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Why Parametric Statistical Models?

They include deterministic models as a special case.

They succinctly capture & encode properties of the perceived world.

Allow for data compression

Enable efficient explanation of past measurements

Enable efficient prediction of future measurements

Statistical models acknowledge that uncertainty, error, and chance exist
in our understanding of the world.

They provide “quality of fit” measures.

Model-mismatch measures

Parameter estimate quality measures
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Contrast with Nonparametric Models

With Nonparametric Models:

No a prior structural or modeling information is utilized

Difficult to model dynamic (nonstationary) processes.

Difficult to gain insight into physical and other processes.

Often, all data must be kept regardless of dimensionality or amount.

Data processing is expensive, particularly if data is collected in an on-going,
on-line manner.

Probability density function (pdf) approximations are constructed via
“binning” of data to directly form empirical density functions

As data is collected in an on-line manner, density-related estimates must often
be recomputed via “batch processing”
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Parametric Models = Generative Models

Parametric Probabilistic Models are posited to explain observed phenomenon.

For this reason they are often referred to as Generative Models; models that
are presumed to be have generated observed data.
They are also known as forward models, as one imagines processing inputs,
noise, past observations, and parameters in a “forward direction” to produce
observed data.
The problem of estimating unknown model parameters given observed inputs
and past observations is known as the inverse problem.

In its fullness then, the problem of parameter estimation involves:
1 Proposing and constructing a candidate generative model to explain some

phenomenon of interest.
2 Collecting data corresponding to inputs and outputs of the model.

3 Solving the statistical inverse problem of estimating the unknown parameters
of the model

4 Validating the model. If the statistics of the outputs of the model do not
match the statistics of our observed data, and/or the estimated model yields
poor predictive capabilities, we must refine and improve our posited model.

In this course we are primarily concerned with issues 1 and 3.
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Generative Model of World or System or ...
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Example: “Moving Average” (MA) Linear Gaussian Model

For unknown parameters θi , i = 1, · · · ,M, consider the
Moving Average (of f (u(t))) “Linear” (in the parameters !) Time-Series Model

y [t] = θ1 f (u[t]) + · · ·+ θM f (u[t −M + 1]) + n[t] with n(t) ∼ N(0, σ2)

The sequence of inputs u[t] is assumed known, as is the general function f (·).
The noise n(t) is considered to be iid with σ2 known.

Some examples are f (x) = x , f (x) = cos(x), f (x) = exp(x), etc.

Set θ , (θ1, · · · θM)T and a(t) = (f (u[t]), · · · , f (u[t −M + 1]))T then

y [t] = aT (t)θ + n(t)

with y [t] ∼ N(aT (t)θ, σ2),

Py[t];θ(y [t]) =
1√

2πσ2
exp

{
− 1

2σ2
(y [t]− aT (t)θ)2

}
showing that the MA model for y [t] is entirely equivalent to a probabilistic model
parameterized by θ.
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“Moving Average” (MA) Linear Gaussian Model – Cont.

Now consider collecting a “batch” of N > M samples of y [t] (t = 1, · · · ,N) and
set Y , (y [1], · · · y [N])T .

The MA model is entirely equivalent to the vector-matrix “batch data” parametric
probabilistic model

Y ∼ N(Aθ,C ), C = diag(σ2, · · · , σ2) = σ2I

Pθ(Y ) , PY;θ(Y ) =
1√

(2π)N detC
exp

{
−1

2
‖Y − Aθ‖2C−1

}
where the data matrix A is a known N ×M matrix whose N rows are comprised of
the M-dimensional row vectors aT (t) and

‖Y − Aθ‖2C−1 , (Y − A θ)TC−1(Y − Aθ)

with C a known (diagonal, in this example) N × N matrix.
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Model Fitting by Likelihood Maximization

The function
`Y (θ) , Pθ(Y )

is the likelihood of θ (i.e. of the model Pθ(·)) given the measured data Y .

The principle of maximum likelihood estimation says to find that model
(parameter θ) for which the likelihood function takes its maximum value, given
the measured data Y .

Maximizing the likelihood function is equivalent to minimizing the negative
logarithm of the likelihood function (the “negative log-likelihood”). For the
important linear Gaussian model with known covariance matrix example
considered above, this corresponds to finding the parameter vector θ that
minimizes the weighted least squares loss function

‖Y − Aθ‖2C−1 , (Y − Aθ)TC−1(Y − Aθ)

Note that when C = I this reduces to a (unweighted) least squares problem. In
either case the problem is one of solving a linear inverse problem

Y ≈ Aθ

in an appropriate least squares sense.
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Paradigmatic Probability Model — Linear Gaussian Model

Linear Gaussian Model

y = Ax + v , v ∼ N(0,C ), C is symmetric and full rank.

Equivalent to

Parametric Probability Model

y ∼ N(Ax ,C ), Px(y) =
1√

(2π)m detC
exp

{
−1

2
‖y − Ax‖2C−1

}
where

‖y − Ax‖2C−1 , (y − Ax)TC−1(y − Ax)

Ken Kreutz-Delgado (UC San Diego) ECE 275A SPE Version 1.1 Fall 2012 9 / 12



The Likelihood Function

Likelihood of x given y : `y (x) , px(y)

In the figure below, note that it is rational to prefer probability model
px2 (·) over model px1 (·) given the observed value of y :
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Model Fitting by Likelihood Maximization

Maximum Likelihood Estimate of x given y

x̂ = arg max
x
`y (x) = arg max

x
px(y)

For the Linear Gaussian model this is equivalent to

x̂ = arg min
x
‖y − Ax‖2C−1

Which corresponds to solving a Linear Inverse Problem

y ≈ Ax

in an appropriate Minimum Norm sense, where y and x are Vectors, A is a
(matrix representation of) a Linear Operator, and ‖ · ‖C−1 is a (weighted) Norm.
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Need for Vector Space Theory

What are Vectors and Linear Vector Spaces?

What are Norms and Normed Linear Vector Spaces?

(Theory of Banach Spaces.)

What are Inner Products and Inner Product Vector Spaces?

(Theory of Hilbert Spaces.)

What are Linear Operators and the Geometry Induced by Linear
Operators.

(The ‘Four Fundamental Subspaces’ associated with a linear operator.)

What is a Linear Inverse Problem?

(Well-Posed and Ill-Posed Inverse Problems.)

How does one solve a linear inverse problem?

Minimum Norm Solution and Weighted Least Squares Solution.

Projection Theorem in Hilbert Spaces. (Orthogonality Principle.)

Generalized Inverses. (Pseudo-Inverse, QR-factorization, SVD.)
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