
ECE 275A – Homework 7 – Solutions

Solutions

1. For the same specification as in Homework Problem 6.11 we want to determine an
estimator for θ using the Method of Moments (MOM). In general, the MOM estimator
is neither unbiased nor efficient, so if either of these properties (or any other properties,
other than consistency) are found to be the case it is purely accidental.

We have the sample moment

m1 = 〈yk〉 =
1

m

m∑
k=1

yk

and the ensemble moment
α1(θ) = Eθ {yk} .

Equating the sample and ensemble moments yields the estimator

θ̂ = 2 m1 = 2 〈yk〉 =
2

m

m∑
k=1

yk .

Although this turns out to be the BLUE, this is a purely accidental result. The esti-
mator θ̂ is easily shown to be unbiased (again, an accidental result). The estimator
error variance was computed in Homework Problem 6.11, and goes to zero as m→∞.
This shows that the estimator converges in the mean-square sense to the true param-
eter, and therefore is consistent (converges in probability). This is as expected, as
consistency is the one property that the MOM estimator does generally possess.

2. Here the problem specification common to the previous two problems has been modified
to yk ∼ U[−θ, θ]. Now we have α1(θ) = 0 so we cannot obtain a MOM estimate of θ
by merely equating the first-order sample and ensemble moments. The second–order
sample and ensemble moments are given respectively by

m2 =
〈
y2
k

〉
=

1

m

m∑
k=1

y2
k

and

α2(θ) = Eθ

{
y2
k

}
=

(2 θ)2

12
=
θ2

3
.

Of course Eθ {m2} = α2(θ). Equating the second–order sample and ensemble moments
yields the MOM estimate

θ̂ =
√

3 m2 .
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Because the square–root function is strictly concave, Jensen’s inequality1 yields

Eθ

{
θ̂
}

= Eθ

{√
3 m2

}
<
√

Eθ {3 m2} = θ

showing that in general θ̂ is biased. From the carry–over property of convergence
in probability we know that the MOM estimator θ̂ is consistent because the sample
moments are consistent estimators of the ensemble moments. Because the estimator is
consistent, it must be asymptotically unbiased.

Unfortunately, it is difficult to demonstrate consistency by directly computing the mean
squared-error (mse) of the estimator. One can readily show that

0 ≤ mseθ = Eθ

{
(θ̂ − θ)2

}
= 2 θ

(
θ − Eθ

{
θ̂
})

which, unfortunately, just leads to the already–verified condition that

Eθ

{
θ̂
}
≤ θ .

Note from the mean squared–error equation that if θ̂ is asymptotically unbiased,

Eθ

{
θ̂
}
→ θ as m→∞ ,

then we have mean-square convergence (and therefore consistency). Of course, if we
have convergence we must have asymptotic unbiasedness. We have apparently arrived
at a nice little tautological impasse!

Actually, one can break this impasse by using the statistical linearization technique
discussed in Section 9.5 of Kay. However, I do not intend for this problem to be that
lengthy. Thus, consider the carry-over argument to be a sufficient proof of consistency.

3. Kay 7.3. (a) Unit Variance Gaussian with unknown mean µ. We have that,

p(x;µ) = φ(x;µ) =
1√
2π

exp

{
−1

2
(x− µ)2

}
.

With iid data x = (x[1], · · · , x[N ])T , the likelihood function is proportional to

p(x;µ) =
1√
2π

exp

{
−1

2

N∑
n=1

(x[n]− µ)2

}
.

1Jensen’s inequality is an important and fundamental mathematical tool used in statistics, information
theory, machine learning, and parameter estimation. If you don’t know it, you should search in Moon &
Stirling and/or Wikipedia and read a description.
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To determine a solution to the problem,

µ̂ML = arg max
µ

ln p(x;µ)

we look at the solutions to the likelihood equation,

0 = S(µ;x) = ∇µ ln p(x;µ) =
N∑
n=1

(x[n]− µ) ,

where S(µ;x) denotes the score function. There is only one unique solution to the
likelihood equation,

µ̂ML =
1

N

N∑
n=1

x[n] .

Furthermore the hessian of the log-likelihood has the value,

∂2

∂µ2
ln p(x;µ) =

∂

∂µ
S(µ;x) = −N < 0 ,

for all µ showing that the log–likelihood is globally concave and hence has a single
(unique) maximum. The estimate µ̂ML is unbiased and efficient; it is known that
among regular probability families only exponential families (see Kay problem 5.14)
can yield finite-sample efficient estimators (as is the case here) and that when an
efficient estimator exists, it can be found as a zero to the likelihood equation (as was
done here, also see problem 6 below).

(b) Exponential distribution using the so-called “natural parameter” λ where

p(x;λ) = λ exp {−λx}χ (x ≥ 0) ,

where χ(·) is the characteristic (or indicator) function. Here we have,

p(x;λ) =
N∏
n=1

p(x[n];λ) = λN exp

{
−λ

N∑
n=1

x[n]

}
χ (x[n] ≥ 0, n = 1, · · · , N) .

The maximum likelihood estimate is found as the unique zero of the likelihood equation,

λ̂ML =
N∑N

n=1 x[n]
.

Note that the maximum likelihood estimate is biased, and therefore cannot be the
UMVUE of λ. The hessian of the log-likelihood is given by −N

λ2
, which is negative for

all (positive) λ. This shows that the log–likelihood is globally concave and has only
one unique maximum.
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4. Kay 7.8. See worked example 12.2.1 on page 547 of Moon & Stirling where it is shown
that p̂ = M

N
where M =

∑N
n=1 x[n] is the number of times that the outcome “1” occurs.

Note that it is simple to generalize this result to the multinomial case having ` ≥ 2
possible distinct outcomes O1, · · · , O` with respective probabilities p1, · · · , p`. Perhaps
the simplest way to do so is to recognize that one can focuss on any one outcome,
say the j-th outcome Oj, and examine the binary problem of “j or Not–j”. With
Nj the number of times that Oj occurs and N = N1 + · · · + N` the total number
of observations, we can immediately apply the maximum likelihood solution for the
binary case to determine the MLE p̂j =

Nj

N
.

We can now see that Worked Example 12.1.2 on page 543 of Moon & Stirling requires
some clarification. If the samples in this example are drawn from a multinomial distri-
bution,2 then with nonzero probability the sample values are not all distinct and the
derived result that all probabilities are 1

m
, where m is the total number of samples,

can be wrong with nonzero probability. Indeed, if there are ` distinct multinomial
outcomes and m > `, for m a non–integer multiple of `, then this answer is always
wrong!

What Moon & Stirling forgot to mention is their key assumption that the random vari-
able X has a continuous distribution function. Under this assumption the probability
that any two samples have equal value is zero, in which event the result derived by
Moon & Stirling that all samples have an estimated probability of 1

m
of occurring is

true with probability one. Note that 1
m
→ 0 as m → ∞ which is consistent with the

fact that for a continuously distributed random the probability of occurrence of any
particular value is zero.

5. Kay 7.9. See worked example 12.1.3 on page 545 of Moon & Stirling.

6. Kay 7.12. First recall that for appropriately smooth regular probability distributions,
MLE’s are solutions to the likelihood equation3

0 = S(y; θ̂mle(y)) = S(y; θ)

∣∣∣∣
θ= θ̂mle(y)

.

Note that knowing the maximum likelihood estimate θ̂mle(y) for every possible value
of y is equivalent to knowing the maximum likelihood estimator θ̂mle(·).

2Moon & Stirling say that the distribution is unknown, so it could be multinomial, or some other discrete
or noncontinuous probability distribution.

3In other words, a maximum likelihood estimate θ̂mle(y) (note the dependence on the instantiated mea-
surement value y) is a value of θ which is a zero of the score function.
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Now recall that a necessary condition for an estimator θ̂eff(·) to be efficient is that the
score can be written as,4

S(y; θ) = J(θ)
(
θ̂eff(y)− θ

)
,

where θ̂eff(y) is the estimate obtained from the efficient estimator given an instantiation
value y.

Combining these two conditions,

0 = S(y; θ̂mle(y)) = J(θ̂mle(y))
(
θ̂eff(y)− θ̂mle(y)

)
,

we see (assuming that the Fisher information matrix J(θ̂mle(y)) is full rank so that its
nullspace is trivial5) that,

θ̂mle(y) = θ̂eff(y).

Since the instantiation values (i.e., the two estimates) θ̂mle(y) and θ̂eff(y) are equal for
all possible instantiated measurement values y, it is the case that we have equality as
estimators,6,7

θ̂mle(·) = θ̂eff(·).

7. Prove the Invariance Principle of Maximum Likelihood Estimation (Theorem 7.4) as-
suming that g(·) is many–to–one.

The goal is to show that α̂ML = g(θ̂ML), for any arbitrary many-to-one function g(·).

To understand the solution to this problem, you need to know that any (perhaps many–
to–one and/or concontinuous) function induces a disjoint partition of its domain. Thus
if α = g(x) is a many to one function with domain Θ, and if g−1(α) ⊂ Θ denotes the
preimage set of α ∈ g(Θ), it is always the case that8

Θ =
⋃

α∈g(Θ)

g−1(α) (1)

4This also a sufficient condition if θ̂eff(·) is uniformly unbiased.
5This is usually the case because J(θ) can happen to have full rank for all possible values of θ, which is

equivalent to the identifiability assumption on the statistical family
6I.e., if for two functions f and g we have equality of the function values, f(y) = g(y), for all domain

elements y, then merely by definition of “function”, we have equality of the two functions. In this situation
f and g are merely two different names for the same function.

7When reading the proof of the result in textbooks and/or on-line, you should note the common overloaded

use of the notation θ̂mle to denote both the estimate θ̂eff(y) and the estimator θ̂mle(·). Similarly, θ̂eff is used to

denote both θ̂eff(y) and θ̂eff(·). Furthermore, θ is to be understood as a deterministic parameter vector, not
as a realization value (much less a function) because not being a random variable the concept of a realization
makes no sense. It is necessary to keep these tacit and context-dependent interpretations straight in one’s
head in order to avoid confusion. As in Law, the fine-print matters.

8This is due to the definition of what it means to be a function; specifically that a function must be
single-valued by definition.
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and
g−1(α)

⋂
g−1(α′) = ∅ , ∀α 6= α′ .

The set g−1(α) is a so–called equivalence class indexed by α. The elements of g−1(α)
are all “equivalent” in the sense that they each produce the same (i.e., equivalent)
value α under the action of g(·).9

Because of the fact (??), it is the case that the maximum value of the likelihood
function `(θ) = pθ(x) can be determined in two equivalent ways,

max
α∈g(Θ)

max
θ∈g−1(α)

pθ(x) = max
θ∈Θ

pθ(x) .

This expression is true because in both sides of the equality all possible values of θ in
Θ are considered when searching for the maximum of `(θ) = pθ(x) over Θ.

For α = g(x), the so-called induced (or modified) likelihood function `(α) is defined by

`(α) = fα(x) , max
θ∈g−1(α)

pθ(x) .

Note that fα(·) determines a family of probability distribution parameterized by α.

By definition

θ̂ML = arg max
θ∈Θ

pθ(x) and α̂ML = arg max
α∈g(Θ)

fα(x) .

Based on the above discussion, it should be clear that the maximum values attained
in the optimizations are equal:

fα̂ML
(x) = max

α∈g(Θ)
fα(x) = max

α∈g(Θ)
max

θ∈g−1(α)
pθ(x) = max

θ∈Θ
pθ(x) = pθ̂ML

(x) .

Using the definition of the induced likelihood this is equivalent to

fα̂ML
(x) = max

θ∈g−1(α̂ML)
pθ(x) = pθ̂ML

(x)

showing that it must be the case that

θ̂ML ∈ g−1(α̂ML) .

Of course, this last statement is equivalent to our desired result:

α̂ML = g(θ̂ML) .

9For a discussion of equivalence classes and their relationship to function–induced partitions see Linear
Operator Theory in Engineering and Science, A.W. Naylor and G.R. Sell, or Some Modern Mathematics for
Physicists and other Outsiders, Vol. 1: Algebra, Topology, and Measure Theory, P. Roman.
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8. Kay 7.17. Let xk, k = 1, · · · , n be n iid samples drawn from a N(0, 1
θ
) pdf. If you

happen to know that the MLE of the variance is 1
n

∑n
k=1 x

2
k, then the invariance prin-

ciple immediately gives θ̂ML = n∑n
k=1 x

2
k
. However, we also want to determine the CRLB,

which is the asymptotic variance of the asymptotically efficient MLE, so a more com-
plete analysis is required.

With

pθ(x) =

(
θ

2π

)n
2

exp

{
−θ

2

n∑
k=1

x2
k

}
,

we have

S(x; θ) =
∂ log pθ(x)

∂θ
=
∂
(
n
2

log θ − θ
2

∑n
k=1 x

2
k

)
∂θ

=
n

2θ
− 1

2

n∑
k=1

x2
k.

Solving the likelihood equation S(x; θ) = 0 yields

θ̂ML =
n

n∑
k=1

x2
k

as expected. The Fisher information is determined as

J(θ) = −E

{
∂S(x; θ)

∂θ

}
=

n

2θ2
.

In the limit as n→∞ we have

θ̂ML

a∼ N
(
θ, J−1(θ)

)
= N

(
θ,

2θ2

n

)
,

where θ is the true unknown parameter and we use a notation which emphasizes the
fact that this is an asymptotic result. Note, in particular, that the asymptotic error
covariance depends on the unknown parameter θ. If the Fisher information is a contin-
uous function of the unknown parameter (as in our case) it can be shown that J(θ̂ML)
is a consistent estimator of J(θ). In this case we have that

θ̂ML

a∼ N
(
θ, J−1(θ̂ML)

)
= N

(
θ,

2θ̂2
ML

n

)

enabling us to empirically construct confidence intervals10 about our estimate θ̂ML in
the limit as n→∞.

10Also known as “error bars.”
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9. Kay 7.21. Also determine the MLE of the standard deviation.

The maximum likelihood estimates of the mean, ÂML and the variance σ̂2
ML are derived

in Example 7.12 on page 183 of Kay. Invoking the principle of invariance we have

α̂ML =
Â2

ML

σ̂2
ML

and σ̂ML =

√
σ̂2

ML .
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