Lecture 8 – ECE 275A

Moore-Penrose Conditions & SVD
Four Moore-Penrose Pseudoinverse Conditions

MOORE-PENROSE THEOREM

Consider a linear operator $A : \mathcal{X} \to \mathcal{Y}$.

A linear operator $M : \mathcal{Y} \to \mathcal{X}$ is the unique pseudoinverse of A, $M = A^+$, if and only if it satisfies the

Four Moore-Penrose Conditions:

1. $(AM)^* = AM$
2. $(MA)^* = MA$
3. $AMA = A$
4. $MAM = M$

More simply we usually say that A^+ is the unique p-inv of A iff

1. $(AA^+)^* = AA^+$
2. $(A^+A)^* = A^+A$
3. $AA^+A = A$
4. $A^+AA^+ = A^+$

- The theorem statement provides greater clarity because there we distinguish between a *candidate* p-inv M and the *true* p-inv A^+.
- If and only if the candidate p-inv M satisfies the four M-P conditions can we claim that indeed $A^+ = M$.
Proof of the M-P Theorem

First we reprise some basic facts that are consequences of the definitional properties of the pseudoinverse.

FACT 1: \(\mathcal{N}(A^+) = \mathcal{N}(A^*) \)

FACT 2: \(\mathcal{R}(A^+) = \mathcal{R}(A^*) \)

FACT 3: \(P_{\mathcal{R}(A)} = AA^+ \)

FACT 4: \(P_{\mathcal{R}(A^*)} = A^+A \)

We now proceed to prove two auxiliary theorems (Theorems A and B).
Proof of the M-P Theorem – Cont.

THEOREM A

Let $C : X \rightarrow Y$ and $B : Y \rightarrow Z$ be linear mappings. It is readily shown that the composite mapping $BC : X \rightarrow Z$ is a linear mapping where BC is defined by

$$(BC)x \triangleq B(Cx) \quad \forall x \in X$$

Then

$$\mathcal{N}(B) \cap \mathcal{R}(C) = \{0\} \quad \Rightarrow \quad BC = 0 \text{ iff } C = 0$$

Proof

$$BC = 0 \iff (BC)x = 0 \quad \forall x \quad \text{(definition of zero operator)}$$

$$\iff B(Cx) = 0 \quad \forall x \quad \text{(definition of composition)}$$

$$\iff Cx = 0 \quad \forall x \quad \text{(because } Cx \in \mathcal{R}(C) \cap \mathcal{N}(B) = \{0\}, \ \forall x)$$

$$\iff C = 0 \quad \text{(definition of zero operator)}$$

QED
Theorem B covers the uniqueness part of the M-P Theorem.

THEOREM B. The pseudoinverse of A is unique. □

Proof. Suppose that A^+ and M are both p-inv's of A. Then Fact 3 gives

\[P_{\mathcal{R}(A)} = AA^+ = AM \]

or

\[A(A^+ - M) = 0 \]

From Fact 2, $\mathcal{R}(A^*) = \mathcal{R}(A^+) = \mathcal{R}(M)$ and as a consequence

\[\mathcal{R}(A^+ - M) \subseteq \mathcal{R}(A^*) \]

But $\mathcal{R}(A^*) \perp \mathcal{N}(A)$ and therefore

\[\mathcal{R}(A^+ - M) \subseteq \mathcal{R}(A^*) = \mathcal{N}(A)^\perp \]

so that

\[\mathcal{N}(A) \cap \mathcal{R}(A^+ - M) = \{0\} \]

Therefore from Theorem A,

\[A^+ - M = 0 \Rightarrow A^+ = M \]

QED
Proof of the M-P Theorem – Cont.

Necessity (‘only if’ part) of the M-P Conditions. Assume that $M = A^+$.

Necessity of M-P Conditions I & II. Easy consequences of Facts 3 and 4.

Necessity of M-P Condition III. Note that Fact 4 and indempotency of a projection operator implies $(A^+ A)(A^+ A) = A^+ A$, or

$$A^+ \ (AA^+ A - A) = AC = 0$$

$$\triangleq C = A(A^+ A - I)$$

We have $\mathcal{N}(A^+) = \mathcal{N}(A^*)$ (Fact 1) and $\mathcal{R}(C) \subset \mathcal{R}(A) = \mathcal{N}(A^*)^\perp$. Therefore $\mathcal{N}(A^+) \cap \mathcal{R}(C) = \mathcal{N}(A^*) \cap \mathcal{R}(C) = \{0\}$ so that by Theorem A, $C = 0$.

Necessity of M-P Condition IV. Note that Fact 3 and indempotency of a projection operator implies $(AA^+)(AA^+) = AA^+$, or

$$A \ (A^+ AA^+ - A^+) = AC = 0$$

$$\triangleq C = A^+ (AA^+ - I)$$

With $\mathcal{R}(A^+) = \mathcal{R}(A^*)$ (Fact 2) we have $\mathcal{R}(C) \subset \mathcal{R}(A^+) = \mathcal{R}(A^*) = \mathcal{N}(A)^\perp$. Therefore $\mathcal{N}(A) \cap \mathcal{R}(C) = \{0\}$ so that by Theorem A, $C = 0$.
Proof of the M-P Theorem – Cont.

Sufficiency (‘if’ part) of the M-P Conditions.

Here we assume that \(M \) satisfies all four of the M-P conditions and then show as a consequence that \(M = A^+ \).

We do this using the following steps.

1. First prove that \(P_{R(A)} = AM \) (proving that \(AM = AA^+ \) via uniqueness of projection operators).

2. Prove that \(P_{R(A^*)} = MA \) (proving that \(MA = A^+ A \)).

3. Finally, prove that as a consequence of (1) and (2), \(M = A^+ \).
Proof of the M-P Theorem – Cont.

Sufficiency – Cont.

Step (1):

From M-P conditions 1 & 3, \((AM)^* = AM\) and \(AM = (AMA)M = (AM)(AM)\), showing that \(AM\) is an orthogonal projection operator. But onto what? Obviously onto a subspace of \(\mathcal{R}(A)\) as \(\mathcal{R}(AM) \subset \mathcal{R}(A)\). However

\[
\mathcal{R}(A) = A(\mathcal{X}) = AMA(\mathcal{X}) = AM(A(\mathcal{X})) = AM(\mathcal{R}(A)) \subset AM(\mathcal{Y}) = \mathcal{R}(AM) \subset \mathcal{R}(A)
\]

yields the stronger statement that \(\mathcal{R}(AM) = \mathcal{R}(A)\). Thus \(AM\) is the orthogonal projector onto the range of \(A\), \(P_{\mathcal{R}(A)} = AM = AA^+\).

Step (2):

From M-P conditions 2 & 3, \((MA)^* = MA\) and \(MA = M(AMA) = (MA)(MA)\), showing that \(MA\) is an orthogonal projection operator. Note that M-P conditions 3 and 2 imply \(A^* = (AMA)^* = A^*M^*A^*\) and \(MA = (MA)^* = A^*M^*\). We have

\[
\mathcal{R}(A^*) = A^*(\mathcal{Y}) = (A^*M^*A^*)(\mathcal{Y}) = (A^*M^*)(\mathcal{R}(A^*)) \subset \underbrace{(A^*M^*)(\mathcal{X})}_{=\mathcal{R}(A^*)} \subset \mathcal{R}(A^*)
\]

showing that \(\mathcal{R}(MA) = \mathcal{R}(A^*)\). Thus \(P_{\mathcal{R}(A^*)} = MA = A^+A\).
Proof of the M-P Theorem – Cont.

Sufficiency – Cont.

Step (3):
Note that we have yet to use M-P condition 4, $MAM = M$. From M-P condition 4 and the result of Step (2) we have

$$MAM = P_{\mathcal{R}(A^*)}M = M$$

Obviously, then $\mathcal{R}(M) \subset \mathcal{R}(A^*)$, as can be rigorously shown via the subspace chain

$$\mathcal{R}(M) = M(\mathcal{Y}) = P_{\mathcal{R}(A^*)}M(\mathcal{Y}) = P_{\mathcal{R}(A^*)}(\mathcal{R}(M)) \subset P_{\mathcal{R}(A^*)}(\mathcal{X}) = \mathcal{R}(A^*)$$

Recalling that $\mathcal{R}(A^+) = \mathcal{R}(A^*)$ (Fact 2), it therefore must be the case that

$$\mathcal{R}(M - A^+) \subset \mathcal{R}(A^*) = \mathcal{N}(A)^\perp$$

Using the result of Step (1), $P_{\mathcal{R}(A)} = AM = AA^+$, we have

$$A(M - A^+) = 0$$

with $\mathcal{N}(A) \cap \mathcal{R}(M - A^+) = \{0\}$. Therefore Theorem A yields $M - A^+ = 0$. QED
Proof of the M-P Theorem – Cont.

Note the similarity of the latter developments in Step 3 to the proof of Theorem B. In fact, some thought should convince yourself that the latter part of Step 3 provides justification for the claim that the pseudoinverse is unique, so that Theorem B can be viewed as redundant to the proof of the M-P Theorem.

Theorem B was stated to introduce the student to the use of Theorem A (which played a key role in the proof of the M-P Theorem) and to present the uniqueness of the pseudoinverse as a key result in its own right.
Singular Value Decomposition (SVD)

Henceforth, let us consider only Cartesian Hilbert spaces (i.e., spaces with identity metric matrices) and consider all finite dimensional operators to be represented as complex $m \times n$ matrices,

$$A_{m \times n} : \mathcal{X} = \mathbb{C}^n \rightarrow \mathcal{Y} = \mathbb{C}^m$$

Note that A in general is non-square and therefore does not have a spectral representation (because eigenvalues and eigenvectors are not defined).

Even if A is square, it will in general have complex valued eigenvalues and non-orthogonal eigenvectors. Even worse, a general $n \times n$ matrix can be defective and not have a full set of n eigenvectors, in which case A is not diagonalizable. In the latter case, one must use generalized eigenvectors to understand the spectral properties of the matrix (which is equivalent to placing the matrix in *Jordan Canonical Form*).

It is well known that if a square, $n \times n$ complex matrix is self-adjoint (Hermitian), $A = A^H$, then its eigenvalues are all real and it has a full complement of n eigenvectors that can all be chosen to orthonormal. In this case for eigenpairs $(\lambda_i, x_i), i = 1, \cdots, n$, A has a simple spectral representation given by an orthogonal transformation,

$$A = \lambda_1 x_1 x_1^H + \cdots + \lambda_n x_n x_n^H = X \Lambda X^H$$

with $\Lambda = \text{diag}(\lambda_1 \cdots \lambda_n)$, and X is unitary, $X^H X = XX^H = I$, where the columns of X are comprised of the orthonormal eigenvectors x_i. If in addition, a hermitian matrix A is positive-semidefinite, denoted as $A \geq 0$, then the eigenvalues are all non-negative, and all strictly positive if the matrix A is invertible (positive-definite, $A > 0$).
Singular Value Decomposition (SVD) – Cont.

Given an arbitrary (nonsquare) complex matrix operator $A \in \mathbb{C}^{m \times n}$ we can ‘regularized’ its structural properties by ‘squaring’ it to produce a hermitian, positive-semidefinite matrix, and thereby exploit the very nice properties of hermitian, positive-semidefinite matrices mentioned above.

Because matrix multiplication is noncommutative, there are two ways to ‘square’ A to form a hermitian, positive-semidefinite matrix, viz

$$AA^H \quad \text{and} \quad A^HA$$

It is an easy exercise to proved that both of these forms are hermitian, positive-semidefinite, recalling that a matrix M is defined to be positive-semidefinite, $M \geq 0$, if and only if the associated quadratic form $\langle x, Mx \rangle = x^H Mx$ is real and positive-semidefinite

$$\langle x, Mx \rangle = x^H Mx \geq 0 \quad \forall x$$

Note that a sufficient condition for the quadratic form to be real is that M be hermitian, $M = M^H$. For the future, recall that a positive-semidefinite matrix M is positive-definite, $M > 0$, if in addition to the non-negativity property of the associated quadratic form we also have

$$\langle x, Mx \rangle = x^H Mx = 0 \quad \text{if and only if} \quad x = 0$$
In Lecture 9 we will show that the eigenstructures of the well-behaved hermitian, positive-semidefinite ‘squares’ $A^H A$ and AA^H are captured in the Singular value Decomposition (SVD) introduced in Example 5 of Lecture 7. As noted in that example, knowledge of the SVD enables us to compute the pseudoinverse of A in the rank deficient case.

The SVD will also allow us to compute a variety of important quantities, including the rank of A, orthonormal bases for all four fundamental subspaces of A, orthogonal projection operators onto all four fundamental subspaces of the matrix operator A, the spectral norm of A, the Frobenius norm of A, and the condition number of A.

The SVD will also provide a simple geometrically intuitive understanding of the nature of A as an operator based on the action of A as mapping hyperspheres in $\mathcal{R}(A^*)$ to hyperellipsoids in $\mathcal{R}(A)$ in addition to the fact that A maps $\mathcal{N}(A)$ to 0.