ECE 275A Homework \# 2 Solutions

1. ECE 174 Midterm solutions are in a separate file located on the class website.
2. Let \mathcal{V} and \mathcal{W} be independent (disjoint) subspaces of a vector space \mathcal{X}, such that $\mathcal{X}=\mathcal{V}+\mathcal{W} .{ }^{1}$ Consider any two vectors $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$ in \mathcal{X}, where $x_{1}, y_{1} \in \mathcal{V}$ and $x_{2}, y_{2} \in \mathcal{W}$ give the unique decomposition of x and y along the companion subspaces \mathcal{V} and \mathcal{W} respectively. Let $P=P_{\mathcal{V} \mid \mathcal{W}}$ denote the projection operator which projects \mathcal{X} onto \mathcal{V} along \mathcal{W}. Then $P x=x_{1}$ and $P y=y_{1}$. For any two scalars α and β we have

$$
\alpha x+\beta y=\alpha\left(x_{1}+x_{2}\right)+\beta\left(y_{1}+y_{2}\right)=\left(\alpha x_{1}+\beta y_{1}\right)+\left(\alpha x_{2}+\beta y_{2}\right) \in \mathcal{X},
$$

with $\left(\alpha x_{1}+\beta y_{1}\right) \in \mathcal{V}$ and $\left(\alpha x_{2}+\beta y_{2}\right) \in \mathcal{W}$ since \mathcal{V} and \mathcal{W} are vector subspaces. Therefore

$$
P(\alpha x+\beta y)=\alpha x_{1}+\beta y_{1}=\alpha P x+\beta P y
$$

showing that a (possibly non-orthogonal) projection operator is linear.
3. Recall the the columns of $[V W]$ are a basis for \mathcal{X} iff they form a spanning set of vectors for \mathcal{X} which are also linearly independent. Also recall that a linear operator P is a projection operator iff it is idempotent, $P=P^{2}$.
(a) The complementary subspace condition $\mathcal{X}=\mathcal{V} \oplus \mathcal{W}$ and the fact that the columns of V and and the columns of W each respectively forms a basis for \mathcal{V} and \mathcal{W} implies that for each $x \in \mathcal{X}$ there exists a $v=V \alpha \in \mathcal{V}$ and a $w=W \beta \in \mathcal{W}$ such that

$$
x=v+w=V \alpha+W \beta=[V W]\binom{\alpha}{\beta}
$$

showing that the columns of $[V W]$ span \mathcal{X}.
The complementary subspace condition $\mathcal{X}=\mathcal{V} \oplus \mathcal{W}$ implies that \mathcal{V} and \mathcal{W} are disjoint, which is true iff $\mathcal{V} \cap \mathcal{W}=\{0\}$. Now suppose that the columns of V and W taken together are not linearly independent. Then there exists $\alpha \neq 0$ and $\beta \neq 0$ such that $0=V \alpha+W \beta$. (Recall that the columns of V are a linearly independent set, as are the columns of W.) This yields $V \alpha=-W \beta \neq 0$. But $V \alpha \in \mathcal{V}$ and $-W \beta \in \mathcal{W}$, implying that

$$
0 \neq V \alpha \in \mathcal{V} \cap \mathcal{W}
$$

which contradicts the assumption that \mathcal{V} and \mathcal{W} are disjoint, $\mathcal{V} \cap \mathcal{W}=\{0\}$. Therefore the assumption that the columns of V and W taken together are not linearly independent must be incorrect.

[^0](b) Note that to show that a linear operator is a projection operator onto \mathcal{V} we need to show both that it is idempotent (i.e., that it is indeed a projector) and that its range is \mathcal{V} (i.e., that it is a projector onto \mathcal{V}). Let n be the dimension of \mathcal{X}. With the columns $M=[V W]$ linearly independent, M is an $n \times n$ invertible matrix.
Consider the matrix
\[

P=M\left($$
\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}
$$\right) M^{-1}=\left[$$
\begin{array}{lll}
V & 0
\end{array}
$$\right] M^{-1} .
\]

It is easily shown that $P^{2}=P$, so that P is a projection operator.
Because $P=\left[\begin{array}{ll}V & 0\end{array} M^{-1}\right.$, we have that $\mathcal{R}(P)=\mathcal{R}(V)=\mathcal{V}$. Thus P is a projector from \mathcal{X} onto the subspace $\mathcal{V} \subset \mathcal{X}$.
We now need to show that P projects "along" \mathcal{W}, which is equivalent to the requirement that $\mathcal{N}(P)=\mathcal{R}(W)$, i.e. that $0=P x$ for all $x \in \mathcal{W}$. This is readily shown:

$$
x \in \mathcal{R}(W) \Longleftrightarrow x=W \beta=\left[\begin{array}{ll}
V & W
\end{array}\right]\binom{0}{\beta}=M\binom{0}{\beta} \Longrightarrow P x=\left[\begin{array}{ll}
V & 0
\end{array}\right] M^{-1} M\binom{0}{\beta}=0
$$

4. Proof of Fact 1:

$$
\begin{aligned}
\left\langle x_{1}, \alpha x_{2}\right\rangle & =\alpha\left\langle x_{1}, x_{2}\right\rangle \quad \text { (assuming linearity in the second argument) } \\
& =\overline{\bar{\alpha}\left\langle x_{2}, x_{1}\right\rangle} \\
& =\overline{\left\langle x_{2}, \bar{\alpha} x_{1}\right\rangle} \\
& =\left\langle\bar{\alpha} x_{1}, x_{2}\right\rangle .
\end{aligned}
$$

Proof of Fact 2:

$$
\begin{aligned}
\left\langle x_{1}+x_{2}, x\right\rangle & =\overline{\left\langle x, x_{1}+x_{2}\right\rangle} \\
& =\overline{\left\langle x, x_{1}\right\rangle+\left\langle x, x_{2}\right\rangle} \quad \text { (assuming linearity in the second argument) } \\
& =\left\langle x_{1}, x\right\rangle+\left\langle x_{2}, x\right\rangle .
\end{aligned}
$$

Proof of Fact 3:

$$
\begin{aligned}
\left\langle\alpha_{1} x_{1}+\alpha_{2} x_{2}, x\right\rangle & =\left\langle\alpha_{1} x_{1}, x\right\rangle+\left\langle\alpha_{2} x_{2}, x\right\rangle & & (\text { from Fact 2) } \\
& =\overline{\alpha_{1}}\left\langle x_{1}, x\right\rangle+\overline{\alpha_{2}}\left\langle x_{2}, x\right\rangle . & & (\text { from Fact 1) }
\end{aligned}
$$

Proof of Fact 4: For all vectors $x \in \mathcal{X}$, for all vectors $y_{1}, y_{2} \in \mathcal{Y}$, and for all scalars $\alpha_{1}, \alpha_{2} \in \mathbb{C}$,

$$
\begin{array}{rlr}
\left\langle A^{*}\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right), x\right\rangle & =\left\langle\alpha_{1} y_{1}+\alpha_{2} y_{2}, A x\right\rangle & \\
& =\overline{\alpha_{1}}\left\langle y_{1}, A x\right\rangle+\overline{\alpha_{2}}\left\langle y_{2}, A x\right\rangle & \text { (from Fact 3) } \\
& =\overline{\alpha_{1}}\left\langle A^{*} y_{1}, x\right\rangle+\overline{\alpha_{2}}\left\langle A^{*} y_{2}, x\right\rangle & \\
& =\left\langle\alpha_{1} A^{*} y_{1}+\alpha_{2} A^{*} y_{2}, x\right\rangle, & \text { (from Fact 3) } \tag{fromFact3}
\end{array}
$$

and therefore $A^{*}\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)=\alpha_{1} A^{*} y_{1}+\alpha_{2} A^{*} y_{2}$. (Why does this last step follow? ${ }^{2}$)
Proof of Fact 5: For all x and y,

$$
\begin{aligned}
\left\langle(\alpha A)^{*} y, x\right\rangle & =\langle y, \alpha A x\rangle \\
& =\alpha\langle y, A x\rangle \\
& =\alpha\left\langle A^{*} y, x\right\rangle \\
& =\left\langle\bar{\alpha} A^{*} y, x\right\rangle, \quad \text { (from Fact 1) }
\end{aligned}
$$

and therefore $(\alpha A)^{*}=\bar{\alpha} A^{*}$. (Why?)
Proof of Fact 6: For all x and y,

$$
\begin{aligned}
\left\langle(A+B)^{*} y, x\right\rangle & =\langle y,(A+B) x\rangle & & \\
& =\langle y, A x\rangle+\langle y, B x\rangle & & \\
& =\left\langle A^{*} y, x\right\rangle+\left\langle B^{*} y, x\right\rangle & & \\
& =\left\langle A^{*} y+B^{*} y, x\right\rangle & & \text { (from Fact 2) } \\
& =\left\langle\left(A^{*}+B^{*}\right) y, x\right\rangle & & \text { (from definition of addition of operators) }
\end{aligned}
$$

and therefore $(A+B)^{*}=A^{*}+B^{*}$. (Why?)
Proof of Fact 7:

$$
\begin{align*}
(\alpha A+\beta B)^{*} & =(\alpha A)^{*}+(\beta B)^{*} & & (\text { from Fact 5) } \\
& =\bar{\alpha} A^{*}+\bar{\beta} B^{*} . & & (\text { from Fact 4) }
\end{align*}
$$

Proof of Fact 8: For all x and y,

$$
\left\langle A^{*} y, x\right\rangle=\langle y, A x\rangle \Leftrightarrow \overline{\left\langle x, A^{*} y\right\rangle}=\overline{\langle A x, y\rangle} \Leftrightarrow\left\langle x, A^{*} y\right\rangle=\langle A x, y\rangle .
$$

Proof of Fact 9: For all x and z,

$$
\left\langle(C A)^{*} z, x\right\rangle=\langle z, C A x\rangle=\left\langle C^{*} z, A x\right\rangle=\left\langle A^{*} C^{*} z, x\right\rangle
$$

and therefore $(C A)^{*}=A^{*} C^{*}$. (Why?)
5. Moon 3.8.10. Let a linear mapping, $\mathcal{A}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{p \times q}$, between the space of complex m-vectors and complex $p \times q$-matrices be given by,

$$
\mathcal{A} c=\sum_{i=1}^{m} c_{i} X_{i} .
$$

[^1]The inner product on \mathbb{C}^{m} is taken to be the standard inner product, $\langle x, y\rangle=x^{H} y$, while the inner product on $\mathbb{C}^{p \times q}$ is taken to be the Frobenius inner product,

$$
\langle X, Y\rangle=\operatorname{tr} X^{H} Y .
$$

Assume that X_{i} are linearly independent so that the mapping, \mathcal{A}, is one-to-one. We wish to solve the (possibly inconsistent) inverse problem,

$$
Y=\mathcal{A} c
$$

The normal equations are,

$$
\begin{equation*}
\mathcal{A}^{*} \mathcal{A} c=\mathcal{A}^{*} Y \tag{1}
\end{equation*}
$$

which, since \mathcal{A} is one-to-one, yields the least squares solution,

$$
\begin{equation*}
\widehat{c}=\mathcal{A}^{+} Y=\left(\mathcal{A}^{*} \mathcal{A}\right)^{-1} \mathcal{A}^{*} Y . \tag{2}
\end{equation*}
$$

To obtain the normal equations (1) and the least squares solution (2) it is evident that we need to compute the so-called Grammian operator $\mathcal{A}^{*} \mathcal{A}$ and the cross-correlation vector $\mathcal{A}^{*} Y$. (These terms are defined in Section 3.1 of Moon.) The adjoint operator is determined from,

$$
\begin{aligned}
\langle Y, \mathcal{A} c\rangle & =\left\langle Y, \sum_{i=1}^{m} c_{i} X_{i}\right\rangle=\sum_{i=1}^{m} c_{i}\left\langle Y, X_{i}\right\rangle \\
& =\sum_{i=1}^{m} \overline{\left\langle X_{i}, Y\right\rangle} c_{i}=\left\langle\mathcal{A}^{*}(Y), c\right\rangle .
\end{aligned}
$$

This yields,

$$
\mathcal{A}^{*}(Y)=\left(\begin{array}{c}
\left\langle X_{1}, Y\right\rangle \tag{3}\\
\vdots \\
\left\langle X_{m}, Y\right\rangle
\end{array}\right)=\left(\begin{array}{c}
\operatorname{tr} X_{1}^{H} Y \\
\vdots \\
\operatorname{tr} X_{m}^{H} Y
\end{array}\right) \in \mathbb{C}^{m}
$$

which is precisely the cross-correlation vector given as Equation (3.5) of Moon. (Because we define linearity in the second argument, our inner product arguments are reversed compared to Moon, who defines linearity to be in the first argument.) Taking $Y=\mathcal{A} c$ in the above enables us to determine $\mathcal{A}^{*} \mathcal{A}$. In particular, note that the $i^{\text {th }}$ component of the m-vector $\mathcal{A}^{*} \mathcal{A} c$ is given by,

$$
\begin{aligned}
\left(\mathcal{A}^{*} \mathcal{A} c\right)_{i} & =\left\langle X_{i}, \mathcal{A} c\right\rangle=\left\langle X_{i}, \sum_{j=1}^{m} c_{j} X_{j}\right\rangle \\
& =\sum_{j=1}^{m} c_{j}\left\langle X_{i}, X_{j}\right\rangle=\left(\left\langle X_{i}, X_{1}\right\rangle, \cdots,\left\langle X_{i}, X_{m}\right\rangle\right) c .
\end{aligned}
$$

This shows that the full Grammian matrix is given by (cf. Equation (3.7) of Moon),

$$
\mathcal{A}^{*} \mathcal{A}=\left(\begin{array}{ccc}
\left\langle X_{1}, X_{1}\right\rangle & \cdots & \left\langle X_{1}, X_{m}\right\rangle \tag{4}\\
\vdots & \ddots & \vdots \\
\left\langle X_{m}, X_{1}\right\rangle & \cdots & \left\langle X_{m}, X_{m}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
\operatorname{tr} X_{1}^{H} X_{1} & \cdots & \operatorname{tr} X_{1}^{H} X_{m} \\
\vdots & \ddots & \vdots \\
\operatorname{tr} X_{m}^{H} X_{1} & \cdots & \operatorname{tr} X_{m}^{H} X_{m}
\end{array}\right)
$$

Equations (1)-(4) taken together yield the least-squares solution.
6. From Equation (1.2) of Moon we have (with $a_{0}=1$),

$$
\begin{equation*}
y[t]=-\bar{a}_{1} y[t-1]-\cdots-\bar{a}_{p} y[t-p]+\bar{b}_{0} f[t]+\cdots+\bar{b}_{q} f[t-q]=x^{H} r[t] \tag{5}
\end{equation*}
$$

where,

$$
x=\left(a_{1}, \cdots, a_{p}, \cdots, b_{0}, \cdots, b_{q}\right)^{T} \in \mathbb{C}^{p+q+1}
$$

and

$$
r[t]=(-y[t-1], \cdots,-y[t-p], f[t], \cdots, f[t-q])^{T} \in \mathbb{C}^{p+q+1}
$$

Note that we can rewrite (5) as

$$
\begin{equation*}
\bar{y}[t]=r^{H}[t] x . \tag{6}
\end{equation*}
$$

Now suppose we have collected data sufficient to fill in the values of $y[t]$ and $r[t]$ for $t=1, \cdots, m$. Then (6) enables us to fill in the m rows of the following vector-matrix equation,

$$
\left(\begin{array}{c}
\bar{y}[1] \\
\vdots \\
\bar{y}[m]
\end{array}\right)=\left(\begin{array}{c}
r^{H}[1] \\
\vdots \\
r^{H}[m]
\end{array}\right) x
$$

which we can write as,

$$
\begin{equation*}
\eta=A x \tag{7}
\end{equation*}
$$

where,

$$
\eta=\left(\begin{array}{c}
\bar{y}[1] \tag{8}\\
\vdots \\
\bar{y}[m]
\end{array}\right) \in \mathbb{C}^{m} \quad \text { and } \quad A=\left(\begin{array}{c}
r^{H}[1] \\
\vdots \\
r^{H}[m]
\end{array}\right) \in \mathbb{C}^{m \times(p+q+1)}
$$

The system (7)-(8) can be solved in the least-squares sense to yield estimates of the unknown parameter vector, x. Note that this is a purely data-driven approach and (other than the putative validity of the ARMA model assumption) no statistical information about the data (such as knowledge of correlations) is assumed. The data $y[0], \cdots, y[p-1], \cdots, f[0], \cdots, f[-q]$ are known as the initial conditions. If they are not available, their values are often (suboptimally) set to zero. This is usually a reasonable approximation when $m \gg(p+q+1)$.
7. Proof of Moon Equation (4.34):

$$
\begin{aligned}
(A+X R Y)^{-1} X R & =A^{-1} X\left(R^{-1}+Y A^{-1} X\right)^{-1} ; \quad \text { (Moon Eq. (4.34)) } \\
X R & =(A+X R Y) A^{-1} X\left(R^{-1}+Y A^{-1} X\right)^{-1} \\
X R\left(R^{-1}+Y A^{-1} X\right) & =(A+X R Y) A^{-1} X \\
X+X R Y A^{-1} X & =X+X R Y A^{-1} X \\
X & =X
\end{aligned}
$$

Proof of Moon Equation (4.33):

$$
\begin{aligned}
(A+X R Y)^{-1} & =A^{-1}-A^{-1} X\left(R^{-1}+Y A^{-1} X\right)^{-1} Y A^{-1} \quad \text { (Moon Eq. (4.33)) } \\
& =A^{-1}-(A+X R Y)^{-1} X R Y A^{-1} ; \quad \text { (Using Moon Eq. (4.34)) } \\
I & =(A+X R Y) A^{-1}-X R Y A^{-1} \\
& =I+X R Y A^{-1}-X R Y A^{-1}=I
\end{aligned}
$$

To show the validity of Moon Equation (4.32), take $R=I, X=x$, and $Y=y^{H}$ in Moon Equation (4.33).
8. Kay 8.10. Write the vector x as,

$$
x=x+\widehat{s}-\widehat{s}=\widehat{s}+(x-\widehat{s})=\widehat{s}+e,
$$

where \widehat{s} is the orthogonal projection of x onto the subspace. Note that $e=x-\widehat{s}$ is orthogonal to $\widehat{s},\langle e, \widehat{s}\rangle=\langle\widehat{s}, e\rangle=0$, as a consequence of the Orthogonality Principle. Exploiting this fact results in,

$$
\|x\|^{2}=\|\widehat{s}+e\|^{2}=\langle\widehat{s}+e, \widehat{s}+e\rangle=\langle\widehat{s}, \widehat{s}\rangle+\langle e, e\rangle=\|\widehat{s}\|^{2}+\|e\|^{2} .
$$

9. Let \mathbb{C}^{n} be the space of n-dimensional vectors over the field of complex numbers with the standard inner product,

$$
\left\langle x_{1}, x_{2}\right\rangle=x_{1}^{H} x_{2}
$$

and corresponding induced 2-norm,

$$
\|x\|_{2}=\sqrt{x^{H} x}
$$

Let RV^{m} be the Hilbert space of zero mean, finite second-order moment m-dimensional random vectors over the field of complex numbers with inner product,

$$
\left\langle y_{1}, y_{2}\right\rangle=\mathrm{E}\left\{y_{1}^{H}(\omega) y_{2}(\omega)\right\}
$$

with corresponding induced norm,

$$
\|y\|^{2}=\mathrm{E}\left\{\|y(\omega)\|_{2}^{2}\right\}
$$

where $\|y(\omega)\|_{2}$ here denotes the standard 2-norm on \mathbb{C}^{m}. (As is standard, random vectors are identified as equivalent if they are identical almost surely.) Let

$$
\mathcal{A}: \mathbb{C}^{n} \rightarrow \mathrm{RV}^{m}
$$

be defined by

$$
\mathcal{A}(x)=A(\omega) x,
$$

where A is a random $m \times n$ matrix whose columns belong to, and are linearly independent in, the space RV^{m},

$$
A(\omega)=\left[a_{1}(\omega), \cdots, a_{n}(\omega)\right], \quad a_{i} \in \mathrm{RV}^{m}, \quad i=1, \cdots, n
$$

Because the n columns of $A(\omega)$ belong to RV^{m}, they each have zero mean. Furthermore, since they are assumed to be linearly independent in the space RV^{m}, they each must be nonzero with probability one.

Given an arbitray random vector, $y \in \mathrm{RV}^{m}$, we wish to find the minimum mean-square error approximation to y in the range of \mathcal{A}. This is equivalent to determining a vector \widehat{x} such that,

$$
\widehat{x} \in \operatorname{argmin} \mathrm{E}\left\{\|y(\omega)-\mathcal{A}(x)\|_{2}^{2}\right\}=\operatorname{argmin} \mathrm{E}\left\{\|y(\omega)-A(\omega) x\|_{2}^{2}\right\} .
$$

Equivalently, we desire to solve $y \approx \mathcal{A}(x)$ in the least-squares sense. The standard application of the projection theorem in the codomain of \mathcal{A} yields the Normal Equations,

$$
\mathcal{A}^{*} \mathcal{A} \widehat{x}=\mathcal{A}^{*} y
$$

which we write as

$$
R_{A A} \widehat{x}=R_{A y}
$$

where,

$$
R_{A A}=\mathcal{A}^{*} \mathcal{A} \quad \text { and } \quad R_{A y}=\mathcal{A}^{*} y
$$

With the assumption that the columns of $A(\omega)$ are linearly independent as random vectors in RV^{m}, we will see below that $R_{A A}=\mathcal{A}^{*} \mathcal{A}$ is invertible (one-to-one) and hence \mathcal{A} is one-to-one. Therefore the least squares solution is unique and is the unique solution to the Normal Equations.

To determine the adjoint operator, \mathcal{A}^{*}, note that,

$$
\begin{equation*}
\langle y, \mathcal{A}(x) x\rangle=\mathrm{E}\left\{y^{H} A x\right\}=\left(\mathrm{E}\left\{A^{H} y\right\}\right)^{H} x=\left\langle\mathrm{E}\left\{A^{H} y\right\}, x\right\rangle \tag{9}
\end{equation*}
$$

and therefore,

$$
\mathcal{A}^{*} y=R_{A y}=\mathrm{E}\left\{A^{H} y\right\}
$$

Now note that,

$$
\mathcal{A}^{*}(\mathcal{A} x)=\mathrm{E}\left\{A^{H}(A x)\right\}=\mathrm{E}\left\{A^{H} A\right\} x
$$

Since this is true for all x, the operator $R_{A A}=\mathcal{A}^{*} \mathcal{A}$ is seen to be,

$$
\mathcal{A}^{*} \mathcal{A}=R_{A A}=\mathrm{E}\left\{A^{H} A\right\}=\operatorname{diag}\left(\left\|a_{1}\right\|^{2}, \cdots,\left\|a_{m}\right\|^{2}\right)
$$

which is invertible since $\left\|a_{i}\right\| \neq 0, i=1, \cdots, m .^{3}$ Thus we have determined that the minimum mean-square estimate of y is given by $\widehat{y}=\mathcal{A} \widehat{x}$ where \widehat{x} is the unique least-squares (pseudoinverse) solution

$$
\widehat{x}=R_{A A}^{-1} R_{A y}=\left(\mathrm{E}\left\{A^{H} A\right\}\right)^{-1} \mathrm{E}\left\{A^{H} y\right\}
$$

Note that we have shown that,

$$
\mathcal{A}^{+} y=\left(\mathrm{E}\left\{A^{H} A\right\}\right)^{-1} \mathrm{E}\left\{A^{H} y\right\}
$$

and

$$
\hat{y}=P_{\mathcal{R}(\mathcal{A})} y=\mathcal{A} \widehat{x}=\mathcal{A} \mathcal{A}^{+} y=A\left(\left(\mathrm{E}\left\{A^{H} A\right\}\right)^{-1} \mathrm{E}\left\{A^{H} y\right\}\right)
$$

Since this is true for all $y \in \mathrm{RV}^{m}$, we have shown that the orthogonal projector onto the range of \mathcal{A} is given by

$$
P_{\mathcal{R}(\mathcal{A})}(\cdot)=A\left(\left(\mathrm{E}\left\{A^{H} A\right\}\right)^{-1} \mathrm{E}\left\{A^{H}(\cdot)\right\}\right)
$$

10. Fredholm's Alternative. Condition (a) says that b is in the range of A. Condition (b) says that b is not in the range of A. Obviously these conditions are mutually exclusive and one and only one of them is true.
[^2]
[^0]: ${ }^{1}$ I.e., let \mathcal{V} and \mathcal{W} be companion subspaces of \mathcal{X}.

[^1]: ${ }^{2}$ On an exam, I can ask you to fill in every step of the proof, including the ones not explicitly given here.

[^2]: ${ }^{3}$ Recall that $a_{i} \neq 0$ by assumption that the columns of A are linearly independent in RV^{m}.

