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Abstract

Measures for sparse best–basis selection are analyzed and shown to fit into a general frame-

work based on majorization, Schur-concavity, and concavity. This framework facilitates the

analysis of algorithm performance and clarifies the relationships between existing proposed

concentration measures useful for sparse basis selection. It also allows one to define new

concentration measures, and several general classes of measures are proposed and analyzed

in this paper. Admissible measures are given by the Schur-concave functions, which are the

class of functions consistent with the so-called Lorentz ordering (a partial ordering on vectors

also known as majorization). In particular, concave functions form an important subclass of

the Schur-concave functions which attain their minima at sparse solutions to the best basis

selection problem. A general affine scaling optimization algorithm obtained from a special

factorization of the gradient function is developed and proved to converge to a sparse solution

for measures chosen from within this subclass.

Keywords: Best Basis Selection; Sparse Basis Selection; Sparsity; Sparsity Measures; Di-

versity Measures; Concave Minimization; Schur-Concavity; Affine Scaling Methods; Model
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1 INTRODUCTION

The problem of best basis selection has many important applications to signal representation

[19, 81], biomagnetic imaging [43, 36], speech coding [76], and function approximation [18,

61], among others [16, 44, 39, 54]. Of particular interest in this paper are approaches that

select basis vectors by minimizing concentration measures subject to the linear constraint

Ax = b, (1)

where A is an m× n matrix formed using the vectors from an overdetermined dictionary of

basis vectors, m < n, and it is assumed that rank(A) = m [17, 1]. The system of equations (1)

has infinitely many solutions, and the solution set is a linear variety denoted by LV (A, b) =

xp + N (A), where xp is any particular solution to (1) and N (A) = Nullspace of A [49].

Constrained minimization of concentration measures results in sparse solutions consistent

with membership in LV (A, b). Sparse solutions refer to basic solutions, solutions with m

nonzero entries, and degenerate basic solutions, solutions with less than m nonzero entries

[29]. The degenerate basic solutions, if they exist, are more desirable from a concentration

objective. The nonzero entries of a sparse solution indicate the basis vectors (columns of A)

selected. Popular concentration measures used in this context are the Shannon Entropy, the

Gaussian Entropy, and the `(p≤1) (p-norm-like) concentration measures, p ≤ 1 [19, 81, 27, 69].

In our earlier paper [69], an affine scaling methodology was proposed to obtain sparse

solutions to (1) by minimizing the Gaussian entropy and the `(p≤1) (p-norm-like) concen-

tration measures for p ≤ 1 (including p negative). The resulting algorithms for the `(p≤1)

concentration measures generalize the FOCUSS (FOCal Underdetermined System Solver)

class of algorithms first developed in [36, 37]. It is also shown in [69] that the algorithm for

`(p=0) is well-defined in a certain sense and yields precisely the same algorithm and solution

as for the Gaussian entropy—a result that is consistent with the definition of the p = 0

case commonly considered in the literature on mathematical inequalities [38, 57, 9]. The

case p = 0 corresponds to using the numerosity measure proposed in [27] (see also [69]).

Interestingly, in [69] the algorithm corresponding to the Shannon entropy measure proposed

in [19, 81] was shown to not converge to a fully sparse solution, although an increase in

concentration was seen to occur. In this paper we carefully analyze these and other sparsity

measures and discuss desirable properties for good concentration measures to have.

Broadly speaking, the contributions of this paper are three-fold. First we discuss the

concepts of majorization, Schur-concavity, and concavity, and describe their relevance to

constructing measures of sparsity and diversity. Next, utilizing this framework, we gen-

eralize the concentration measures mentioned above by introducing the class of signomial

measures and the Renyi entropy, along with several useful variants. A detailed analysis of
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these measures is conducted, ascertaining their suitability as concentration measures. Fi-

nally, using a special factorization of the gradient of the concentration measure, we develop

a class of convergent algorithms for sparse basis selection. Specifically, the affine scaling

methodology of [69] is shown to be extensible to deal with the broader classes of concen-

tration measures proposed herein, and a general convergence analysis is conducted. The

general classes of measures covered by the convergence analysis eliminates the need for a

convergence analysis on a case-by-case basis, as would otherwise be necessary.

The subject of concentration measures for best basis selection was first discussed in

[19, 81, 27]. In [81], the Shannon entropy and the `(p≤1), 0 < p ≤ 1, measures, both

evaluated on the “probability” x̃ = |x|2/‖x‖22 ∈ Rn, are analyzed at length.1 It is shown

that these functions are consistent with concentration as measured by the partial sums of

the decreasing rearrangement of the elements of x̃. Ordering of vectors according to their

partial sums is known as majorization and many results relating majorization to functional

inequalities exist that can be exploited to more fully understand the relationship between

majorization and measures of concentration [38, 13, 9, 57, 53, 5, 65, 47].

Inspired by the insightful discussion given in Chapter 8 of [81], we have been motivated

to analyze and develop concentration measures from the perspective of majorization theory

and to consider measures drawn from the general class of Schur-concave functions, which

are precisely the functions consistent with the partial order induced by majorization. In this

paper, we argue that concentration measures should be drawn from the class of Schur-concave

functions [38, 53, 5] and, in particular, that good concentration measures are a subclass of

concave functions. We fully investigate the properties of functions drawn from this class,

with a special emphasis on the subclass of concave functions, and construct several general

classes of possible concentration measures taking as our point of departure the analysis begun

in [81].

There is a long history of exploiting the properties of majorization, Schur-concavity,

and concavity for obtaining good concentration measures in economics and social science

[6, 75, 23, 74, 15, 30, 32, 58, 7]. Any measure of concentration is also a measure of equality

or diversity, so researchers looking for good measures of economic concentration or social

equality use many of the same mathematical constructs. Similar ideas have been used in

ecology [66, 67, 77, 64], physics [2], and computer science [26, 68, 62]. Recently, [46] has

discussed the utility of Schur-concave selection functionals (i.e., concentration measures) for

obtaining multiscale signal representations basis vectors. This rich vein of past and present

research is a good source for many ideas and possible concentration functions that can be

exploited to produce good sparse basis algorithms.

1We use the notation where |x|, x2, x
1
2 , x ≥ 0, etc., are defined component-wise for x ∈ Rn.
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Because we consider functions that are minimized in order to increase concentration (i.e.,

sparsity), as in much of the economics and ecology literature we refer to these functions as

diversity measures (i.e., we speak of minimizing diversity in order to increase concentration).

Since, as mentioned in the previous paragraph, a measure of concentration also provides a

measure of diversity, we can interchangeably refer to the sparsity measures discussed in this

paper either as concentration measure (consistent with earlier work such as [19, 81, 69]) or

as diversity functions, with the latter terminology being preferred and used predominantly

in the remainder of this paper.2

The availability of provably globally convergent algorithms for minimization of diversity

measures is limited. This is because the subject of optimization theory largely deals with the

minimization of convex or locally convex functions, whereas the cost functions considered

here are usually concave. The minimization of concave functions is well known to be difficult

because of the existence of multiple minima [73, 63, 42, 41, 12]. In our algorithmic study

we further explore the class of affine scaling methods developed in our earlier work [69],

and based on a particular factorization of the gradient function, which naturally extends

to the general classes of measures analyzed in this paper. The insights provided by the

majorization-based framework for diversity measures enables a convergence analysis that

includes a wide class of measures.

The outline of the paper is as follows. In Section 2 we discuss majorization, Schur-

concavity, concavity, and the properties of Schur-concave and concave functions. In Section 3

we develop and analyze a variety of diversity measures, including those described in [19, 81,

27, 69]. In Section 4 we present gradient factorization–based Affine Scaling Transformation

(AST) algorithms guaranteed to locally minimize useful classes of diversity measures, and

thereby provide sparse solutions to the best basis selection problem. Conclusions are given

in Section 5.

2 THE MEASUREMENT OF DIVERSITY

In this section we first discuss majorization, a partial ordering on vectors. We then describe

the property of Schur-concavity as a reasonable necessary condition for a measure of diversity.

Finally, we discuss the class of separable concave functions and their importance as good

measures of diversity. This discussion, which covers important known results and provides

some new results (Theorems 3 and 8) and definitions (Definition 6), is motivated by two

factors. Firstly, these results are relevant to the development of the paper. Secondly, the

review provides an opportunity to highlight results that may not be well known to the signal

2Reference [27] refers to “measures of anti-sparsity.”
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processing community, and which are useful in understanding the subject of sparsity and its

application to the basis selection problem. A detailed background on majorization and the

Lorentz order is readily available from references [53, 5, 4, 65, 47].

For this discussion, a basic familiarity with the concepts of convex sets and convex and

concave functions is assumed. The necessary background material can be found in one of

the many fine introductory expositions, including the references [73, 72, 65, 80]. In this

paper an overbar denotes absolute value, x̄ = |x|, while a “tilde” denotes a function of x

specified by context: x̃ = |x|, |x|2, |x|/‖x‖1, or |x|2/‖x‖22 . ‖ ·‖p denotes the standard p-norm,

‖x‖pp =
∑
i |x|p. The ith component of a vector x is given by x[i] or, at times, xi, with a

particular choice made to improve readability of detailed equations. We will also denote the

kth vector in a sequence by xk; the distinction between xk as an element and xk as a vector

should be clear from context. The bold-face vector ei denotes the canonical unit vector with

a 1 in the ith position and zeros elsewhere. The bold-face vector 1 ∈ Rn denotes the vector

with 1 in every position. Ql ⊂ Rn, l ≤ · · · ≤ 2n, denote the 2n orthants of Rn. Q1 is the

positive orthant with x ∈ Q1 iff x ≥ 0, where the inequality is defined component-wise,

x[i] ≥ 0. The function log(x) denotes the natural logarithm of x.

2.1 Majorization and Schur-Concavity

To simplify the discussion, in this section we restrict our discussion to the positive orthant

Q1 ⊂ Rn. A preordering3 on Q1 is defined for x, y ∈ Q1 ⊂ Rn by

x ≺ y iff
k∑
i=1

xbic ≤
k∑
i=1

ybic ,
n∑
i=1

xbic =
n∑
i=1

ybic (2)

where xb1c ≥ · · · ≥ xbnc denotes the decreasing rearrangement4 of the elements of x. (E.g.,

xb1c = maxi x[i], xbnc = mini x[i], etc.) If x ≺ y, we say that y majorizes x, or that x is

majorized by y. If, as in [81], we denote the sequence of partial sums in (2) as

Sx[k] =
k∑
i=1

xbic

then the basic definition (2) can be stated as follows.

Definition 1 (Majorization of x by y)

x ≺ y iff Sx[k] ≤ Sy[k] , Sx[n] = Sy[n] . (3)

3A partial ordering on a space obeys the properties of reflexivity, transitivity, and antisymmetry [3]. A
preordering has only the properties of reflexivity and transitivity. A total ordering is a partial ordering for
which every element of the space can be ordered with respect to any other element. If we agree to identify
vectors modulo rearrangements of their elements, then majorization defines a partial ordering on Q1.

4Many authors use increasing rearrangements, xd1e ≤ · · · ≤ xdne, so some care in reading the literature
is required. Also the physics community reverses the symbol definition in (2) to read y ≺ x, calling x “more
mixed” than y [2].
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Frequently Sx[n] is normalized to one, Sx[n] = 1.

A plot of Sx[k] versus k is known as a Lorentz curve [48], Lx, and x ≺ y iff Ly is

everywhere above the curve Lx (Figure 1). When x ≺ y, the curve Lx graphically shows

greater equality, or diversity, for the values of the elements of x ∈ Q1 than is the case for

Ly. The elements of y are more concentrated in value, or less diverse, than the elements of

x. In Figure 1, the curve LE corresponds to the vector with maximum equality or diversity,

viz. the vector with all components having equal value, while the curve LI is the curve of

minimum diversity, or maximum concentration, associated with a vector having only one

nonzero element. This graphical representation explains why majorization is also known

as the Lorentz order. Lorentz curves that intersect correspond to vectors that cannot be

ordered by majorization.

Doubly stochastic matrices play an important role in majorization theory. A real n× n
matrix M is said to be doubly stochastic if all entries are nonnegative and each column and

each row sum to one. It is well known (Birkhoff’s Theorem) that every doubly stochastic

matrix M is the convex combination of permutation matrices Pi, M =
∑
i αiPi,

∑
i αi = 1,

αj ≥ 0 [13, 53, 2, 4]. Let x = My for a doubly stochastic matrix M . Then x is a convex

sum of permutations (rearrangements) of y, so that x is seen to be a smoothed or averaged

version of y. The following theorem says that smoothing y in this manner results in greater

diversity in the sense of the Lorentz ordering.

Theorem 1 (Smoothing and Majorization [2, 4, 53]) Let x, y ∈ Q1. Then x ≺ y iff x = My

for some doubly stochastic matrix M .

When x ≺ y, we say that x is less concentrated (more diverse) than y or, equivalently, that

y is more concentrated (less diverse) than x.

It is natural to ask which functions from Rn to R preserve majorization. By definition,

these functions belong to the class of Schur-concave functions.

Definition 2 (Permutation Invariance) A function φ(·) is called permutation invariant iff

it is invariant with respect to all permutations of its argument x, i.e. φ(x) = φ(Px) for any

permutation matrix P .

Definition 3 (Schur-Concavity) A function φ(·) : Rn → R is said to be Schur-concave if

φ(x) ≥ φ(y) whenever x ≺ y, and strictly Schur-concave if in addition φ(x) > φ(y) when x

is not a permutation of y.

A Schur-concave function must be invariant with respect to permutations of the elements of

the vector x.
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A reasonable necessary condition for a function to be a good measure of diversity is

that it preserve the Lorentz ordering, i.e., be Schur-concave. Thus, the class of Schur-

concave functions are candidates for measures of diversity. Not surprisingly, Schur-concave

functions have been extensively studied as measures of economic equality/concentration

[6, 75, 23, 74, 15, 30, 32, 58], ecological diversity [66, 67, 77, 64], and ergodic mixing [2]. For

φ(·) Schur-concave, it is natural to consider x to be more diverse, or less concentrated, than

y if φ(x) ≥ φ(y) [53, 64, 5, 58]. A reasonable approach to sparse basis selection might then

be based on minimizing diversity, as measured by a Schur-concave function φ(·), subject to

the constraint (1).

The following two theorems are useful for identifying Schur-concave functions.

Theorem 2 (Derivative Test for Schur-Concavity [53, 5]) A function φ(·) is Schur-concave

on Q1 iff it is permutation invariant and satisfies the Schur condition,

(x[i]− x[j])
(
∂φ(x)

∂x[i]
− ∂φ(x)

∂x[j]

)
≤ 0 , ∀x ∈ Q1 , ∀i, j = 1, · · · , n . (4)

Furthermore, because of the assumed permutation invariance of φ(x), one only need verify

(4) for a single set of specific values for the pair (i, j).

We now extend this result to show that Schur-Concavity is preserved even when the variable

is normalized using the 1-norm. This will be found to be valuable when we examine different

variants of a diversity measure in Section 3.

Theorem 3 (1-Normalization Preserves Schur-Concavity) If φ(·) is Schur-concave on the

interior of Q1, then the scale invariant function ψ defined by ψ(x) = φ(x/‖x‖1) is also

Schur-concave on the interior of Q1.

Proof. To prove Theorem 3, let x̃ = x/‖x‖1 and note that on the interior of Q1,

∂ψ(x)

∂x[i]
=
∑
k

∂φ(x̃)

∂x̃[k]

∂x̃[k]

∂x[i]
=

1

‖x‖1

(
∂φ(x̃)

∂x̃[i]
−
∑
k

x̃[k]
∂φ(x̃)

∂x̃[k]

)
.

This follows from the fact that on the positive orthant, x ∈ Q1,

∂x̃[k]

∂x[i]
=

1

‖x‖1
(δk,i − x̃[k]) .

Therefore on the interior of Q1,

(x[i]− x[j])
(
∂ψ(x)

∂x[i]
− ∂ψ(x)

∂x[j]

)
= (x̃[i]− x̃[j])

(
∂φ(x̃)

∂x̃[i]
− ∂φ(x̃)

∂x̃[j]

)
.

Theorem 3 now follows directly from Theorem 2.

We can ask if there are subclasses of the set of Schur-concave functions that have es-

pecially desirable properties as measures of diversity. In the next subsection we show that

concave functions provide a set of good concentration functions in that minimizing a concave

diversity measure is guaranteed to result in a sparse solution.
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2.2 Concave Functions as Measures of Diversity

A subset C of Rn is said to be convex iff for all 0 ≤ λ ≤ 1 and for all x, y ∈ C one

has (1 − λ)x + λy ∈ C. Note that every orthant, including the positive orthant Q1, is

convex. A function φ(·) : Rn → R is concave on the convex subset C iff φ((1− λ)x + λy) ≥
(1−λ)φ(x)+λφ(y) and strictly concave if strict inequality holds for λ ∈ (0, 1) and x 6= y. A

function concave over C is continuous on the interior of C [72]. Recall that the function φ(·) is

called permutation invariant if it is invariant with respect to permutations (rearrangements)

of its argument, i.e., if φ(x) = φ(Px) for all P = permutation matrix. The set C is said to

be permutation symmetric iff x ∈ C implies Px ∈ C for every permutation matrix P .

Theorem 4 (Permutation Invariant, Concave Functions are Schur-Concave [53, 2]) Let x, y

belong to a permutation symmetric, convex set C ⊂ Rn. Then x ≺ y iff φ(x) ≥ φ(y) for all

permutation invariant and concave functions φ(·) : C → R.

A particularly useful and tractable set of diversity measures is provided by the subclass

of separable concave functions.

Definition 4 A function φ(·) : Rn → R is separable if there exists a scalar function g(·) :

R→ R such that φ(x) =
∑n
i=1 g(x[i]).

Theorem 5 (Separable, Concave Functions are Schur-Concave [53, 2]) Let x, y belong to a

permutation symmetric, convex set C ⊂ Rn. Then x ≺ y iff
∑n
i=1 g(x[i]) ≥

∑n
i=1 g(y[i]) for

every concave function g : C → R.

Proof of Theorems 4 and 5 (Partial). Theorems 4 and 5 are proved by first noting that

the necessity of Theorem 4 implies the necessity of Theorem 5 while sufficiency of Theorem 5

implies sufficiency of Theorem 4, since a separable, concave function is permutation invariant

and concave. To show necessity of Theorem 4, let x ≺ y and let φ(·) be permutation invariant

and concave. Then, based on our discussion of the previous subsection, for some doubly

stochastic matrix M =
∑
i λiPi,

∑
i λi = 1, with λj ≥ 0 and each Pi a permutation matrix,

we have φ(x) = φ(My) = φ(
∑
i λiPiy) ≥

∑
i λiφ(Piy) =

∑
i λiφ(y) = φ(y). Sufficiency of

Theorem 5 is proved in references [53, 2].

The utility of certain concave measures of diversity for obtaining sparse solutions to the

best basis problem comes from their highly desirable property of attaining their minima on

the boundary of their convex domain of definition.

Theorem 6 (Optimality of Boundary Points) Let φ(·) : C → R be strictly concave and

bounded from below on a closed convex set C ⊂ Rn. The function φ(·) attains its local

minima (and hence its global minima) at boundary points of C.
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Proof. If x∗ is assumed to yield a local minima in the interior of C, then there exist

interior points y, z arbitrarily close to x∗ and λ > 0 such that x∗ = (1 − λ)y + λz yielding

φ(x∗) > (1− λ)φ(y) + λφ(z) ≥ min{φ(y), φ(z)}, contradicting the putative local optimality

of x∗. Thus x∗ must be on the boundary of C.

If C is closed and convex, its boundary contains the extreme points of C, which are those

points that cannot be written as a convex combination of any other points contained in C
[73]. The following theorem holds when φ(·) is concave, but not necessarily strictly concave.

Theorem 7 (Optimality of Extreme Points [73, 72]) Let φ(·) : C → R be concave on a closed

convex set C ⊂ Rn which contains no lines. If φ(·) attains a global minimum somewhere on

C, it is also attained at an extreme point of C.

Theorems 4–7 show that permutation invariant concave diversity measures are Schur-

concave and that if the boundary points correspond to sparse solutions, then minimizing

such measures can yield sparse solutions to the best basis selection problem. This is indeed

possible by choosing a diversity measure from a proper subclass of functions which are also

sign invariant.

Definition 5 (Sign Invariance) A function φ(·) is said to be sign invariant if φ(x) =

φ(x̄),∀x ∈ Rn, where x̄ = |x| ∈ Q1 .

Recall that the concept of a basic solution to the system (1) was described earlier in the

introduction.

Theorem 8 (Global Optimality of a Basic Solution) Let φ(·) : Rn → R be permutation

invariant, sign invariant, and concave on the positive orthant Q1. Then the global minimum

of φ(x) subject to the linear constraints of (1) is attained at a basic solution.

Proof. Because φ(x) is sign invariant and concave onQ1, it is concave on each of the orthants

Ql, 1 ≤ l ≤ 2n. This does not mean however that φ(x) is concave on Rn (cf. Figure 4).

Recalling that the solution set to (1) is the linear variety LV (A, b) = {y : Ay = b}, the

minimization of φ(x) over LV (A, b) can be rewritten as

min
LV (A,b)

φ(x) = min
1≤l≤2n

(
min

Ql∩LV (A,b)
φ(x)

)
. (5)

Since Ql ∩LV (A, b) is a convex set, and φ(x) is concave on Ql, from theorem 7 the solution

to minQl∩LV (A,b) φ(x) is attained at a basic solution, or degenerate basic solution, or (1)

because the subset of the basic solutions/degenerate basic solutions are the extreme points

of Ql∩LV (A, b). Therefore from (5), the global minimum is attained at a basic or degenerate

basic solution. Furthermore, the local minima are at basic or degenerate basic solutions.
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Theorems 4–8 show that the permutation and sign invariant concave functions are par-

ticularly good measures of diversity, if our intent is to obtain sparse solutions to (1) by

minimizing diversity measures. It is of interest, then, to be able to identify concave func-

tions. We state two theorems relating to concave functions which we have found useful in

this regard.

Theorem 9 (Derivative Test for Concavity [73, 72, 8, 50, 51]) Let C ⊂ Rn be an open

convex set and let φ(·) : C → R be differentiable on C. Then φ(·) is concave on C iff for any

x ∈ C we have

∇φ(x)T (y − x) ≥ φ(x)− φ(y) , ∀y ∈ C . (6)

Furthermore φ(·) is strictly concave iff the inequality is strict for every y 6= x.

Theorem 10 (Hessian Test for Concavity [73, 72, 8, 50, 51]) Let C ⊂ Rn be an open convex

set and let φ(·) : C → R be twice differentiable on C. Let H(x) denote the Hessian matrix of

second partial derivatives of φ(·) evaluated at the point x ∈ C. The function φ(·) is concave

on C iff for any x ∈ C H(x) is negative semidefinite. Furthermore φ(·) is strictly concave on

C if H(x) is negative definite for all x ∈ C.

2.3 Almost Concave Functions

We will latter consider diversity measures that are globally Schur-concave, and hence preserve

the Lorentz order, on the n-dimensional positive orthant Q1 ⊂ Rn, and which are concave

on a (possibly position dependent) (n − 1)-dimensional subspace in an open neighborhood

of every point in the interior of Q1. Given a randomly initialized recursive algorithm to

minimize such a measure subject to (1), for n ≥ 2 the algorithm generically will converge to

a sparse solution located on the boundary of Q1.

Definition 6 (Almost Concave Function) Let C ⊂ Rn be an open convex set and the func-

tion φ(·) : C → R be Schur-concave on C. The function φ(·) is said to be Almost Concave

(respectively, Almost Strictly Concave) on the interior of C if, for every point x in the in-

terior of C, in a open neighborhood of x it is concave (respectively, strictly concave) on an

(n− 1)-dimensional subspace with origin located at x.

If B(x) ⊂ C is an open ball centered at x ∈ C and there exists an (n − 1)-dimensional

linear variety Vx containing x for which either the derivative test (Theorem 9) or the Hessian

test (Theorem 10) holds for all y ∈ B(x) ∩ Vx, then φ(·) is concave on B(x) ∩ Vx. If this is

true for all x in the interior of C, then φ(·) is almost concave on the interior of C. Obviously,

every concave function is almost concave. Also, note that an almost concave function must

be Schur-concave by definition.
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3 SCALAR MEASURES OF DIVERSITY

A general diversity measure is denoted by d(·) : Rn → R. The diversity measures considered

in this paper are assumed to be both permutation invariant and sign invariant (as defined in

Section 2). Note that the measures considered previously in [69]—the Shannon Entropy, the

Gaussian Entropy, and the `(p≤1) concentration measure—satisfy this property. Motivated

by Theorems 4–8, in this section we examine the properties of Schur-concavity and concavity

on the positive orthant Q1. Because of the assumed sign invariance, d(x) = d(|x|), Schur-

concavity or concavity (or lack thereof) over Q1 corresponds to Schur-concavity or concavity

(or lack thereof) respectively over any other orthant Ql. Note, however, that this does not

guarantee Schur-concavity or concavity across orthants, and in general this property will not

be true.

3.1 Signomial Measures

In this subsection, we present a general class of separable concave (and hence Schur-concave)

functions that include as a special case the class of `(p≤1) diversity measures defined by

dp(x) = sgn(p)
n∑
i=1

|x[i]|p, p ≤ 1, (7)

and described in [81, 27, 78, 69].5

3.1.1 S-functions

The generalization we are interested in is the subclass of signomials [10, 11] (also referred to

as generalized polynomials [28, 72] or algebraic functions [73]) given by the separable function

dsig(x) =
n∑
i=1

S(|x[i]|) =
q∑
j=1

ωj dpj(x) ,

dpj(x) = sgn(pj)
n∑
i=1

|x[i]|pj , pj ≤ 1 ,

S(s) = sgn(p1)ω1 s
p1 + · · ·+ sgn(pq)ωq s

pq , s ∈ R+ , (8)

where pj < 1 , pj 6= 0 , and ωj ≥ 0 ,

or pj = 0, 1 , and ωj ∈ R .

Note that, unlike a regular polynomial, S(s) has fractional and possibly negative powers,

pj ≤ 1. A general signomial, unlike the subclass defined by (8), has no constraints on its

powers or coefficients. If the powers pk are also constrained to be positive, the coefficients in

(8) are all positive and dsig(x) is then a special case of a posynomial [28, 82, 10], a signomial

5As discussed later in this subsection, reference [81] first normalizes x to one in the 2-norm sense.
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constrained to have positive coefficients. With no loss of generality, in (8) we can take∑
j ωj = 1. Henceforth, we will refer to functions of the form (8) as S-functions.

It is readily shown that dsig(x) has a diagonal, negative semidefinite Hessian for x ∈ Q1.

Therefore, from Theorem 10 we know that dsig(x) is concave on the interior of the positive

orthant Q1 ⊂ Rn. Furthermore, if there exists j such that pj < 1, pj 6= 0, then the Hessian

is negative definite and dsig(x) is strictly concave on the interior of the positive orthant Q1.

By construction, dsig(x) is separable. Thus dsig(x) is Schur-concave and can be designed to

be strictly concave, thereby insuring that a sparse solution can be obtained to the sparse

basis selection problem by searching for a minimum of the function dsig(x). Summarizing

our results, we have the following theorems.

Theorem 11 (S-Functions are Schur-Concave) Let x, y belong to a symmetric, convex set

C ⊂ Q1. Then x ≺ y only if dsig(x) ≥ dsig(y) for every S-function dsig : C → R.

Theorem 12 (S-Functions are Concave) Every S-function dsig is concave on the interior

of Q1. Furthermore, any S-function such that there exists j for which pj < 1, pj 6= 0, is

strictly concave on the interior of Q1.

It can be shown that for p > 1, dp(x) of (7) is not Schur-concave and hence not concave.

Indeed, it is well known (and readily demonstrated) that dp(x) is convex over Q1 (and a

metric for the space Rn) for p > 1. Figure 2 shows graphs and contour plots of dp(x)

evaluated on the positive quandrant of R2 for p = 1.0 and p = 0.1, values of p for which

dp(x) is a well-defined diversity measure.

3.1.2 1-Normalized S-functions

From the class of S-functions, one can define the 1-norm normalized S-functions by taking

d
(1)
sig (x)

∆
= dsig(x̃) , x̃ = |x|/‖x‖1 .

Note that d
(1)
sig (x) is not separable. Of particular interest is the subclass of 1-normalized

p-norm-like diversity measures obtained from (7), d(1)
p (x)

∆
= dp(x̃). Note that

d
(1)
sig (x) =

q∑
j=1

ωj d
(1)
pj

(x) =
q∑
j=1

ωj dpj(x̃) , x̃ = |x|/‖x‖1 , pj ≤ 1 .

It is an immediate consequence of Theorem 3 that the 1-normalized S-functions are Schur-

concave on the interior of Q1:

Theorem 13 (1-Normalized S-Functions are Schur-Concave) Let x, y belong to a permu-

tation symmetric, convex set C ⊂ Q1. Then x ≺ y only if d
(1)
sig (x) ≥ dsig(y) for every

1-normalized S-function d
(1)
sig : C → R.

12



     

A closer examination of the 1-normalized S-functions reveal that a stronger result is

possible. They can be shown to be almost concave.

Theorem 14 (1-Normalized S-Functions are Almost Concave) The 1-normalized S-function

d
(1)
sig (x) = dsig(x̃), x̃ = |x|/‖x‖1, is Almost Concave on the interior of Q1. If in addition

pj < 1 for at least one pj, then d
(1)
sig (x) is Almost Strictly Concave on the interior of Q1.

Proof. From Theorem 10, the function d
(1)
sig (x) is concave on Q1 iff the Hessian H(1)

sig (x) is

negative semidefinite on Q1, where

H(1)
sig (x) =

∂2

∂x2
d

(1)
sig (x) =

q∑
j=1

|pj| ωj H(1)
pj

(x) =
q∑
j=1

|pj| ωj Hpj(x̃) , x̃ =
|x|
‖x‖1

, x ∈ Q1 .

The HessianH(1)
sig (x) will be negative semidefinite ifH(1)

pj
(x), the Hessian of d(1)

pj
(x), is negative

semidefinite on Q1 for each j. Furthermore, d
(1)
sig (x) is strictly concave if in addition H(1)

pj
(x)

is negative definite for at least one j. It is shown in the appendix that the Hessian H(1)
p (x)

for x ∈ Q1 is given by

H(1)
p (x) =

∂2

∂x2
d(1)
p (x) (9)

= − |p|‖x‖21

n∑
i=1

{
p

x̃[i]1−p

(
ei1

T + 1eTi
)

+
1− p
x̃[i]2−p

eie
T
i − (1 + p) x̃[i]p 11T

}
.

Let 1⊥ ⊂ Rn be the n− 1 dimensional subspace of vectors perpendicular to the vector 1. It

is straightforward to show that yTH(1)
p (x)y ≤ 0, for all nonzero y ∈ 1⊥ ⊂ Rn and all x in the

interior of Q1 when p ≤ 1, with yTH(1)
p (x)y < 0 for p < 1, proving the theorem. A key factor

that makes this manipulation possible is the structured form in which the Hessian has been

expressed. The details of the proof are given in the appendix.

3.1.3 2-Normalized S-functions

As proposed in [81], one can also form the 2-norm normalized p-norm-like diversity measures

obtained from (7),

d(2)
p (x)

∆
= dp(x̃) , x̃ = |x|2/‖x‖22 .

The measures d(2)
p (x) are a special case of the 2-normalized S-functions formed from the class

of S-functions by taking

d
(2)
sig (x)

∆
= dsig(x̃) =

n∑
j=1

ωjd
(2)
pj

(x) =
n∑
j=1

ωjdpj(x̃) , x̃ = |x|2/‖x‖22 .

Compared to the 1-Normalized S-Functions, a greater restriction on the range of p has

to be placed the 2-Normalized S-Functions if Schur-concavity is to be preserved. It is found

that p ≤ 1
2

leads to desirable properties.
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Theorem 15 (2-Normalized S-Functions are Schur-Concave for p ≤ 1
2
) Let x, y belong to

a symmetric, convex set C ⊂ Q1. Then x ≺ y implies that d
(2)
sig (x) ≥ dsig(y) for every 2-

normalized S-function d
(2)
sig : C → R with p ≤ 1/2. Furthermore, for p > 1

2
, d

(2)
sig (x) is not

Schur-concave (and, therefore, not concave) over the interior of Q1.

Proof. Because d
(2)
sig (x) =

∑n
j=1 ωjd

(2)
pj

(x), it is enough to show that the theorem is true for

the simpler case of d(2)
p (x). This is done by making use of Theorem 2 and equation (4). The

details are given in the appendix.

Actually, for p ≤ 1/2, even more can be said:

Theorem 16 (2-Normalized S-Functions are Almost Strictly Concave for p ≤ 1
2
) Let pj ≤ 1

2

for every pj in (8). Then the 2-normalized S-function d
(2)
sig (x) = dsig(x̃), x̃ = |x|2/‖x‖22, is

Almost Strictly Concave on the interior of Q1.

Proof. The function d
(2)
sig (x) is strictly concave on Q1 iff the Hessian H(2)

sig (x) is negative

definite on Q1, where

H(2)
sig (x) =

∂2

∂x2
d

(2)
sig (x) =

q∑
j=1

|pj| ωj H(2)
pj

(x) , x̃ =
|x|2
‖x‖22

, x ∈ Q1 .

H(2)
sig (x) is negative definite if H(2)

pj
(x) is negative definite on Q1 for every j. It is shown in

the appendix that the Hessian H(2)
p (x) over Q1 ⊂ Rn is given by

H(2)
p (x) =

∂2

∂x2
d(2)
p (x)

= − 2|p|
‖x‖22

n∑
i=1

{
2p

x̃[i]
1
2
−p

(
eix̃

T
2 + x̃

1
2eTi

)
(10)

+

(
1− 2p

x̃[i]1−p
+ |d(2)

p (x)|
)

eie
T
i − 2x̃[i]p (1 + p) x̃

1
2 x̃

T
2

}
.

The remainder of the proof is very similar to that of Theorem 14. It is based on the readily

verified fact that for each x in the interior of Q1 the matrix H(2)
p (x) is negative definite on

the (n− 1)–dimensional subspace of Rn perpendicular to the vector x̃
1
2 . Again, the form in

which the Hessian is expressed plays an important role in reducing the complexity of the

proof. The details of the proof are given in the appendix.

3.2 Entropy Measures

There has been a large interest in utilizing entropy measures as measures of diversity or

concentration in biology, economics, computer science, and physics [79, 40, 67, 2, 31, 22, 68]

as well as for sparse basis selection [19, 81, 27, 78, 69]. Here, we discuss some of these

measures at length and show the close relationship between the entropy measures and the

p-norm-like measures discussed in the previous subsection.
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3.2.1 Gaussian Entropy

References [81, 78] propose the use of the “logarithm of energy” function

HG(x) =
n∑
i=1

log |x[i]|2 (11)

as a measure of concentration. Reference [81] points out that this can be interpreted as

the Shannon entropy of a Gauss-Markov process [21]; for this reason in this paper, and in

reference [69], we refer to (11) as the Gaussian entropy measure of diversity.

Note that HG is separable. It is straightforward to demonstrate that the Hessian of HG is

everywhere positive definite on the positive orthant Q1, showing that HG is strictly concave

on the interior of Q1 and hence Schur-concave. The Gaussian entropy is therefore a good

measure of concentration and we expect that minimizing HG will result in sparse solutions

to the best basis selection problem.

In [69], an algorithm is presented to minimize HG that indeed shows very good perfor-

mance in obtaining sparse solutions. It is also shown that the algorithm to minimize HG

is the same as the algorithm that minimizes (7) for p = 0 and can therefore be given the

interpretation of optimizing the numerosity (p = 0) measure described by [27]. The interpre-

tation of HG as a p = 0 measure follows naturally from the literature on inequalities where

Exp(HG)= (
∏
i |x[i]|)2 is shown to be intimately related to the p = 0 norm (e.g., see [9], page

16; reference [57], page 74; or [38] page 15). In fact,

Exp(
1

2n
HG(x)) = lim

p→0

(
1

n
dp(x)

) 1
p

. (12)

3.2.2 Shannon Entropy

References [19, 81, 27] have proposed the use of the Shannon entropy function as a measure

of diversity appropriate for sparse basis selection. This entropy has also long been used by

economists and ecologists as a measure of concentration and diversity [79, 40, 67, 2, 31, 22].

Given a probability distribution, the Shannon entropy is well defined. However starting

from x, there is some freedom in how one precisely defines this measure. Defining the

Shannon entropy function HS(x̃) for x̃ = x̃(x) by

HS(x̃) = −
n∑
i=1

x̃[i] log x̃[i], x̃ ≥ 0 , (13)

the differences arise in how one defines x̃ as a function of x. These differences affect the

properties of HS as a function of x. It is well known that HS(x̃) defined as a function

of x̃ by (13) is Schur-concave [53, 81]. However it is generally not the case that HS(x) is

Schur-concave with respect to x [53].
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Shannon Entropy Habs
s (x). This corresponds to the choice x̃[i] = |x[i]|. It can be readily

shown that Habs
S is Schur-concave with respect to x over Q1. Even more, it can be shown by

an application of Theorem 10 that Habs
S is strictly concave on the interior of Q1. Thus Habs

S

is a good measure of diversity and minimizing Habs
S should result in sparse solutions to the

best basis problem.

2-Normalized Shannon Entropy H(2)
s (x). This corresponds to the choice x̃[i] = x[i]2

‖x‖22
in (13) [81]. In reference [69] it is argued that the minima of H

(2)
S do not correspond to

completely sparse solutions to Ax = b, and this was demonstrated via simulation. This

fact can now be verified utilizing the insights provided by the theory of majorization and

Schur-concavity. By a straightforward (but tedious) application of Theorem 2, one can show

that the separable function H
(2)
S is not Schur-concave with respect to x over the positive

orthant Q1, and therefore from Theorem 5 is not concave over the interior of Q1. The lack

of Schur-concavity for H
(2)
S is also shown below in the discussion of the Renyi entropy-based

sparsity measures. Thus minimizing H
(2)
S with respect to x will not generally yield a sparse

solution.

This can be seen graphically in Figure 3 where the value of H
(2)
S (x) is represented in the

positive orthant of R3 by its height above the positive simplex along the ray from the origin

through x. Because of the 2-normalization, all other vectors x on this ray have the same

value. In Figure 3, it is evident that the minima of H
(2)
S occur just shy of the boundaries

defined by the coordinate axes (where the sparse solutions reside). This explains why in [69]

concentrated, but not completely sparse, solutions were obtained.

1-Normalized Shannon Entropy H(1)
s (x). This corresponds to the choice x̃[i] = |x[i]|

‖x‖1 ,

Applying Theorem 2 it can be shown that H
(1)
S is Schur-concave over Q1. Alternatively, use

of Theorem 3 shows that H
(1)
S is Schur-concave. Because of the complexity of the Hessian of

H
(1)
S , it is difficult to directly ascertain if H

(1)
S is concave. However, below in the discussion

of the Renyi entropy-based measures we show that H
(1)
S is almost concave (but perhaps not

strictly almost concave) over the interior of Q1. Figure 4 graphically represents H
(1)
S in the

positive orthant of R3 by its height above the positive simplex along the ray from the origin

through x. Because of the 1-normalization, all other vectors x on this ray have the same

value.
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3.2.3 Renyi Entropy

A family of entropies, parameterized by p, is described in [70, 71, 45]. These Renyi entropies6

include, as a special case, the Shannon entropy. Given a “probability” x̃, x̃[i] ≥ 0,
∑
i x̃[i] = 1,

the Renyi entropy is defined for 0 ≤ p by

Hp(x̃) =
1

1− p log
n∑
i=1

x̃[i]p =
1

1− p log dp(x̃) , (14)

where

H1(x̃) = lim
p→1

Hp(x̃) = −
n∑
i=1

x̃ log x̃ = HS(x̃) .

Thus H1(x̃) is the Shannon entropy of x̃. Because log is monotonic, we see that for purposes

of optimization Hp(x̃) is equivalent to the p-norm like measure dp(x̃). Thus, consistent with

the discussion given in [27], one can also reasonably refer to the normalized p-norm-like

measures `p≤1 as entropies.

We now see that the p-norm-like, p ≥ 0, and the Shannon entropy measures are not

unrelated, but are different manifestations of the Renyi entropy measures. As in the case

of Shannon Entropy, different diversity measures can be obtained depending on how x̃ is

defined as a function of x.

1-Normalized Renyi Entropy. Let x̃ = x/‖x‖1 and dp(x̃) = d(1)
p (x) be the 1-normalized

p-norm-like measure discussed in Section 3.1. The 1-Normalized Renyi entropy, parameter-

ized by 0 ≤ p ≤ 1, is defined by

H(1)
p (x) =

1

1− p log d(1)
p (x) . (15)

One can readily show that H(1)
p (x) for 0 < p < 1 is almost strictly concave as a consequence

of the almost strict concavity of d(1)
p (x) for 0 < p < 1 (Theorem 14) and the fact that log is

an increasing concave function.

In the limit p → 1, H(1)
p (x) is the 1-norm Shannon entropy evaluated for x̃ = x/‖x‖1,

H
(1)
1 (x) = H

(1)
S (x). If we let p→ 1 from below, p < 1, then H(1)

p (x) is almost concave for all

p as we take the limit showing, as claimed earlier, that H
(1)
S (x) = limp→1− H

(1)
p (x) is almost

concave.

From (15) and the fact that the measures d(1)
p (x) form a subclass of the measures

d
(1)
sig (x), the 1-Normalized S-class of functions d

(1)
sig (x) can be viewed as a generalization of

6The Renyi entropy parameter is commonly denoted by α. Thus, this entropy is also referred to as the
α-entropy.
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the 1-normalized Renyi entropies H(1)
p (x). With this insight, let us define a generalized

1-normalized Renyi entropy function by

H
(1)
sig (x) =

1

q −∑q
j=1 pj

log d
(1)
sig (x) =

1

q −∑q
j=1 pj

log
q∑
j=1

ωj d
(1)
pj

(x) , (16)

where q, 0 < pj ≤ 1 and 0 < ωj are defined in (8) and
∑
j ωj = 1. Note that (16) includes

(15) as a special case and that, as defined, H
(1)
sig (x) is less general than d

(1)
sig (x) of (8) because

of the restriction to positive pj. As a consequence of Theorem 14 and the fact that log is an

increasing concave function, it is straightforward to show that H
(1)
sig (x) is almost concave on

Q1.

2-Normalized Renyi Entropy. Here we take x̃ = |x|2/‖x‖22. Then dp(x̃) = d(2)
p (x) is the

2-normalized p-norm-like measure discussed in Section 3.1. The 2-normalized Renyi entropy,

parameterized by 0 < p ≤ 1
2
, is defined by

H(2)
p (x) =

1

1− p log d(2)
p (x) . (17)

It is straightforward to show that H(2)
p (x) is almost strictly concave for 0 ≤ p < 1

2
and almost

concave for p = 1
2

as a consequence of the concavity of d(2)
p (x) for 0 ≤ p ≤ 1

2
(Theorem 16)

and the fact that log is an increasing concave function.

Because d(2)
p (x) is not Schur-concave for p > 1

2
, H(2)

p (x) is not Schur-concave (and hence

not concave) for p > 1
2
. Note that in the limit p→ 1, H(2)

p (x) is the 2-norm Shannon entropy

evaluated for x̃ = |x|2/‖x‖22, H
(2)
1 (x) = H

(2)
S , showing that H

(2)
S is not Schur-concave, and

hence not concave, as claimed earlier.

From (17) and the fact that the measures d(2)
p (x) form a subclass of the measures

d
(2)
sig (x), the 2-normalized S-class of functions d

(2)
sig (x) can be viewed as a generalization of

the 2-normalized Renyi entropies H(2)
p (x). One can then reasonably define a generalized

2-normalized Renyi entropy function by

H
(2)
sig (x) =

1

q −∑q
j=1 pj

log d
(2)
sig (x) =

1

q −∑q
j=1 pj

log
q∑
j=1

ωj d
(2)
pj

(x) , (18)

where q, 0 < pj ≤ 1
2

and 0 < ωj are defined in (8) and
∑
j ωj = 1.

3.3 Other Measures

One can proceed to provide a systematic development and analysis of a variety of possible

diversity measures and their appropriateness in specific application domains. For example,

18



     

for a general unnormalized positive vector x ∈ Q1, one could explore the possible use of the

generalized Renyi entropy [70, 71],

Hp(x) =
1

1− p log

{∑n
i=1 x[i]

p∑n
i=1 x[i]

}
, x ≥ 0 ,

and its connection to the p-norm-like diversity measure (7). Other possible entropies that

can be analyzed include the Daroczy, Quadratic, and R-norm entropies [45].

More generally, by utilizing the tools and insights provided by majorization theory, one

can systematically develop a variety of diversity measures. Toward this end, reference [53]

has a wealth of results regarding tests for, and classes of, Schur-concave functions, and an

examination of possible diversity measures, and their properties, can be found in references

[30, 64, 32, 26]. As one last example of a possible extension, we mention the multinomial-like

class of functions generated by the symmetric sums of product terms like x[i1]
pj1 · · ·x[il]pjl ,

l = 1, · · · , n [53]. The measures presented in Section 3.1 correspond to the case l = 1.

4 ALGORITHMS FOR SPARSE BASIS SELECTION

Now we discuss some algorithms for minimizing the diversity measures presented in the

previous section. The choice of provably well-behaved algorithms is limited because the

diversity measures we are considering are concave, and therefore generally have many local

minima on their boundaries [73, 63, 42, 41, 12]. A brute force exhaustive search of the

extreme points is not practical because of their large number, namely (nm), as soon as the

dimension of x becomes reasonably large, although branch-and-bound search methods might

be applicable in this regard [59, 56, 34].

To minimize the general classes of concave diversity measures developed in this paper, we

will extend the affine scaling methodology described in [69] and develop iterative algorithms

which converge to a basic or degenerate basic solution of (1). Toward this end, for each

possible diversity measure d(x), we will first need to define an associated scaling matrix

which naturally arises in this formulation, and identify its properties. Then the affine scaling-

related optimization methodology of [69] can be used to develop algorithms for minimizing

the diversity measure.

Convergence of these algorithms is established under various sets of assumptions, first

starting from minimization of general concave diversity measures on Q1, with relatively

severe restrictions on the algorithms, and ending with the minimization of concave diversity

measures having positive definitive scaling matrices, which allows minimal restrictions on

the algorithm.
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4.1 Gradient Factorization and The Scaling Matrix Π(x)

In the algorithms to be developed next, an expression for the gradient of the diversity measure

d(x) with respect to x is required. The following factorization of the gradient turns out to

be essential for the development of the algorithms of this paper,

∇d(x) = α(x)Π(x)x , (19)

where α(x) is a positive scalar function, and Π(x) is the Scaling Matrix, which in this paper

is always chosen to be diagonal. The scaling matrices for the different diversity measures

described in the previous section play an important role and are tabulated in Table 1, along

with their properties. The derivation of these scaling matrices is described in the appendix.

An important distinction amongst the diversity measures from an algorithmic point of

view is whether their scaling matrix is positive definite or not. For diversity measures

with positive definite scaling matrices, we have been able to develop simpler convergent

algorithms. An examination of Table 1 shows that this includes the large class of measures

provided by the signomial functions, dsig(x).

Notice, however, that the diversity measures with scale invariance have scaling matri-

ces that are not positive definite. For scale invariant diversity measures we have d(x) =

d(γx) , ∀γ ∈ R, showing that the projection of the gradient ∇d(x) along the direction x

must be zero, xT∇d(x) = α(x)xTΠ(x)x = 0, which we summarize as

d(x) = d(γx) , ∀γ ∈ R ⇒ xTΠ(x)x = 0 . (20)

Under the assumption that Π(x) is diagonal, the property (20) implies that the nonzero

diagonal elements must change sign and consequently that Π(x) is indefinite. Scale invariant

measures described in this paper are the 1-normalized and 2-normalized S-functions and

Renyi entropies.

4.2 A Generalized Affine Scaling Algorithm

Constrained Optimization. The affine scaling methodology developed in [69] is readily

adapted to address the minimization of the more general diversity measures developed in

this paper. This algorithm attempts to solve the optimization problem,

min
x
d(x) subject to Ax = b . (21)

The standard method of Lagrange multipliers is used, where the Lagrangian is given by

L(x, λ) = d(x) + λT (Ax− b) , (22)
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and λ is the m × 1 vector of Lagrange multipliers. A necessary condition for a minimizing

solution x∗ to exist is that (x∗, λ∗) be stationary points of the Lagrangian function, i.e.

∇xL(x∗, λ∗) = ∇d(x∗) + ATλ∗ = 0
∇λL(x∗, λ∗) = Ax∗ − b = 0 .

(23)

Using the factored form of the gradient given in (19), after some manipulation the stationary

point x∗ can be shown to satisfy

x∗ = Π−1(x∗)AT (AΠ−1(x∗)AT )−1b . (24)

An Iterative Algorithm. The necessary condition (24) naturally suggests an iterative

algorithm of the form,

xk+1 = Π−1(xk)A
T (AΠ−1(xk)A

T )−1b . (25)

This algorithm has desirable properties when the scaling matrix Π(x) is positive definite.

As shown in [69], and discussed below, when Π(x) is positive definite it can be used to

naturally define an Affine Scaling Transformation (AST) matrix, W (x) = Π−
1
2 (x) > 0,

and thereby establish a strong connection to affine scaling methods used in optimization

theory [24, 29, 60]. Hence the use of the terminology “Affine Scaling” in connection with

the algorithms developed here and in [69].

The algorithm developed in [69] has an interesting interpretation as an extension of the

standard affine scaling methodology which arises because in general Π(x) is not always posi-

tive definite. In such cases a simple generalization will often still yield a provably convergent

algorithm. This is achieved by defining an intermediate variable xrk which is given by

xrk+1 = Π−1(xk)A
T (AΠ−1(xk)A

T )−1b . (26)

Note that xrk+1 is feasible. Assuming that xk is also feasible (i.e. Axk = b), then the increment

xrk+1−xk is in the nullspace of A, and provides a direction along which d(x) can be decreased

while maintaining the equality constraints.

The value of x in the next iteration is computed as

xk+1 = xk + µk(x
r
k+1 − xk) = µk x

r
k+1 + (1− µk) xk , (27)

where the step size µk is chosen to ensure that

∇d(xk)T (xk+1 − xk) < 0 , (28)

along with a decrease in the diversity measure, d(xk+1) < d(xk). Note that the choice of

µk = 1 yields the original, simpler algorithm (25).
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An AST Interpretation. As discussed in [69], when the diagonal matrix Π(x) is positive

definite, the algorithm (25) has an interpretation as an Affine Scaling Transformation algo-

rithm [24, 29]. Specifically, if we construct a symmetric affine scaling transformation (AST)

W (x) by

W (x)
∆
=Π

1
2 (x) , (29)

we can then form Wk+1 and, following the AST methodology [24, 29], the scaled quantities

q and Ak+1 by

Wk+1 = W (xk) , x = Wk+1q , Ak+1 = AWk+1 ,

assuming we have at hand a current estimated feasible solution, xk (corresponding to the

scaled quantity qk = W−1
k+1xk), to the problem (21). We then consider the optimization

problem (21) in terms of the scaled variable q,

min
q
dk+1(q) = d(Wk+1q) subject to Ak1q = b .

Treating qk as the current estimate of the solution to this optimization problem we can obtain

an updated estimated by projecting the gradient of dk+1(qk) onto the nullspace of Ak+1 and

moving in this direction an amount proportional to a stepsize given by 1/α(xk). This yields

the algorithm

qk+1 = A+
k+1b , xk+1 = Wk+1qk+1 ,

with A+
k+1 the Moore-Penrose pseudoinverse of A, which is equivalent to (25). It is common

in the affine scaling approach to use the specific AST W (x) given by

W (x) = diag

(
1

x[i]2

)
,

which corresponds in (29) to defining W (x) in terms of Π(x) = Πp(x), with Πp(x) given

in Table 1, for p = 0. In contrast, the algorithm (25) corresponds to a “natural” choice of

W (x) dictated by the particular choice of the sparsity measure d(x).

Convergence and Numerical Issues. The algorithm (26)–(27) can be also interpreted

as a Lagrange Multiplier Update method ([50], page 436), as a Gradient Projection method

[50, 14], as a Successive Approximate Lagrangian method [35], and as a Frank-Wolfe method7

[33]. Independently of how it is derived or interpreted, convergence of the algorithm can be

shown for specific classes of diversity measures, d(x), using the general convergence theorems

of Zangwill, and their variants [82, 8, 50, 55].

A key issue is the choice of the sign and magnitude of the scalar stepsize parameter µk in

(27). The stepsize is chosen to obtain the inequality in (28), to ensure that d(xk+1) < d(xk)

7Also known as the conditional gradient method [14] or as a linear approximation method [82].
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for xk+1 6= xk, and, if necessary, to ensure that xk+1 remains in the same orthant as xk

(which, without loss of generality, is taken to be the positive orthant Q1). The condition

d(xk+1) < d(xk) ensures that the algorithm results in a strict decrease of d(xk) at each

iteration, resulting in convergence to a stationary point, x∗, of d(x) in the linear variety

LV (A, b) (i.e., to a stationary point of (22)) satisfying condition (24). Such points must be

either saddlepoints or local minima of d(x) in LV (A, b) and will be local minima if d(x) is

strictly concave, in which case the local minimum x∗ must be on the boundary of a quadrant

Ql, ensuring a sparse solution.

Note the requirement in (26) that Π(xk) be invertible for every possible xk. For the

diversity measures discussed in this paper, this is either true or generically true (i.e., true

except for a set of Lebesgue measure zero). In the latter case, for increased numerical

robustness one may chose to numerically solve the system (cf. (23)),[
Π(xk) AT

A 0

] [
xrk+1

λrk+1

]
=

[
0
b

]
. (30)

This system has the solution xrk+1 = −Π−1(xk)A
Tλrk+1, λ

r
k+1 = −(AΠ−1(xk)A

T )−1b, which

corresponds to (25). λrk+1 can be interpreted as an estimate for the Lagrange multiplier of

the Lagrangian (22).

With this background, we can now proceed to the development of convergent algorithms.

In subsection 4.3 we discuss the algorithm (27) applied to permutation invariant concave

diversity measures with domain restricted to the positive orthant. Conditions on the stepsize

parameter µk are given to ensure convergence of the algorithm. In subsection 4.4 we consider

permutation and sign invariant diversity measures. In this case the restriction to the positive

orthant can be removed, slightly relaxing the conditions on µk. The special case of sign and

permutation invariant concave diversity measures with positive definite scaling matrix Π(x)

is discussed in subsection 4.5. For this case, the simple choice of µk = 1 for the stepsize

parameter (resulting in the use of the simpler algorithm (25)) results in convergence over Rn.

4.3 Concave Diversity Minimization on the Positive Orthant

Assume that the diversity measure d(x) is permutation invariant and concave on the positive

orthant Q1 ⊂ Rn, and is otherwise arbitrary. Then from (6) and (19) we have

(y − xk)T∇d(xk) = α(xk)(y − xk)TΠ(xk)xk ≥ d(y)− d(xk) (31)

for all y, xk ∈ Q1, where α(xk) > 0. If y = xk+1 ∈ Q1 then (31) and condition (28) yield

xk+1 6= xk ⇒ d(xk+1) < d(xk) . (32)
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Iterating in this manner will result in convergence to a local minimum d(x∗), where x∗ ∈ Q1

satisfies the first order necessary condition (24).

Suppose that y = xk+1 ∈ Q1 with xk+1 determined by (27). Then (31) and condition

(28) yield

0 > xTkΠ(xk)(xk+1 − xk) = µkx
T
kΠ(xk)(x

r
k+1 − xk) ≥ d(xk+1)− d(xk) (33)

when xk+1 6= xk. To ensure that conditions (28) and (33) hold we choose µk such that

sgn(µk) = sgn[xTkΠ(xk)(xk − xrk+1)] and xk+1 = xk + µk(x
r
k+1 − xk) ∈ Q1 . (34)

Then the iterates xk will converge to yield a local minimum of d(x) over the convex set

LV (A, b)∩Q1. If d(x) is assumed strictly concave, the minimum is a boundary point of this

set yielding a sparse solution. The diagonal structure of the scaling matrix allows the sign

of µk to be determined using only order n operations.

4.4 General Concave Sparsity Minimization

The diversity measures considered in this paper are sign invariant. As a consequence, the

requirement of concavity over the positive orthant guarantees concavity over any fixed or-

thant of Rn. However, generally such a measure is not concave across orthants. Therefore,

because xk+1 generated by (25) may be in a different orthant from xk, we cannot guarantee

that at each iteration of (25) we can directly invoke the condition (6) to obtain the crucial

inequality (31) used in the proof of the previous subsection. However, we can still apply (6)

to d(·) viewed as a function of |xk| when d(·) is additionally assumed to be sign invariant.

This is what we now exploit to generalize the algorithm.

4.4.1 Preliminaries

The sign invariance and concavity properties of d(x) onQ1 are exploited to select the step size

in (27) and develop convergent algorithms. In order to do this, we establish a correspondence

between x in any quadrant and its corresponding absolute value vector x̄
∆
= |x| ∈ Q1 . Defining

the symmetric sign matrix, S(x), by

S(x)
∆
= diag (sgn(x[i])) , (35)

we note that x̄ = |x| = S(x)x, x = S(x)x̄ = S(x)|x|, S2(x) = I, S−1(x) = S(x), and

S(x)Π(x) = Π(x)S(x), assuming that Π(x) is diagonal.

Now note that
∂d(x)

∂x[i]
=
∂x̄[i]

∂x[i]

∂d(x̄)

∂x̄[i]
= sgn(x[i])

∂d(x̄)

∂x̄[i]
,
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and therefore,

α · 1

α
· ∂d(x)
∂x[i]

1

x[i]
= α · 1

α
· ∂d(x̄)
∂x̄[i]

1

x̄[i]
,

where α = α(x) = α(x̄) > 0 is chosen to simplify the quantities

πi(x)
∆
=

1

α

∂d(x)

∂x[i]

1

x[i]
=

1

α

∂d(x̄)

∂x̄[i]

1

x̄[i]
∆
=πi(x̄) . (36)

The diagonal scaling matrix of (19) is defined by Π(x) = diag(πi(x)). Note that

∇d(x) = S(x)∇x̄d(x̄) = α(x)Π(x)x

∇x̄d(x̄) = α(x̄)Π(x̄)x̄ = α(x)Π(x)x̄ (37)

α(x) = α(x̄) > 0

Π(x) = diag

(
1

α(x)|x[i]|
∂d(x)

∂|x[i]|

)
= diag

(
1

α(x̄)x̄[i]

∂d(x̄)

∂x̄[i]

)
= Π(x̄) .

4.4.2 A Convergent Algorithm

Assume that the permutation and sign invariant function d(x) = d(x̄), x̄ = |x|, is concave

over Q1. Then properties (6) and (37) yield the relationship

α(xk) x̄
T
kΠ(x̄k) (x̄k+1 − x̄k) = ∇x̄g(x̄k)

T (x̄k+1 − x̄k) (38)

≥ d(x̄k+1)− d(x̄k) = d(xk+1)− d(xk) ,

with x̄ = |x| and xk+1 given by (27). Note that the condition x̄TkΠ(x̄k)(x̄k+1 − x̄k) < 0 for

x̄k+1 6= x̄k is sufficient to guarantee convergence. To ensure that this occurs, we choose the

stepsize µk in (27) as follows:

µk := 1;

loop j ≥ 0

If x̄TkΠ(x̄k)(x̄k+1 − x̄k) < 0 , exit; (39)

If j even µk := −µk , else µk :=
µk
2

;

end;

This results in the sequence µk = 1,−1,−1
2
, 1

2
, 1

4
,−1

4
,−1

8
, 1

8
, · · ·. Note that for xk and xk+1 in

the same orthant (which eventually will be true once |µk| becomes small enough), we have

x̄TkΠ(x̄k) (x̄k+1 − x̄k) = xTkΠ(xk) (xk+1 − xk) .

Therefore, the loop (39) is guaranteed to terminate after a finite number of iterations as a

consequence of the discussion given above in Subsection 4.3. Note that, unlike the algorithm

in Subsection 4.3, we do not have to guarantee that xk and xk+1 are always in the same

orthant in order for the test (39) to make sense.
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4.4.3 Scale Invariant Measures

As discussed earlier, scale invariant measures must satisfy the property (20). Scale invariant

diversity measures presented in this paper include the 1- and 2-normalized Renyi Entropies

and S-functions. The 1-Norm Renyi Entropy and S-Functions have been shown to be Schur-

concave for p ≤ 1 and almost strictly concave for 0 < p < 1. They are not Schur-concave

(and hence not concave) for p > 1. The 2-Norm Renyi Entropy and S-Functions are almost

strictly concave (and hence Schur-concave) for p < 1
2
. They are not Schur-concave for p > 1

2
.

As a consequence of property (20), the test (39) can be slightly simplified to the require-

ment that

x̄TkΠ(x̄k)x̄k+1 < 0 , (40)

which will be true if x̄k+1 is not parallel to x̄k. If x̄k+1 is parallel to x̄k, then because of the

assumed scale invariance of d(x) the algorithm has converged. In this case, x̄TkΠ(x̄k)x̄k+1 = 0

and the algorithm terminates.

4.5 Concave Diversity Minimization, Π(x) > 0

In this subsection we add the additional constraint that a sign and permutation invariant

concave diversity measure d(x) now have a positive definite scaling matrix, Π(x) > 0 for

all x ∈ Rn. With this condition, we have our strongest results and can show that we can

remove the requirement that xk be constrained to a single orthant and the need to compute

a value for µk. Specifically, it is shown that the simple choice µk = 1, corresponding to the

algorithm (25), will yield a convergent algorithm.

Interestingly, this constraint does not appear to be overly restrictive and it admits the

important class of S-Functions described in Section 3.1. This is a large class of sparsity

measures which satisfy the conditions of Theorem 17 and also contains the p-norm-like,

p ≤ 1, concave sparsity measures. The general scaling matrix for this class, Πsig(x), is given

in Table 1. Note that Πsig(x) is positive definite for all x and has a well defined inverse

everywhere. Π−1
sig (x) is diagonal with the ith diagonal element given by

|x[i]|2−pj
(|p1|ω1 |x[i]|p1−pj + · · ·+ |pj|ωj + · · ·+ |pq|ωq |x[i]|pq−pj)

(41)

where pj = min(p1, · · · , pq).

Lemma 1 Given xk, Axk = b, let xk+1 be computed by (25), x̄k = S(xk)xk = |xk|, and

x̄k+1 = S(xk+1)xk+1 = |xk+1|. If Π(xk) = Π(x̄k) > 0, then

(x̄k+1 − x̄k)TΠ(x̄k)x̄k+1 ≤ 0 , (42)

with equality if xk+1 and xk are in the same orthant.
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Proof. Notice that xrk+1, and hence xk+1, is guaranteed to be feasible given feasibility of xk.

Furthermore,

(xrk+1)
TΠ(xk)x

r
k+1 = (xrk+1)

TΠ(xk)xk , (43)

which can be readily shown by substituting for xrk+1 from (26) [69]. If xk+1 and xk are

in the same orthant, we have S
∆
=S(xk+1) = S(xk). Recalling that S2 = I, then (x̄k+1 −

x̄k)
TS2Π(x̄k)x̄k+1 = (xk+1−xk)TΠ(xk)xk+1 = 0 from (43). To prove (42), note that Π(xk) =

diag(πi) is positive definite by assumption, so that πi > 0. We have

x̄Tk+1Π(x̄k)x̄k+1 = xTk+1Π(xk)xk+1 = xTk+1Π(xk)xk (from (43))

=
n∑
i=1

xk+1[i]πi xk[i] ≤
n∑
i=1

x̄k+1[i]πi x̄k[i] = x̄TkΠ(x̄k)x̄k+1 ,

from which the result (42) follows.

With Lemma 1 at hand we can now prove convergence of the algorithm (25).

Theorem 17 (Concave Convergence for Π(x) > 0) Let d(x) be a sign and permutation

invariant function that is strictly concave on the positive orthant Q1 and for which Π(x) > 0

for all x ∈ Rn. Assume that the set {x|d(x) ≤ d(x0)} is compact for all x0. Let xk be

generated by the iteration (25) starting with x0 feasible, Ax0 = b. Then for all x̄k+1 6= x̄k,

we have d(xk+1) < d(xk) and the algorithm converges to a local minimum d(x∗), xk → x∗,

where x∗ is a boundary point of Ql ∩ LV (A, b) for some orthant Ql.

Proof. Let x̄k+1 6= x̄k and Π = Π(xk) = Π(x̄k) > 0. Then

0 < (x̄k+1 − x̄k)TΠ(x̄k+1 − x̄k) = (x̄k+1 − x̄k)TΠx̄k+1 − (x̄k+1 − x̄k)TΠx̄k (44)

so that

(x̄k+1 − x̄k)TΠx̄k < (x̄k+1 − x̄k)TΠx̄k+1 ≤ 0 , (45)

where the last inequality follows from (42). Then for x̄k+1 6= x̄k, from (42), (45), and (37)

we have 0 ≥ α(x̄)(x̄k+1 − x̄k)
TΠx̄k+1 > α(x̄)(x̄k+1 − x̄k)

TΠx̄k = (x̄k+1 − x̄k)
T∇x̄d(x̄k) ≥

d(x̄k+1)− d(x̄k) = d(xk+1)− d(xk), where the last inequality follows from concavity of d(x̄)

on the positive orthant, x̄k ∈ Q1. Thus d(xk+1) < d(xk). It then follows from the general

convergence theorem [82, 8, 50] that xk converges to x∗ satisfying the necessary condition

(24) for d(x) to have a local minimum. Asymptotically, xk will eventually remain in one

quadrant as it converges to x∗. Since d(x) is strictly concave on the interior of any quadrant,

x∗ is a boundary point, and hence sparse, over some convex set Ql ∩ LV (A, b) for some

quadrant Ql.
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4.6 Discussion

Other functions can be proved to be minimized by the algorithm (27), with convergence

generally being shown on a case-by-case basis. For example, it is proved in [69] that the

2-normalized Shannon entropy–based algorithm is convergent. As discussed earlier, the

2-normalized Shannon entropy diversity measure corresponds to the 2-normalized Renyi

entropy for p = 1, which is not concave or Schur-concave, and therefore is not expected to

result in a minimum associated with complete sparsity; a fact that has been demonstrated

in simulation [69]. The lack of concavity requires a convergence proof via different means

than the use of (6).

The requirement of the invertibility of Π(x) in (25) or (27) appears to give good reason to

prefer the non-scale invariant measures provided by the class of (unnormalized) S-functions

over the 1-norm and 2-normalized scale invariant S-functions (which effectively include the

normalized Renyi entropies). In particular, the very tractable form of the scaling matrices

for S-functions allows them to be readily inverted, as shown by (41). Significantly more care

is needed when dealing with the generically invertible scaling matrices for the normalized

S-functions.

The fact that the some of the diversity measures described in this paper are almost strictly

concave, rather than strictly concave does not usually cause any practical difficulty for n

reasonably large. Generically, convergence generally proceeds as if the measures are in fact

strictly concave. Every step size taken by the algorithm causes a strict descent in the (n−1)

directions along which the diversity measure is concave while in all directions Schur-concavity

ensures that the Lorentz order is preserved. Example case studies of the effectiveness of the

proposed algorithm in obtaining sparse solutions can be found in references [1, 69, 36, 37].

Optimal subset selection is a problem that (in principle) can be solved by exhaustive

search. Of course this direct approach quickly (as a function of the number of dictionary

vectors) becomes computationally infeasible, and computationally tractable suboptimal pro-

cedures, such as the methods proposed in this paper, must be utilized [25, 56, 34, 19, 52, 27,

17, 81, 61, 78, 1, 39, 37]. The suboptimal methods generally give acceptably sparse solutions

with no guarantee of global optimality. A comparison of some of these methods can be found

in [1].

Interestingly, in [1] a simple modification to our sparse-basis selection procedure is given

which guarantees with probability approaching 1 that a true global optimum to the sparse

basis selection problem will be found provided that a sufficiently sparse solution exists and a

certain technical condition holds on the dictionary vectors (equivalently, the columns of A).

This fact leads us to conjecture that simple stochastic, annealing-like modifications to our
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algorithm should improve the optimality of the solution in more general settings.

5 CONCLUSIONS

The concept of majorization as a preordering on vectors, one which orders vectors according

to their degree of concentration or diversity (a concept also captured by the equivalent con-

cept of the Lorentz order), was presented and we discussed how the majorization-consistent

property of Schur-concavity is a desirable condition for a functional measure of diversity

to have. Such functions are necessarily permutation invariant on the domain of definition.

We then argued that the subclass of sign invariant concave functions are especially good

measures of diversity and that their minimization generally results in a good solution to the

sparse basis selection problem. Tests for determining the concavity or Schur-concavity of a

candidate diversity measure were given. We also discussed a relaxation of the property of

concavity of a diversity measure to the newly defined and slightly weaker property of “almost

concavity.” Almost concave functions are Schur-concave, and therefore respect the Lorentz

order, and locally concave in every direction but one.

Candidate diversity measures were analyzed from the perspective of majorization, Schur-

concavity, concavity, and almost concavity. We examined the class of p-norm-like measures,

including the special cases where the vectors are first normalized in the 1-norm and in the 2-

norm sense. We also looked at the Gaussian entropy (discussing its equivalence to the p = 0

p-norm-like measure) and the Shannon entropy as measures of diversity. We then investigated

the class of Renyi entropies and showed that this class contains both the p-norm-like and

Shannon entropy and therefore that all of these measures are intimately related. We also

developed and analyzed the large class of signomial diversity measures, and showed that

they can reasonably be interpreted as a generalization of the Renyi entropy measures (and

hence of the p-norm-like, Gaussian entropy, and Shannon Entropy). Finally, we developed

an iterative optimization algorithm that is shown to converge to a local minimum of an

appropriately chosen diversity measure and thereby provide a sparse solution to the best

basis selection problem.

In the development of the basis selection algorithm, it was shown that associated with

each of the diversity measures considered in this paper is a corresponding diagonal scaling

matrix, Π(x). The scaling matrix is defined by a particular factorization of the gradient of

the diversity measure. When the scaling matrix is positive definite, the iterative algorithm

developed in this paper can be interpreted as an Affine Scaling Transformation (AST)-based

algorithm, with an AST, W (x)
∆
=Π−

1
2 (x), uniquely defined by the particular choice of the

diversity measure d(x). This is in contrast to the general AST methodology where a choice
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of an AST is taken independently of the objective function to be minimized. More generally,

our algorithm is applicable even in the case of a non-positive definite scaling matrix, which

is an additional generalization relative to the standard AST methodology. However, the

strongest convergence results hold for the case of diversity measures with positive definite

scaling matrices. Simulations and case studies showing the convergence behavior of the

proposed algorithm can be found in [36, 1, 69, 37].

As discussed in this paper, diversity measures drawn from the class of “S-functions”

appear to be particularly well-behaved; they are a large set of separable, concave diversity

measures with positive definite, and readily invertible, scaling matrices. Certainly, many

questions naturally arise and remain to be answered regarding the properties of this class.

For instance, a natural line of inquiry would be to determine the extent to which the param-

eters defining a diversity function chosen from this class can be optimized for a particular

application. It is also interesting to ask whether general separable, concave functions can be

approximated arbitrarily well within the class of S-functions, or it extension to the set of

symmetric sums of multinomial–like terms [53]—unfortunately, unlike working with general

signomials [20], one cannot invoke the Stone-Weierstrass theorem [3] to claim that the subset

of S-functions are dense in the space of continuous functions (because the S-functions do

not form a subalgebra). Another interesting question (touched upon briefly in Section 4.6)

is whether stochastic modifications of the basic algorithm can improve the quality of the so-

lution found, similarly to the provably optimal extension presented in [1]. Much additional

research will be required to obtain definitive answers to these and other related questions.
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APPENDIX

In this appendix we derive the forms of the Hessians H(1)
p (x) and H(2)

p (x), given by equations

(9) and (10), and prove Theorems 14, 15, and 16. We also discuss the derivations of the

scaling matrices given in Table 1.

Derivation of the Hessian H(1)
p (x), Equation (9). Note that

x̃ =
|x|
‖x‖1

⇒ ∂φ(x̃)

∂x[i]
=

sgn(x[i])

‖x‖1

(
∂φ(x̃)

∂x̃[i]
−
∑
k

x̃[k]
∂φ(x̃)

∂x̃[k]

)
. (46)

This follows from the chain rule,

∂φ(x̃)

∂x[i]
=
∑
k

∂φ(x̃)

∂x̃[k]

∂x̃[k]

∂x[i]
,

and the fact that

x̃ =
|x|
‖x‖1

⇒ ∂x̃[k]

∂x[i]
=

sgn(x[i])

‖x‖1
(δk,i − x̃[k]) . (47)

Now apply identity (46) to the function

d(1)
p (x) = dp(x̃) = sgn(p)

∑
i

x̃[i]p .

This results in
∂d(1)

p (x)

∂x[i]
=
∂dp(x̃)

∂x[i]
=
|p| sgn(x[i])

‖x‖1
(
x̃[i]p−1 − |dp(x̃)|

)
. (48)

Differentiating (48) with respect to x[j] then yields the (i, j)-th element of the Hessian

H(1)
p (x),

∂2d(1)
p (x)

∂x[i]∂x[j]
=

∂2dp(x̃)

∂x[i]∂x[j]
(49)

= −|p| sgn(x[i]x[j])

‖x‖21
{
p x̃[i]p−1 + p x̃[j]p−1 + (1− p)x̃[i]p−2δi,j − (1 + p) |dp(x̃)|

}
.

On the positive orthant, Q1, sgn(x[i]) = 1, i = 1, · · ·n, in equation (49) and the Hessian

can be written as

H(1)
p (x) = − |p|‖x‖21

p
n∑
i=1

ei1
T

x̃[i]1−p
+ p

n∑
j=1

1eTj
x̃[i]1−p

+ (1− p)
n∑
i=1

eie
T
i

x̃[i]2−p
− (1 + p)11T

n∑
i=1

x̃[i]p

 ,

(50)

which is just equation (9). Note that the (i, j)-th element of the general Hessian (49)

differs from the same element of the positive orthant Hessian (50) only by the sign factor

sgn(x[i]x[j]). This means that generally, for any x ∈ Rn, we have

H(1)
p (x) = diag[sign(x)] · H(1)

p (|x|) · diag[sign(x)]T , (51)
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where H(1)
p (|x|) can be determined from (50) since |x| ∈ Q1. Equation (51) shows that if

H(1)
p (x) is positive definite on the interior of the positive orthant then it is positive definite

on the interior of any orthant (and vice versa).

Derivation of the Hessian H(2)
p (x), Equation (10). Note that

x̃ =
x2

‖x‖22
⇒ ∂x̃[k]

∂x[i]
= 2

x[i]

‖x‖22
(δk,i − x̃[k]) . (52)

From (52) and the chain rule, we find

x̃ =
x2

‖x‖22
⇒ ∂φ(x̃)

∂x[i]
= 2

x[i]

‖x‖22

(
∂φ(x̃)

∂x̃[i]
−
∑
k

x̃[k]
∂φ(x̃)

∂x̃[k]

)
. (53)

Thus, with x̃ = x2/‖x‖22, we obtain

∂d(2)
p (x)

∂x[i]
=
∂dp(x̃)

∂x[i]
= 2
|p|x[i]
‖x‖22

(
x̃[i]p−1 − |dp(x̃)|

)
. (54)

Differentiating (54) with respect to x[j] yields the (i, j)-th element of the HessianH(2)
p (x),

∂2d(2)
p (x)

∂x[i]∂x[j]
=

∂2dp(x̃)

∂x[i]∂x[j]

=
2 |p|
‖x‖22

{
δi,j

[
(2p− 1)x̃[i]p−1 − |d(2)

p (x)|
]

(55)

−2(x̃[i] x̃[j])
1
2

[
px̃[i]p−1 + px̃[j]p−1 − |d(2)

p (x)|
]}

=
2 |p|
‖x‖22

(Ai,j + Bi,j + Ci,j) ,

where

Ai,j = δi,j
[
(2p− 1)x̃[i]p−1 − |d(2)

p (x)|
]

; (56)

Bi,j = −2(x̃[i] x̃[j])
1
2

(
px̃[i]p−1 + px̃[j]p−1

)
; (57)

Ci,j = 2(x̃[i] x̃[j])
1
2 |d(2)

p (x)| ; (58)

With Ai,j, Bi,j, and Ci,j the (i, j)− th component of matrices A, B, and C respectively, we

have

H(2)
p (x) =

2 |p|
‖x‖22

(A + B + C) , (59)

where

A = − 2 |p|
‖x‖22

n∑
i=1

(
1− 2p

x̃[i]1−p
+ |d(2)

p (x)|
)

eie
T
i ; (60)

C = 2|d(2)
p | (1 + p) x̃

1
2 x̃

T
2 = 2

n∑
i=1

x̃[i]p (1 + p) x̃
1
2 x̃

T
2 ; (61)

32



     

and

B = −2p
n∑

i,j=1

(
x̃[i]p−

1
2eie

T
j x̃[j]

1
2 + x̃[i]

1
2eie

T
j x̃[j]

p− 1
2

)

= −2p
n∑
i=1

1

x̃[i]
1
2
−p

(
eix̃

T
2 + x̃

1
2eTi

)
. (62)

Equations (59)–(62) taken together yield the desired result, Equation (10).

Proof of Theorem 14. We can readily show that for each x in the interior of Q1,

yTH(1)
p (x)y ≤ 0 for all nonzero y in the (n − 1) dimensional subspace of Rn orthogonal

to the direction 1, so that the Schur-concave function d
(1)
sig (x) is almost concave in the sense

of Definition 6. Indeed, for any nonzero y = z, z ⊥ 1, we have for p < 1,

zTH(1)
p (x)z = −|p|(1− p)‖x‖21

n∑
i=1

(zi)
2

x̃[i]2−p
< 0 , (63)

and zTH(1)
p (x)z = 0 if p = 1. The Hessian of d

(1)
sig (x) is a sum of Hessians with this property.

Therefore d
(1)
sig (x) is almost strictly concave for at least one pj < 1 and is otherwise almost

concave.

Of course, the most desirable situation would be if d
(1)
sig (x) were concave. This is not,

however, the case, and the remainder of the proof is concerned with demonstrating this fact.

Let y = 1 ⊥ z, then

1TH(1)
p (x)1 = − |p|‖x‖21

f(x̃) where, (64)

f(x̃) =
n∑
i=1

{
2n p x̃[i]p−1 + (1− p) x̃[i]p−2 − (1 + p)n2 x̃[i]p

}
.

It is straightforward to show that the Hessian of f(x̃), taken with respect to x̃, is positive

definite for all x̃ when 0 < p < 1. In this case, the unique minimum of f(x̃) subject to the

constraint that
∑
i x̃[i] = 1 can be shown via the methods of Lagrange multipliers [60] to

occur for x̃[i] = n−1, i = 1, · · · , n, and yields the value zero. Thus 1TH(1)
p (x)1 ≤ 0 for all

x ∈ Q1. Furthermore, 1TH(1)
p (x)1 = 0 only if x is precisely along the line through 1, x ∝ 1,

which defines a set of measure zero in Q1. For p < 0, there are values of x̃ for which f(x̃)

becomes negative. (E.g., take p = −ε, ε > 0 small, and x̃→ ei any i = 1, · · · , n.) Obviously

we do not have concavity for p < 0, but we still do not have a definitive answer for 0 < p < 1.

Since for 0 < p < 1, H(1)
p (x) is concave along the direction 1 and on the subspace 1⊥,

it can only cease to be concave along a direction oblique to both 1 and 1⊥. Thus, most

33



     

generally we take y to be of the form y = 1 + z, z ⊥ 1 8. Note that z → 0 returns the case

y = 1, while ‖z‖ → ∞ yields y = z, corresponding to the two cases considered above. Also

note that

y = 1 + z ⇒ yi = 1 + zi , 1T z =
∑
i

zi = 0 and
∑
i

yi = n . (65)

With this choice of y we have

yTH(1)
p (x)y = − |p|‖x‖21

g(x̃, y) , (66)

g(x̃, y) =
n∑
i=1

{
(1− p) x̃[i]p−2y2

i + 2n p x̃[i]p−1yi − (1 + p)n2 x̃[i]p
}
.

Note that f(x̃) of (64) and g(x̃, y) of (66) are related by

f(x̃) = g(x̃,1) . (67)

Also note that yTH(1)
p (x)y = yTH(1)

p (x̃)y ≤ 0 (respectively, yTH(1)
p (x)y < 0) for all x and y

if and only if g(x̃, y) ≥ 0 (respectively, g(x̃, y) > 0) for all x̃ and y. Thus if it can be shown

that g(x̃, y) < 0 for some y, then H(1)
p (x) is not positive definite and d

(1)
sig (x) is not concave

on Q1 along some direction that is oblique to both 1 and the space orthogonal to 1, 1⊥. We

will determine the precise situation that holds by computing the minimum admissible value

of g(x̃, y) for any fixed value of x̃ in the interior of Q1.

To solve the problem,

min
y
g(x̃, y) subject to

n∑
i=1

yi = n , (68)

we will apply the method of Lagrange multipliers. It is readily ascertained via the Hessian

test that g(x̃, y) is strictly convex in y for x̃ in the interior of Q1 and therefore problem (68)

has a unique solution. This solution is a stationary point of the Lagrangian,

L = g(x̃, y) + 2λ

(
n−

n∑
i=1

yi

)
, (69)

where the factor “2” has been added for convenience. The stationarity condition results in

the n+ 1 equations

(1− p)x̃[i]p−2yi + npx̃[i]p−1 − λ = 0 , (70)

for i = 1, · · · , n and
n∑
i=1

yi = n . (71)

Note that (70) is equivalent to

(1− p)yi + n px̃[i]− λx̃[i]2−p = 0 . (72)

8The overall scaling of y does not affect the proof.
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Summing (72) over i and using (71) and the fact that
∑
i x̃[i] = 1, results in

λopt =
n∑n

i=1 x̃[i]
2−p . (73)

Substitution of (73) into (72) yields the worst case solution,

yopt,i =
λoptx̃[i]

2−p − npx̃[i]
(1− p) =

n

(1− p)

(
x̃[i]2−p∑n
i=1 x̃[i]

2−p − p x̃[i]
)
. (74)

Rather than determine the minimum value of g(x̃, y) directly from (74), note that mul-

tiplication of (70) by yi followed by a summation over i gives the necessary conditions,

0 =
n∑
i=1

{
(1− p)x̃[i]p−2y2

i + n p x̃[i]p−1yi
}
− nλ ,

0 =
n∑
i=1

{
(1− p)x̃[i]p−2y2

i + 2npx̃[i]p−1yi
}
− n p

n∑
i=1

x̃[i]p−1yi − nλ ,

0 = g(x̃, y) + (1 + p)n2|d(1)
p (x)| − n p

n∑
i=1

x̃[i]p−1yi − nλ ,

or

g(x̃, y) = nλ+ n p
n∑
i=1

x̃[i]p−1 yi − (1 + p)n2 |d(1)
p (x)| . (75)

Evaluating (75) at λopt and yopt, and using the relationship (74) results in,

g(x̃, yopt) =
n

(1− p)
(
λopt − n |d(1)

p (x)|
)

=
n2

(1− p)

(
1∑n

i=1 x̃[i]
2−p − |d

(1)
p (x)|

)

=
n2

(1− p)

(
1∑n

i=1 x̃[i]
2−p −

n∑
i=1

x̃[i]p
)
,

=
n2

(1− p)

(
1−

n∑
i=1

x̃[i]p ·
n∑
i=1

x̃[i]2−p
)
·
n∑
i=1

x̃[i]2−p . (76)

Thus g(x̃, y) ≥ 0 for all nonzero x and for all y, and hence H(1)
p (x) is negative semidefinite

for all nonzero x if and only if,

1 ≥
n∑
i=1

x̃[i]p ·
n∑
i=1

x̃[i]2−p . (77)

On the other hand, as a simple consequence of the Cauchy-Schwartz inequality we have

n∑
i=1

x̃[i]p ·
n∑
i=1

x̃[i]2−p ≥
(

n∑
i=1

x̃[i]
p
2 · x̃[i] 2−p

2

)2

=

(
n∑
i=1

x̃[i]

)2

= 1 . (78)

Equations (77) and (78) indicate that H(1)
p (x) will be negative semidefinite for all nonzero x

if and only if,
n∑
i=1

x̃[i]p ·
n∑
i=1

x̃[i]2−p ≡ 1 . (79)
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This condition corresponds to equality in (78), which will occur if and only if the vectors

(x̃
p
2 [1], · · · x̃ p2 [n]) and (x̃

2−p
2 [1], · · · x̃ 2−p

2 [n]) are parallel [49]. It is readily shown that equality

holds whenever x̃ has m zero entries with the remaining n−m entries equal to the constant

value 1
(n−m)

for m = 0, · · ·n − 1. Generally, however, equality does not hold, and there is

one direction, oblique to both the direction 1 and the (n− 1)-dimensional subspace 1⊥, for

which concavity of d(1)
p (x) is lost. Thus d(1)

p (x) is almost concave, but not concave, on Q1.

It is a straightforward application of L’hôpital’s rule to show that

lim
p→1−

1

(1− p)

(
1−

n∑
i=1

x̃[i]p ·
n∑
i=1

x̃[i]2−p
)

= −H(1)
S (x) . (80)

Thus in the limit we have,

p→ 1− ⇒ g(x̃, yopt) = −n2H
(1)
S (x) ≤ 0 . (81)

Note that H
(1)
S (x) = H

(1)
S (x̃) is equal to zero when x̃ has m zero entries with the remaining

n−m entries equal to 1
(n−m)

for m = 0, · · ·n−1. In general, however, we have −H(1)
S (x) < 0.

Proof of Theorem 15. Because d
(2)
sig (x) =

∑n
j=1 d

(2)
pj

(x), it is enough to show that the

theorem is true for the simpler case of d
(2)
sig (x) = d(2)

p (x). Earlier in the appendix it was

shown that

∂

∂x[i]
d(2)
p (x) =

2|p|
‖x‖22

x[i]
(
x̃[i]p−1 − |d(2)

p (x)|
)
, x̃ = |x|2/‖x‖22 . (82)

Set d(x) = d(2)
p (x) for convenience. Let x[i] > x[j], so that x[i] = x[j] + ∆, ∆ > 0, and

note that x[i] and x[j] must both be positive for x ∈ Q1. From (4), d(x) is Schur-concave iff
∂d(x)
∂x[i]
− ∂d(x)

∂x[j]
≤ 0. Note that

∂d(x)

∂x[i]
− ∂d(x)

∂x[j]
∝ x[i]

(
x̃[i]p−1 − |d(x)|

)
− x[j]

(
x̃[j]p−1 − |d(x)|

)
(83)

= −|d(x)|(x[i]− x[j]) +
(
x[i] x̃[i]p−1 − x[j] x̃[j]p−1

)
= T1 + T2 ,

where T1 = −|d(x)|(x[i] − x[j]) = −|d(x)|∆ < 0. The function d(x) is Schur-concave iff

T1 + T2 ≤ 0. Expanding the term T2, we have

T2 =
x[i]

x̃[i]p−1
− x[j]

x̃[j]p−1
=

x[j] + ∆(
x[j]+∆
‖x‖2

)2(1−p) −
x[j](

x[j]
‖x‖2

)2(1−p)

=
x[j]

x̃[j]1−p


(

1 +
∆

x[j]

)2p−1

− 1

 =
x[j]

x̃[j]1−p

 1(
1 + ∆

x[j]

)1−2p − 1

 .
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For p ≤ 1
2
, T2 ≤ 0, and d(x) is Schur-concave. For p > 1

2
, note that T2 > 0. For p > 1

2
, d(x) =∑n

i=1 x̃[i]
p = d(x̃) can be shown via the Hessian test to be strictly concave and therefore the

problem maxx̃ d(x̃) subject to
∑
i x̃[i] = 1 has a unique solution, which can be shown from

the method of Lagrange multipliers to be given by x̃[i]opt = n−1, i = 1, · · · , n, yielding a

maximum value of d(x̃opt) = n1−p. Thus T1 Is bounded from below by T1 ≥ −n1−p∆. Assume

fixed values of x[i] and x[j], and note that ∆ = x[i] − x[j] is then constant. Assume that

n > 2, then there exists a component x[k] other than x[i] and x[j]. By letting x[k]→∞, we

have ‖x‖2 → ∞ so that x̃[j]p−1 = ‖x‖2(1−p)2 x[j]2(p−1) → ∞ for p > 1
2
. Thus T2 can be made

to dominate n1−p∆ so that T1 + T2 > 0, in which case d(x) cannot be Schur-concave.

Proof of Theorem 16. The proof is very similar to that of Theorem 14. Let y = z 6= 0

be any direction orthogonal to x̃
1
2 , z ⊥ x̃

1
2 . Then, x̃

T
2 z = zT x̃

1
2 = 0 and

zTH(2)
p (x)z = − 2|p|

‖x‖22

n∑
i=1

{
1− 2p

x̃[i]1−p
+ |d(2)

p (x)|
}
z2
i < 0 , (84)

for all p ≤ 1
2
. This shows that H(2)

p (x) is negative definite and therefore d
(2)
sig (x) is locally

strictly concave at the point x along any direction perpendicular to x̃
1
2 for p ≤ 1

2
. Thus

d
(2)
sig (x) is almost strictly concave according to Definition 6 for p ≤ 1

2
. However, we will show

that d
(2)
sig (x), p ≤ 1

2
, is not concave.

Noting that

x̃
T
2 x̃

1
2 =

∑
i

x̃[i] = 1 , (85)

it is readily shown that

x̃
T
2H(2)

p (x)x̃
1
2 = 0 . (86)

Thus H(2)
p (x) is negative semidefinite and d

(2)
sig (x) is concave (but not strictly concave) along

the direction y = x̃
1
2 . It is evident that concavity can only be lost on a direction oblique to

both the direction x̃
1
2 and the subspace (x̃

1
2 )⊥.

Most generally, we let

y = x̃
1
2 + z where zT x̃

1
2 =

n∑
i=1

zix̃
1
2 [i] = 0 . (87)

Utilizing (86), (84), and (87) we have

yTH(2)
p (x)y = 2x̃

T
2H(2)

p (x)z − 2|p|
‖x‖22

n∑
i=1

{
1− 2p

x̃[i]1−p
+ |d(2)

p (x)|
}
z2
i

= − 4|p|
‖x‖22

n∑
i=1

{
1− 2p

x̃[i]1−p
+ |d(2)

p (x)|
}
zix̃

1
2 [i]− 2|p|

‖x‖22

n∑
i=1

{
1− 2p

x̃[i]1−p
+ |d(2)

p (x)|
}
z2
i
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= − 2|p|
‖x‖22

n∑
i=1

[(
(1− 2p)x̃[i]p−1 + |d(2)

p (x)|
)
z2
i + 2(1− p)x̃[i]p−1x̃

1
2 zi
]

= − 2|p|
‖x‖22

g(x̃, z) , where

g(x̃, z) =
n∑
i=1

[(
(1− 2p)x̃[i]p−1 + |d(2)

p (x)|
)
z2
i + 2(1− p)x̃[i]p−1x̃

1
2 zi
]
. (88)

If it can be shown that g(x̃, z) ≥ 0 for all z, then the Hessian is negative definite and d
(2)
sig (x)

is concave on Q1. On the other hand if it can be shown that g(x̃, z) < 0 for some z, then

H(2)
p (x) is not positive definite and d

(2)
sig (x) is not concave on Q1. We will determine the

precise situation that holds by computing the minimum admissible value of g(x̃, z) for any

fixed value of x̃ in the interior of Q1.

To solve the problem,

min
z
g(x̃, z) subject to

n∑
i=1

zix̃
1
2 [i] = 0 , (89)

we will apply the method of Lagrange multipliers. It is readily ascertained via the Hessian

test that g(x̃, z) is strictly convex in z for x̃ in the interior of Q1 and therefore problem (89)

has a unique solution. This solution is a stationary point of the Lagrangian,

L = g(x̃, z)− λ
n∑
i=1

zix̃
1
2 [i] . (90)

The stationarity condition results in the n+ 1 equations

2
(
(1− 2p)x̃[i]p−1 + |d(2)

p (x)|
)
zi + 2(1− p)x̃[i]p−1x̃

1
2 − λx̃ 1

2 [i] = 0 , (91)

for i = 1, · · · , n and
n∑
i=1

zix̃
1
2 [i] = 0 , (92)

which can be used to solve for z ∈ Rn and λ ∈ R. Rather than do this, however, we can

directly solve for the optimal value of g(x̃, z) by multiplying (91) by zi, summing over i, and

applying condition (92). This yields the condition,

n∑
i=1

[
2
(
(1− 2p)x̃[i]p−1 + |d(2)

p (x)|
)
z2
opt,i + 2(1− p)x̃[i]p−1x̃

1
2 zopt,i

]
= 0 . (93)

A comparison of (88) and (93) shows that the optimal value, g(x̃, zopt), of g(x̃, z) is given by

g(x̃, zopt) = −
n∑
i=1

(
(1− 2p)x̃[i]p−1 + |d(2)

p (x)|
)
z2
opt,i . (94)

It is readily determined from the conditions (91) that zopt must be nonzero in general, and

therefore g(x̃, zopt) < 0. Thus the Hessian is not negative semidefinite and d
(2)
sig (x) is not

concave on the interior of Q1.
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Note that a relationship between λopt and zopt can be found by multiplying (91) by x̃
1
2 [i],

summing over i, and applying conditions (85) and (92). This yields,

λopt = 2(1− 2p)

{
|d(2)
p (x)|+

n∑
i=1

x̃[i]p−1x̃
1
2 zopt,i

}
. (95)

Finally, note that (91) and (95) can be combined to determine the worst case values zopt,i,

i = 1, · · · , n.

Derivation of the Scaling Matrices of Table 1. In Table 1 notice that the expres-

sions for Πsig(x), Π
(1)
sig (x), and Π

(2)
sig (x) directly follow from the definitions of dsig(x), d

(1)
sig(x),

and d
(2)
sig(x) respectively. Also note that the indefiniteness of the scaling matrices Π(1)

p (x),

Π(2)
p (x), Π

(1)
sig (x), Π

(2)
sig (x), Π

(1)
S (x), and Π

(2)
S (x) (which can be verified directly) follow from

the scale invariance of their corresponding diversity measures, as discussed in Section 4.1.

The expressions for the scaling matrices of H(1)
p and H(2)

p follow from the definitions (15)

and (17) and the chain rule of differentiation.

The derivations of Πp(x) and ΠG(x) from the definition (19) are straightforward. The

expression for Π(1)
p (x) follows from (19) and the identity (48), while that for Π(2)

p (x) follows

from (19) and the identity (54). The expressions for Π
(1)
S (x), and Π

(2)
S (x) follow from the

definition (13), with the appropriate definition for x̃, and the use of the identities (48) and

(54) respectively.
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TABLE 1

DIVERSITY MEASURE SCALING MATRIX

Type Concave Scale Expression Positive
Invariant Semidefinite

dp(x) for p ≤ 1 No Πp(x) = diag
(

1
|x[i]|2−p

)
Yes

d(1)
p (x) for p ≤ 1 Yes Π(1)

p (x) = diag
(

1−|d(1)p (x)| x̃[i]1−p
x̃[i]2−p

)
, x̃ = |x|

‖x‖1 No

d(2)
p (x) for p ≤ 1

2
Yes Π(2)

p (x) = diag
(

1−|d(2)p (x)| x̃[i]1−p
x̃[i]1−p

)
, x̃ = |x|2

‖x‖22
No

dsig(x) for pj ≤ 1 No Πsig(x) =
∑
j |pj| ωj Πpj(x) Yes

d
(1)
sig(x) for pj ≤ 1 Yes Π

(1)
sig (x) =

∑
j |pj| ωj Π(1)

pj
(x) No

d
(2)
sig(x) for pj ≤ 1 Yes Π

(2)
sig (x) =

∑
j |pj| ωj Π(2)

pj
(x) No

HG(x) Yes No ΠG(x) = diag
(

1
|x[i]|2

)
Yes

H
(1)
S for p ≤ 1 Yes Π

(1)
S (x) = diag

{
− 1
|x̃[i]|

(
H

(1)
S (x) + log x̃[i]

)}
No

H
(2)
S for p ≤ 1

2
Yes Π

(2)
S (x) = diag

(
−H(2)

S − log x̃[i]
)
, x̃ = |x|2

‖x‖22
No

H(1)
p for p ≤ 1 Yes Π(1)

p (x) No

H(2)
p for p ≤ 1

2
Yes Π(2)

p (x) No
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