not truly
sparse solutions, i.e., has many very small (albeit nonzero)
amplitudes. To test that the algorithm indeed minimized the
entropy measure, we compared the entropy of the converged
solution to that of the entropy of the known true sparse
solution. Out of 100 trials, the converged solution had lower
entropy in 96 trials. In the remaining four trials, the algorithm
had converged to a local minima of the entropy function with
a value larger than that of the true sparse solution.

In summary, the simulations provide interesting insight into
the algorithms and provide support to the theoretical analysis.
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(a) (b)

Fig. 4. Typical results (inlog 10 scale) obtained using the Shannon entropy algorithm, which is denoted by the dotted line, are shown for (a) sparsityr = 4
and (b) for sparsityr = 7. The nonzero entries of the true sparse solution are denoted by “�.”

More extensive application-based study is still necessary to
understand the methods more fully. Some results in this
context are already available [11], [24]. In particular, details
of the application of FOCUSS to the biomagnetic imaging
problem can be found in [20] and [24]. We expect to conduct
additional application-based evaluations in the near future and
are optimistic that this work will stimulate other researchers
to also conduct such experiments.

VII. CONCLUSION

We have developed a novel methodology to develop algo-
rithms for best basis selection. The procedure yields algorithms
that are intimately related to the affine scaling transformation
(AST)-based methods commonly employed by the interior
point approach to nonlinear optimization. The methodology
is quite general and is used to develop effective algorithms to
minimize several well-known diversity measures, e.g., the-
norm-like diversity measures and the Gaussian and Shannon
entropies proposed in [9] and [10]. A detailed convergence
analysis of the algorithm for minimizing diversity
measures, which are equivalent to the FOCUSS-class of algo-
rithms, is conducted, showing them to be provably convergent.
Both the theoretical evidence and the computer simulations
show the algorithms developed to be quite effective and
promising for optimal basis selection. Generalizations of the
algorithms and results presented here can be found in [33].

APPENDIX A

In this Appendix, we examine the convergence behavior of
the algorithm (11) [equivalently (15)] developed to minimize
the diversity measures. These algorithms are equivalent
to the FOCUSS-class of algorithms [24], [32]. As noted in
Section III-C, a convergence analysis of FOCUSS can be
found in [24] and [32]. However, the convergence analysis in
this earlier investigation was limited, and in certain instances,
more restrictive conditions were imposed than necessary. We

improve on the results and, for brevity, concentrate on the
generalizations/simplifications that are facilitated by the new
systematic framework employed in this paper. The conver-
gence analysis is based on the global convergence theorem
(GCT) discussed in [36] and [37]. We first state the GCT for
completeness before conducting the analysis.

Theorem 2 (Global Convergence Theorem) [36], [37]:Let
be an algorithm on a set , and suppose that, given , the

sequence is generated, satisfying

Let a solution set be given, and suppose the following.

1) All points are contained in a compact set .
2) There is a continuous function (the descent function)

on such that

a) if , then ;
b) if , then .

3) The mapping is closed at points outside.

Then, the limit of any convergent subsequence of is a
solution, and for some .

The convergence analysis is now carried out by showing that
the sequence generated by the algorithms for
satisfies all the conditions required by the theorem. For ease
of exposition, the convergence analysis is subdivided into four
stages. They include the following: 1) Defining the solution set

, 2) identifying the descent function, 3) refining the solution
set, and 4) establishing the boundedness of the sequences. We
start with the definition of the solution set.

Solution Set:The solution set is obtained by collecting
all the stationary solutions of the algorithm. More precisely

and

where

diag
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This set contains precisely those that satisfy (10). It can
be shown to contain the set , which contains all the basic
and degenerate basic solutions, i.e., solutions with no more
than nonzero entries that are obtained by selecting
columns of and solving the corresponding linear system of
equations whenever it exists [30]. There are potentially
such solutions. Later, we will examine more closely and
show that is the more relevant set.

Descent Function:The next important step is the determi-
nation of the descent function. It is shown that the descent
function for the algorithm is the diversity measure
itself, i.e., for generated by the algorithm (15), we have

(20)

To show the validity of (20), we make use of the Hölder
inequality. Since we use a more general form of the Hölder
inequality than is commonly presented in textbooks, we state
it here for completeness.

Theorem 3 (Generalized H¨older Inequality) [40]: If
, then

The inequality is reversed for , assuming that
(strict positivity). In each case, equality holds if and

only if the sets and are proportional.
We first consider the case . Recall from Section

III-A that generated by (11) is feasible (i.e., ) for
all , and note from (15) that is obtained as the optimal
minimum 2-norm solution to the problem , where

diag . In addition, note that feasibility of
implies that defined by sgn is a

feasible (but nonoptimal) solution to , assuming
(nonconvergence of (11)). Therefore

(21)

The entries of can be written as
. Hence

(22)

Let , and define by . Therefore, we have
. Applying the Ḧolder inequality to (22), we have

(23)

(24)

(25)

(26)

where the second strict inequality follows from (21). Thus, we
have shown that the diversity measure is reduced in
each iteration for .

The proof can similarly be shown for . Note that this
time, the Ḧolder inequality is reversed but is compensated for
by the negative sign arising from the factor sgnincluded in
the diversity measure (2), making (23) still valid, except that
the term on the right-hand side is negated. To successfully
carry through the proof, it is necessary to make use of the fact
that is negative in (25).

Another useful observation to make is that the above descent
function is actually valid for and not just

. Therefore, the FOCUSS algorithm can actually also be
used to minimize the norm of for . We have
not emphasized this range ofbecause of their inability to
generate truly concentrated solutions.

Refinement of Solution Set:Here, we show that the points
to which the algorithm converges almost surely lies in the
set , which contains solutions with a maximum of
nonzero entries. A useful observation in this context is to note
that in the FOCUSS algorithm, once an entry becomes zero,
it remains zero in the rest of the iterations. Therefore, we
concentrate only on the nonzero entries. Let us suppose that

has nonzero entries. Let be the matrix formed
by collecting the selected basis vectors, and let
and be the corresponding quantities extracted from

and respectively. Then, we can redefine the
solution set and as

and

and

contains solutions with a maximum of nonzero entries
and is the solution set of interest. They will be shown to be
stable fixed points and the remaining stationary points in
to be saddle points or unstable fixed points. Such conclusions
were also reached in [24]. The insights gained by the approach
used in Section III to derive the algorithm provides an alternate
direct approach to showing these results. For brevity, we only
show that stationary points with the number of nonzero entries
between and are saddle points, i.e., for . Note
that the stationary points satisfy

and

For , such points are indeed rare. This can be
seen by examining closely what is required of the stationary
points. For example, if we consider the case , then ,
whichis a vector in , lies in a linear variety of dimension

dim , and it is simultaneously required
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that the -dimensional vector , which is obtained
by inverting element wise the entries of , lie in ,
which is an -dimensional subspace. Generic solutions to

will not satisfy this condition. Not only are these
solutions rare, but they are saddle points. This can be seen
by performing a simple Taylor series expansion of
about the feasible solution Let , where
is any vector in the null space of . Note that we are looking
at perturbations that do not change the sparsity of. Since

, a nontrivial null space for exists. Then

(27)

(28)

The simplification of (27) to (28) is possible because
and are orthogonal as and

. For ,
in an arbitrarily small neighborhood of . Thus, must
be a local maximum along directions . On the
other hand, perturbing such that the number of nonzero
entries increases can be shown to increase . Therefore,

are saddle points. They are not a source
of much concern as they are hard to get to, and a small
perturbation can nudge the algorithm away from these points.
Furthermore, they are easy to identify from the fact that
for these points. More generally rank .

Boundedness of the Sequence: We now prove that the
sequence generated by (11) [equivalently, (15)] is contained in
a compact set by showing that the sequence is bounded.
This is fairly easy to show if we restrict to be positive.
Based on the descent function analysis, for , we

have .
Now, we concentrate on the case . The proof is

somewhat more involved and is by contradiction. Suppose that
the sequence is unbounded. This implies that at least one
element . Then, since , rearranging the
equations, we have

(29)

where is the matrix with the th column removed,
and is the vector with the th entry deleted. If

, then by (29), certain elements of must also
tend to infinity. Let those elements be
. If we assume that any columns of are linearly

independent,5 then generically, . Note that the vectors
form a basis set, and let be the basic

solution corresponding to this set, which solves

5This assumption is not really necessary and is made to simplify the proof.

The vector is bounded. If , then there exists an
iteration index such that

(30)

Note that and that is smallest
of all solutions to . Define as

where

otherwise
(31)

Note that is a feasible solution, i.e., satisfies .
By (30) and (31), it can be concluded that ,
and hence, . This contradicts the fact that

is the smallest.
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