
ECE 275A Homework #4 Solutions – Fall 2011

Homework Solutions

1. (a) We have

`(x) = xHΠx− 2RexHBy + yHWy

= xHΠx− xHBy − yHBHx+ yHWy

= xHΠx− xHΠ Π−1By − yHBHΠ−1Πx+ yHWy

=
(
x− Π−1By

)H
Π
(
x− Π−1By

)
+ yHWy − yHBHΠ−1By

=
(
x− Π−1By

)H
Π
(
x− Π−1By

)
+ yH

(
W −BHΠ−1B

)
y

Thus for all x
`(x) ≥ yH

(
W −BHΠ−1B

)
y

with equality if and only if x = Π−1By. Thus we have proved that

x̂ = Π−1By = arg min
x
`(x)

`(x̂) = yH
(
W −BHΠ−1B

)
y = min

x
`(x)

(b) It is straightforward to apply this result to the full column-rank, weighted least-
squares problem.

`(x) = ‖y − Ax‖2
W = (y − Ax)HW (y − Ax)

= xH AHWA︸ ︷︷ ︸
Π

x− xH AHW︸ ︷︷ ︸
B

y − yH WA︸︷︷︸
BH

x+ yHWy

= xHΠx− xHBy − yHBHx+ yHWy

= xHΠx− 2RexHBy + yHWy

With A full column rank and W = WH > 0, the matrix Π is Hermitian and full
rank. Thus the weighted least-squares estimate of x is

x̂ = Π−1By =
(
AHWA

)−1
AHWy

with optimal (minimal) least-squares cost

`(x̂) = yH
(
W −BHΠ−1B

)
y = yH

(
W −WA(AHWA)−1AHW

)
y

Comment.

Suppose that

〈y1, y2〉 = yH1 Wy2 and 〈x1, x2〉 = xH1 x
2 (i.e., Ω = I)
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Then
A∗ = AHW

A+ = (AA∗)−1A∗ = (AHWA)−1AHW

PR(A) = AA+ = A(AHWA)−1AHW

PN (A∗) = I − PR(A)

This shows that the optimal cost can be rewritten as

`(x̂) = yHW (I − PR(A))y

= yHWPN (A∗)y

= 〈y, P 2
N (A∗)〉

= 〈P ∗N (A∗)y, PN (A∗)〉
= 〈PN (A∗)y, PN (A∗)

or
`(x̂) = ‖PN (A∗)y‖2 = ‖PN (A∗)y‖2

W

What is the optimal cost if y ∈ R(A)? Does this make sense?

Note that the optimal error (which must be orthogonal to the range of A) is

ê = y − ŷ = y − PR(A)y = (I − PR(A))y = PN (A∗)y

Therefore the optimal cost can also be written as

`(x̂) = ‖ê‖2 = ‖ê‖2
W

showing that the optimal least-squares error is the minimal residual error “power”.

2. As in lecture, define the derivative with respect to a vector to be a row operator,

∂

∂x
=

(
∂

∂x1

, · · · , ∂

∂xn

)
.

An equivalent statement to Entry 1 in Table E.1, would be an identity involving the
undefined expression ∂

∂x
xTA (the derivative of a row vector with respect to a vector),

which is not sensible within our framework as it has been developed so far. To make this
expression sensible, we would have to expand our framework to include new operations
and/or new objects in addition to scalars, vectors, row-vectors, and matrices. The
usual extension is the standard tensor calculus, which we will not discuss.1

1The derivative of a row-vector (a covector in tensor calculus parlance) by a vector is not a matrix which
is a rank-2 tensor known as a (1, 1)-tensor, but a different type of rank-2 tensor known as a (0, 2)-tensor.
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The equivalent identities to Equation (E.4) and Entry 2 of Table E.1,

∂

∂x
cTx = cT and

∂

∂x
Ax = A

are both easily proved at the component level. We can also prove Entry 2 from Equation
(E.4) in two ways. Either apply (E.4) component-wise to Ax or note that for an
arbitrary vector d, we have ∂

∂x
dTAx = dTA.

One can also easily prove the equivalent statement to Entry 4 at the component level.
We have

∂

∂xk

∑
i

∑
j

aij xi xj =
∑
i 6=k

aik xi +
∑
j 6=k

akj xj + 2 akk xk =
∑
i

aik xi +
∑
j

akj xj

or
∂

∂x
xTAx = xTA+ xTAT

which is the result to be proved. By setting A = I we therefore have the equivalent
result to Entry 3,

∂

∂x
xTx =

∂

∂x
‖x‖2 = 2xT .

By assuming that A is symmetric we obtain the equivalent result to Entry 5,

∂

∂x
xTAx =

∂

∂x
‖x‖2

A = 2xTA .

Finally, the chain rule for differentiating z = z(y(x)) with respect to x (which is
equivalent to Entry 6),

∂z

∂x
=
∂z

∂y

∂y

∂x
,

(equivalently, in terms of jacobian matrices, Jz◦y = Jz Jy), follows from the component-
level expression given at the very top of page 897 in Moon.

3. Note that Entry 2 in Table E.1 is not really well-defined within the vector-matrix
framework developed in Moon & Stirling as they have not explained what it means to
take the derivative of a row vector by a column vector.2 To do so in a consistent manner

2In class we define how to take the derivative of a column vector f(x) with respect to a column vector
x as the action of the (row) partial derivative operator ∂

∂x on the vector f(x). Similarly, Moon & Stirling
also define the derivative of a column vector respect to a column vector—this is done right at the outset
of Appendix E. Thereafter, all additional identities provided by Moon & Stirling should be consistent with
that definition. According to Identities 1 and 2 of Table E.1, the derivative of the column vector ATx (note
the transpose on A here) with respect to the column vector x and the derivative of the row vector xTA
with respect to the column vector x both give the same mathematical object A. Since row and column
vectors generally correspond to different mathematical objects, this result requires some explanation or
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requires either extending the vector-matrix results of Appendix E or introducing tensor-
like concepts.3

Also note that the last entry in Table E.1 uses an egregious notation in the parenthetical
comment. A better notation is z = z(y) and y = y(x), in which case the given identity
(which is proved on page 897 of Moon) makes sense.

For completeness, the second (as it stands, not well defined) entry in Table E.1 can be
replaced by Equation E.3.

Note that with the Cartesian coordinate system assumption that Ω = I, one can easily
convert the row-vector derivative identities derived in the previous homework problem
into the corresponding column-vector derivative identities by simply transposing the
identities (possible with some minor renaming).

Alternatively, one can prove the column-vector derivative identities directly. From
Moon & Stirling’s Identity E.3 (which is proved in the book), Entry 1 of the table
easily follows by noting that for an arbitrary vector c we have

∇x c
TAx = ∇x (AT c)Tx = AT c

which (since c is arbitrary) yields the desired identity ∇xAx = AT .

Entry 4 is proved at the component level using the same argument given in the previous
homework problem. Entries 3 and 5 of Table E.1 are just special cases of Entry 4.

4. See the Lecture Viewgraphs.

5. In the following Let H = [h1, · · · , hn].

(a) Note that as stated this situation does not involve a linear mapping H and there-
fore there is no domain space and no codomain space.4 What we do have, ac-
cording to the problem statement, is an ambient Hilbert space Y = Cm and an
n-dimensional Hilbert subspace of this space, H ⊂ Y , given by

H = span {h1, · · · , hn} ,

interpretation. In essence, the distinction between a row vector (an object which transforms covariantly) and
a column vector (an object which transforms contravariantly) is being ignored in Moon & Stirling (which is
ok in a Cartesian coordinate system). In Moon & Stirling, the distinction between matrix A as a bilinear
functional of two column vectors and as a bilinear functional on a row vector and a column vector has been
blurred.

3The identity, properly interpreted, is not false. Without further elaboration, we just don’t quite know
what it means. Indeed, it can formally, and easily, be proved as follows: ∇xx

TAc = ∇xc
TATx = (AT c)T =

cTA, which is true for all c, and therefore ∇xx
TA = A.

4The concepts of domain and codomain presuppose the existence of a mapping.
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where hi, i = 1, · · · , n are linearly independent (and therefore form a basis for
H).

The optimal approximation of x, x̂ = θ1h1 + · · · θnhn, in the subspace spanned by
h1, · · · , hn is determined from the orthogonality condition,

x− x̂ = x− (θ1h1 + · · · θnhn) = x−Hθ ⊥ Span {h1, · · · , hn} = R(H) .

This condition is equivalent to the requirement that

〈x−Hθ, hi〉 = (x−Hθ)HC−1hi = 0 , for i = 1, · · · , n ,

or, equivalently,

(x−Hθ)HC−1 [h1, · · · , hn] = (x−Hθ)HC−1H = 0 .

This yields the normal equations,

HHC−1Hθ̂ = HHC−1x ,

so that,

x̂ = Hθ̂ = H(HHC−1H)−1HHC−1x = HH+x = PR(H)x .

(b) This derivation should be standard for you by now.

(c) Here we need just need to expand the loss function J = (x−Hθ)HC−1(x−Hθ) into
separate terms and then make the identification with the terms of the resulting
quadratic form exactly as done in the solution to Problem 1 given above.
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