ECE 275A Homework # 2 Solutions

1. ECE 174 Midterm solutions are in a separate file located on the class website.

2. Let ¥V and W be independent (disjoint) subspaces of a vector space X, such that
X =V +W.! Consider any two vectors z = 1 + x5 and y = y; + 9 in X, where
x1,y1 € V and w9, yo € W give the unique decomposition of x and y along the
companion subspaces V and W respectively. Let P = Py denote the projection
operator which projects X onto V along W. Then Pz = x; and Py = y,. For any
two scalars « and [ we have

ax + By = a(ry + x2) + B(yr +y2) = (ax1 + By1) + (axs + Byo) € X,

with (az; 4+ By1) € V and (axg + Sys) € W since V and W are vector subspaces.
Therefore
P(ax + py) = axy + By = aPx + Py,

showing that a (possibly non-orthogonal) projection operator is linear.

3. Recall the the columns of [V W] are a basis for X iff they form a spanning set of vectors
for X which are also linearly independent. Also recall that a linear operator P is a
projection operator iff it is idempotent, P = P2,

(a) The complementary subspace condition X = V@)W and the fact that the columns
of V and and the columns of W each respectively forms a basis for V and WV implies
that for each x € X there exists av =Va € V and a w = W € W such that

r=vtw=VatWp=[VW] (g)

showing that the columns of [V W] span X.

The complementary subspace condition X = V @& W implies that V and W are
disjoint, which is true iff VN W = {0}. Now suppose that the columns of V
and W taken together are not linearly independent. Then there exists a # 0 and
f # 0 such that 0 = Va + Wp. (Recall that the columns of V are a linearly
independent set, as are the columns of W.) This yields Va = —W 3 # 0. But
Va eV and —Wp € W, implying that

0#£#VaeVnWw

which contradicts the assumption that V and W are disjoint, ¥V N W = {0}.
Therefore the assumption that the columns of V' and W taken together are not
linearly independent must be incorrect.

Te., let V and W be companion subspaces of X.



(b) Note that to show that a linear operator is a projection operator onto ¥V we need
to show both that it is idempotent (i.e., that it is indeed a projector) and that its
range is V (i.e., that it is a projector onto V). Let n be the dimension of . With
the columns M = [V W] linearly independent, M is an n X n invertible matrix.

Consider the matrix

P:M(é 8)M L oMt

It is easily shown that P? = P, so that P is a projection operator.

Because P = [V 0] M~!, we have that R(P) = R(V) = V. Thus P is a projector
from X onto the subspace V C X.

We now need to show that P projects “along” W, which is equivalent to the
requirement that N'(P) = R(W), i.e. that 0 = Px for all x € W. This is readily
shown:

v e R(W) szﬁz[VW](g) :M<g> — Px:[VO]M‘lM(g> 0.

4. Proof of Fact 1:

(r1,m9) = a(x1,x2) (assuming linearity in the second argument)
= <372, 1)
= (z9,a11)
= (@zy,T9) .

Proof of Fact 2:

(r1 + x93, ) = (x,21 + X2)
(x, 1) + (2, 22) (assuming linearity in the second argument)
= (21,2) + (22,2) .

Proof of Fact 3:
(g + agxe, ) = (ayx1,x) + (Qexe, T) (from Fact 2)
= o (r1,2) +ag (29, T) . (from Fact 1)
Proof of Fact 4: For all vectors x € X, for all vectors y1,y2 € Y, and for all scalars

a, a9 € C,

(A" (g + oy2) ,x) = (a1 + oy, Ax)
= ay (Y1, Az) + a5 (Y2, Ax) (from Fact 3)
= o (A%, x) + 03 (Ao, )
= (1 A"y + A™ys, x) (from Fact 3)
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and therefore A* (19 + asys) = ay A*y; + as A*ys. (Why does this last step follow??)
Proof of Fact 5: For all x and y,

((@d)y,z) = (y,adz)

= aly,Azr)
= a(A%y, )
= (ad'y,x), (from Fact 1)
and therefore (aA)* = @A*. (Why?)
Proof of Fact 6: For all x and y,
(A+B)y,z) = (y,(A+ B)z)
= (y, Az) + (y, Bx)
= (A'y,2) +(B'y,7)
= (A'y+ B'y,z) (from Fact 2)
= ((A"+B")y,x) (from definition of addition of operators)

and therefore (A + B)* = A* + B*. (Why?)
Proof of Fact 7:

(aA+BB)* = (aA)"+ (BB)* (from Fact 5)
aA* + BB*. (from Fact 4)

Proof of Fact 8: For all x and y,

(A'y,z) = (y, Az) & (2, A*y) = (Az,y) & (v, Ay) = (Az,y) .
Proof of Fact 9: For all x and z,
(CA) z,x) = (2,CAzx) = (C"z, Az) = (A*C*z,x) ,
and therefore (CA)* = A*C*. (Why?)

5. Moon 3.8.10. Let a linear mapping, A : C™ — CP*? between the space of complex
m-vectors and complex p X g-matrices be given by,

AC = i CiXi .
=1

20n an exam, I can ask you to fill in every step of the proof, including the ones not explicitly given here.



The inner product on C™ is taken to be the standard inner product, (z,y) = zy,
while the inner product on CP*? is taken to be the Frobenius inner product,

(X,V)=tr X"y .

Assume that X; are linearly independent so that the mapping, A, is one-to-one. We
wish to solve the (possibly inconsistent) inverse problem,

Y=Ac,

The normal equations are,

A*Ac= AY , (1)

which, since A is one-to-one, yields the least squares solution,
=AY = (A"A)TAY . (2)

To obtain the normal equations (1) and the least squares solution (2) it is evident that
we need to compute the so—called Grammian operator A* A and the cross-correlation
vector A*Y. (These terms are defined in Section 3.1 of Moon.) The adjoint operator
is determined from,

(Y,Ac) = <Y,iciXi>—ici<Y,Xi>

This yields,
(X1,Y) tr XAY
A(Y) = : = : eC™, (3)
(X, Y) tr XAy
which is precisely the cross-correlation vector given as Equation (3.5) of Moon. (Be-
cause we define linearity in the second argument, our inner product arguments are
reversed compared to Moon, who defines linearity to be in the first argument.) Taking

Y = Ac in the above enables us to determine A*A. In particular, note that the i
component of the m-vector A* A ¢ is given by,

(A*Ac), = (X;, Ac) = <XZ-, Em:chj>

= ch Xi, X5) = (X5, Xu) -+ (X5, Xon)) €

Jj=1



This shows that the full Grammian matrix is given by (cf. Equation (3.7) of Moon),

<X1, X1> cee <X1, Xm> tI‘X{{Xl s tl"X{_IXm
A*A = : : = : : NG
Xy X1) oo (Xy Xin) teX2X, - trX2X,,

Equations (1)—(4) taken together yield the least-squares solution.

. From Equation (1.2) of Moon we have (with ag = 1),

ylt] = —ay[t =1 — - —@y[t —p] +bo flt] + -+ b, flt —ql =" r[t], (5)
where,
= (ay, -, ap, -, by, bq)TGCerqH,
and
i) = (~ylt = 1.yl ], Sl T - a)T e e,
Note that we can rewrite (5) as
glt] =r"[t]e. (6)
Now suppose we have collected data sufficient to fill in the values of y[t] and r[t| for
t=1,---,m. Then (6) enables us to fill in the m rows of the following vector-matrix
equation,
y[1] r [
: = : T,
y[m] rf[m]

which we can write as,

n= Az, (7)

where,
gl ri[1]
n=1_ : | €C” and A= : € Crxlptatl) (8)

_ |

ylm] rm]

The system (7)—(8) can be solved in the least-squares sense to yield estimates of the
unknown parameter vector, z. Note that this is a purely data-driven approach and
(other than the putative validity of the ARMA model assumption) no statistical in-
formation about the data (such as knowledge of correlations) is assumed. The data
yl0], -, ylp—1],---, fl0],---, f[—q] are known as the initial conditions. If they are
not available, their values are often (suboptimally) set to zero. This is usually a rea-
sonable approximation when m > (p+ ¢ + 1).



7. Proof of Moon Equation (4.34):

(A+ XRY)'XR = A7'X (R'+YA'X)™;  (Moon Eq. (4.34))
XR = (A+XRY)AT'X (R 4+YA'X) ™,
XR(R'+YA'X) = (A+XRY)A'X;
X+ XRYA'X = X+ XRYA'X;
X = X.
Proof of Moon Equation (4.33):

(A+XRY)"' = A7 —A'X (R +YA'X)"'YA'  (Moon Eq. (4.33))
— A'—(A+XRY)'XRYA™';,  (Using Moon Eq. (4.34))
I = (A+ XRY)A™'— XRYA™!
= I+ XRYA' - XRYA'=1.

To show the validity of Moon Equation (4.32), take R = I, X = x, and Y = y* in
Moon Equation (4.33).

8. Kay 8.10. Write the vector x as,
r=r+5—5=5+(r—-35)=5+e,

where s is the orthogonal projection of x onto the subspace. Note that e = x — 5 is
orthogonal to s, (e,s) = (5,e) = 0, as a consequence of the Orthogonality Principle.
Exploiting this fact results in,

Iz =I5 + el = (5 + e, 5+ €) = (5,5) + (e, e) = [I5II* + [le]|”

9. Let C™ be the space of n-dimensional vectors over the field of complex numbers with
the standard inner product,
(T1,20) = $11gl'2 5

and corresponding induced 2-norm,

H

|z]|2 = Valtzx.

Let RV™ be the Hilbert space of zero mean, finite second-order moment m-dimensional
random vectors over the field of complex numbers with inner product,

(y1,92) = E {yf' W)y (w)} |

with corresponding induced norm,

Iyl = E {llyw)I3}
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where ||y(w)||2 here denotes the standard 2-norm on C™. (As is standard, random
vectors are identified as equivalent if they are identical almost surely.) Let

A:C"— RV™
be defined by
A(z) = Alw) z,

where A is a random m X n matrix whose columns belong to, and are linearly inde-
pendent in, the space RV™,

Alw) = [ag(w), -+ ,an(w)] , a; e RV", i=1,---,n.

Because the n columns of A(w) belong to RV™, they each have zero mean. Furthermore,
since they are assumed to be linearly independent in the space RV™, they each must
be nonzero with probability one.

Given an arbitray random vector, y € RV"™, we wish to find the minimum mean-square
error approximation to y in the range of A. This is equivalent to determining a vector
Z such that,

T € argmin E {Hy(w) — .A(:c)H%} = argmin E {Hy(w) — A(w)a:”%} )

Equivalently, we desire to solve y ~ A(x) in the least-squares sense. The standard ap-
plication of the projection theorem in the codomain of A yields the Normal Equations,

A" AT = A%y,
which we write as
RuaZ = Ray,

where,

RAA = .A*.A and RAy = A*y.

With the assumption that the columns of A(w) are linearly independent as random
vectors in RV™, we will see below that Rqy = A*A is invertible (one-to-one) and
hence A is one-to-one. Therefore the least squares solution is unique and is the unique
solution to the Normal Equations.

To determine the adjoint operator, A*, note that,
(y, A(z)z) = E {y" Az} = (E {ATy})" = = (E {Afy} 2, 9)

and therefore,
Ay = Ru, =E {A"y} .
Now note that,
A*(Az) =E {A"(Az)} =E {A"A}z
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10.

Since this is true for all z, the operator R4 = A*A is seen to be,

A*A = Rax = E {A"A} = diag (], -, lam]l?) ,

which is invertible since |la;]| # 0, i = 1,--- ,m.®> Thus we have determined that

the minimum mean-square estimate of y is given by y = AZ where 7 is the unique
least-squares (pseudoinverse) solution

P R Ra, = (E {A7A}Y) B (4%}
Note that we have shown that,
Aty = (E {A"A}) T E {A"y}

and

§ = Pruyy = AT = AA y = A ((E {A74}) ' E {aTy}).

Since this is true for all y € RV™, we have shown that the orthogonal projector onto
the range of A is given by

Pre(-) = A((E{A74}) " E{47()}).

Fredholm’s Alternative. Condition (a) says that b is in the range of A. Condition (b)
says that b is not in the range of A. Obviously these conditions are mutually exclusive
and one and only one of them is true.

3Recall that a; # 0 by assumption that the columns of A are linearly independent in RV™.
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