
ECE 275A Homework # 2 Solutions

1. ECE 174 Midterm solutions are in a separate file located on the class website.

2. Let V and W be independent (disjoint) subspaces of a vector space X , such that
X = V +W .1 Consider any two vectors x = x1 + x2 and y = y1 + y2 in X , where
x1, y1 ∈ V and x2, y2 ∈ W give the unique decomposition of x and y along the
companion subspaces V and W respectively. Let P = PV|W denote the projection
operator which projects X onto V along W . Then P x = x1 and P y = y1. For any
two scalars α and β we have

αx+ βy = α(x1 + x2) + β(y1 + y2) = (αx1 + βy1) + (αx2 + βy2) ∈ X ,

with (αx1 + βy1) ∈ V and (αx2 + βy2) ∈ W since V and W are vector subspaces.
Therefore

P (αx+ βy) = αx1 + βy1 = αPx+ βPy ,

showing that a (possibly non-orthogonal) projection operator is linear.

3. Recall the the columns of [V W ] are a basis for X iff they form a spanning set of vectors
for X which are also linearly independent. Also recall that a linear operator P is a
projection operator iff it is idempotent, P = P 2.

(a) The complementary subspace condition X = V⊕W and the fact that the columns
of V and and the columns ofW each respectively forms a basis for V andW implies
that for each x ∈ X there exists a v = V α ∈ V and a w = Wβ ∈ W such that

x = v + w = V α +Wβ = [V W ]

(
α
β

)
showing that the columns of [V W ] span X .

The complementary subspace condition X = V ⊕ W implies that V and W are
disjoint, which is true iff V ∩ W = {0}. Now suppose that the columns of V
and W taken together are not linearly independent. Then there exists α 6= 0 and
β 6= 0 such that 0 = V α + Wβ. (Recall that the columns of V are a linearly
independent set, as are the columns of W .) This yields V α = −Wβ 6= 0. But
V α ∈ V and −Wβ ∈ W , implying that

0 6= V α ∈ V ∩W

which contradicts the assumption that V and W are disjoint, V ∩ W = {0}.
Therefore the assumption that the columns of V and W taken together are not
linearly independent must be incorrect.

1I.e., let V and W be companion subspaces of X .
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(b) Note that to show that a linear operator is a projection operator onto V we need
to show both that it is idempotent (i.e., that it is indeed a projector) and that its
range is V (i.e., that it is a projector onto V). Let n be the dimension of X . With
the columns M = [V W ] linearly independent, M is an n× n invertible matrix.

Consider the matrix

P = M

(
I 0
0 0

)
M−1 = [V 0]M−1.

It is easily shown that P 2 = P , so that P is a projection operator.

Because P = [V 0]M−1, we have that R(P ) = R(V ) = V . Thus P is a projector
from X onto the subspace V ⊂ X .

We now need to show that P projects “along” W , which is equivalent to the
requirement that N (P ) = R(W ), i.e. that 0 = Px for all x ∈ W . This is readily
shown:

x ∈ R(W ) ⇐⇒ x = Wβ = [V W ]

(
0

β

)
= M

(
0

β

)
=⇒ Px = [V 0]M−1M

(
0

β

)
= 0.

4. Proof of Fact 1:

〈x1, αx2〉 = α 〈x1, x2〉 (assuming linearity in the second argument)

= α 〈x2, x1〉
= 〈x2, αx1〉
= 〈αx1, x2〉 .

Proof of Fact 2:

〈x1 + x2, x〉 = 〈x, x1 + x2〉
= 〈x, x1〉+ 〈x, x2〉 (assuming linearity in the second argument)

= 〈x1, x〉+ 〈x2, x〉 .

Proof of Fact 3:

〈α1x1 + α2x2, x〉 = 〈α1x1, x〉+ 〈α2x2, x〉 (from Fact 2)

= α1 〈x1, x〉+ α2 〈x2, x〉 . (from Fact 1)

Proof of Fact 4: For all vectors x ∈ X , for all vectors y1, y2 ∈ Y , and for all scalars
α1, α2 ∈ C,

〈A∗ (α1y1 + α2y2) , x〉 = 〈α1y1 + α2y2, Ax〉
= α1 〈y1, Ax〉+ α2 〈y2, Ax〉 (from Fact 3)

= α1 〈A∗y1, x〉+ α2 〈A∗y2, x〉
= 〈α1A

∗y1 + α2A
∗y2, x〉 , (from Fact 3)
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and therefore A∗ (α1y1 + α2y2) = α1A
∗y1 + α2A

∗y2. (Why does this last step follow?2)

Proof of Fact 5: For all x and y,

〈(αA)∗y, x〉 = 〈y, αAx〉
= α 〈y, Ax〉
= α 〈A∗y, x〉
= 〈αA∗y, x〉 , (from Fact 1)

and therefore (αA)∗ = αA∗. (Why?)

Proof of Fact 6: For all x and y,

〈(A+B)∗y, x〉 = 〈y, (A+B)x〉
= 〈y, Ax〉+ 〈y,Bx〉
= 〈A∗y, x〉+ 〈B∗y, x〉
= 〈A∗y +B∗y, x〉 (from Fact 2)

= 〈(A∗ +B∗) y, x〉 (from definition of addition of operators)

and therefore (A+B)∗ = A∗ +B∗. (Why?)

Proof of Fact 7:

(αA+ βB)∗ = (αA)∗ + (βB)∗ (from Fact 5)

= αA∗ + βB∗ . (from Fact 4)

Proof of Fact 8: For all x and y,

〈A∗y, x〉 = 〈y, Ax〉 ⇔ 〈x,A∗y〉 = 〈Ax, y〉 ⇔ 〈x,A∗y〉 = 〈Ax, y〉 .

Proof of Fact 9: For all x and z,

〈(CA)∗z, x〉 = 〈z, CAx〉 = 〈C∗z, Ax〉 = 〈A∗C∗z, x〉 ,

and therefore (CA)∗ = A∗C∗. (Why?)

5. Moon 3.8.10. Let a linear mapping, A : Cm → Cp×q, between the space of complex
m-vectors and complex p× q-matrices be given by,

A c =
m∑
i=1

ciXi .

2On an exam, I can ask you to fill in every step of the proof, including the ones not explicitly given here.
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The inner product on Cm is taken to be the standard inner product, 〈x, y〉 = xHy,
while the inner product on Cp×q is taken to be the Frobenius inner product,

〈X, Y 〉 = trXHY .

Assume that Xi are linearly independent so that the mapping, A, is one-to-one. We
wish to solve the (possibly inconsistent) inverse problem,

Y = A c ,

The normal equations are,
A∗A c = A∗Y , (1)

which, since A is one-to-one, yields the least squares solution,

ĉ = A+Y = (A∗A)−1A∗Y . (2)

To obtain the normal equations (1) and the least squares solution (2) it is evident that
we need to compute the so–called Grammian operator A∗A and the cross-correlation
vector A∗Y . (These terms are defined in Section 3.1 of Moon.) The adjoint operator
is determined from,

〈Y,A c〉 =

〈
Y,

m∑
i=1

ciXi

〉
=

m∑
i=1

ci 〈Y,Xi〉

=
m∑
i=1

〈Xi, Y 〉 ci = 〈A∗(Y ), c〉 .

This yields,

A∗(Y ) =

 〈X1, Y 〉
...

〈Xm, Y 〉

 =

trXH
1 Y
...

trXH
mY

 ∈ Cm , (3)

which is precisely the cross-correlation vector given as Equation (3.5) of Moon. (Be-
cause we define linearity in the second argument, our inner product arguments are
reversed compared to Moon, who defines linearity to be in the first argument.) Taking
Y = A c in the above enables us to determine A∗A. In particular, note that the ith

component of the m-vector A∗A c is given by,

(A∗A c)i = 〈Xi, A c〉 =

〈
Xi,

m∑
j=1

cjXj

〉

=
m∑
j=1

cj 〈Xi, Xj〉 = (〈Xi, X1〉 , · · · , 〈Xi, Xm〉) c .
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This shows that the full Grammian matrix is given by (cf. Equation (3.7) of Moon),

A∗A =

 〈X1, X1〉 · · · 〈X1, Xm〉
...

. . .
...

〈Xm, X1〉 · · · 〈Xm, Xm〉

 =

trXH
1 X1 · · · trXH

1 Xm
...

. . .
...

trXH
mX1 · · · trXH

mXm

 . (4)

Equations (1)–(4) taken together yield the least-squares solution.

6. From Equation (1.2) of Moon we have (with a0 = 1),

y[t] = −a1 y[t− 1]− · · · − ap y[t− p] + b0 f [t] + · · ·+ bq f [t− q] = xH r[t] , (5)

where,
x = (a1, · · · , ap, · · · , b0, · · · , bq)T ∈ Cp+q+1 ,

and
r[t] = (−y[t− 1], · · · ,−y[t− p], f [t], · · · , f [t− q])T ∈ Cp+q+1 .

Note that we can rewrite (5) as
y[t] = rH [t]x . (6)

Now suppose we have collected data sufficient to fill in the values of y[t] and r[t] for
t = 1, · · · ,m. Then (6) enables us to fill in the m rows of the following vector-matrix
equation,  y[1]

...
y[m]

 =

 rH [1]
...

rH [m]

x ,

which we can write as,
η = Ax , (7)

where,

η =

 y[1]
...

y[m]

 ∈ Cm and A =

 rH [1]
...

rH [m]

 ∈ Cm×(p+q+1) . (8)

The system (7)–(8) can be solved in the least-squares sense to yield estimates of the
unknown parameter vector, x. Note that this is a purely data-driven approach and
(other than the putative validity of the ARMA model assumption) no statistical in-
formation about the data (such as knowledge of correlations) is assumed. The data
y[0], · · · , y[p− 1], · · · , f [0], · · · , f [−q] are known as the initial conditions. If they are
not available, their values are often (suboptimally) set to zero. This is usually a rea-
sonable approximation when m� (p+ q + 1).
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7. Proof of Moon Equation (4.34):

(A+XRY )−1XR = A−1X
(
R−1 + Y A−1X

)−1
; (Moon Eq. (4.34))

XR = (A+XRY )A−1X
(
R−1 + Y A−1X

)−1
;

XR
(
R−1 + Y A−1X

)
= (A+XRY )A−1X;

X +XRY A−1X = X +XRY A−1X;

X = X .

Proof of Moon Equation (4.33):

(A+XRY )−1 = A−1 − A−1X
(
R−1 + Y A−1X

)−1
Y A−1 (Moon Eq. (4.33))

= A−1 − (A+XRY )−1XRY A−1; (Using Moon Eq. (4.34))

I = (A+XRY )A−1 −XRY A−1

= I +XRY A−1 −XRY A−1 = I .

To show the validity of Moon Equation (4.32), take R = I, X = x, and Y = yH in
Moon Equation (4.33).

8. Kay 8.10. Write the vector x as,

x = x+ ŝ− ŝ = ŝ+ (x− ŝ) = ŝ+ e ,

where ŝ is the orthogonal projection of x onto the subspace. Note that e = x − ŝ is
orthogonal to ŝ, 〈e, ŝ〉 = 〈ŝ, e〉 = 0, as a consequence of the Orthogonality Principle.
Exploiting this fact results in,

‖x‖2 = ‖ŝ+ e‖2 = 〈ŝ+ e, ŝ+ e〉 = 〈ŝ, ŝ〉+ 〈e, e〉 = ‖ŝ‖2 + ‖e‖2 .

9. Let Cn be the space of n-dimensional vectors over the field of complex numbers with
the standard inner product,

〈x1, x2〉 = xH1 x2 ,

and corresponding induced 2-norm,

‖x‖2 =
√
xHx .

Let RVm be the Hilbert space of zero mean, finite second-order moment m-dimensional
random vectors over the field of complex numbers with inner product,

〈y1, y2〉 = E
{
yH1 (ω)y2(ω)

}
,

with corresponding induced norm,

‖y‖2 = E
{
‖y(ω)‖22

}
,
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where ‖y(ω)‖2 here denotes the standard 2-norm on Cm. (As is standard, random
vectors are identified as equivalent if they are identical almost surely.) Let

A : Cn → RVm

be defined by
A(x) = A(ω)x,

where A is a random m × n matrix whose columns belong to, and are linearly inde-
pendent in, the space RVm,

A(ω) = [a1(ω), · · · , an(ω)] , ai ∈ RVm, i = 1, · · · , n .

Because the n columns of A(ω) belong to RVm, they each have zero mean. Furthermore,
since they are assumed to be linearly independent in the space RVm, they each must
be nonzero with probability one.

Given an arbitray random vector, y ∈ RVm, we wish to find the minimum mean-square
error approximation to y in the range of A. This is equivalent to determining a vector
x̂ such that,

x̂ ∈ argmin E
{
‖y(ω)−A(x)‖22

}
= argmin E

{
‖y(ω)− A(ω)x‖22

}
.

Equivalently, we desire to solve y ≈ A(x) in the least-squares sense. The standard ap-
plication of the projection theorem in the codomain of A yields the Normal Equations,

A∗A x̂ = A∗y ,

which we write as
RAA x̂ = RAy ,

where,
RAA = A∗A and RAy = A∗y.

With the assumption that the columns of A(ω) are linearly independent as random
vectors in RVm, we will see below that RAA = A∗A is invertible (one-to-one) and
hence A is one-to-one. Therefore the least squares solution is unique and is the unique
solution to the Normal Equations.

To determine the adjoint operator, A∗, note that,

〈y,A(x)x〉 = E
{
yHAx

}
=
(
E
{
AHy

})H
x =

〈
E
{
AHy

}
, x
〉
, (9)

and therefore,
A∗y = RAy = E

{
AHy

}
.

Now note that,
A∗(Ax) = E

{
AH(Ax)

}
= E

{
AHA

}
x
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Since this is true for all x, the operator RAA = A∗A is seen to be,

A∗A = RAA = E
{
AHA

}
= diag

(
‖a1‖2, · · · , ‖am‖2

)
,

which is invertible since ‖ai‖ 6= 0, i = 1, · · · ,m.3 Thus we have determined that
the minimum mean-square estimate of y is given by ŷ = Ax̂ where x̂ is the unique
least-squares (pseudoinverse) solution

x̂ = R−1AARAy =
(
E
{
AHA

})−1
E
{
AHy

}
.

Note that we have shown that,

A+y =
(
E
{
AHA

})−1
E
{
AHy

}
,

and
ŷ = PR(A)y = Ax̂ = AA+y = A

((
E
{
AHA

})−1
E
{
AHy

})
.

Since this is true for all y ∈ RVm, we have shown that the orthogonal projector onto
the range of A is given by

PR(A)( · ) = A
((

E
{
AHA

})−1
E
{
AH( · )

})
.

10. Fredholm’s Alternative. Condition (a) says that b is in the range of A. Condition (b)
says that b is not in the range of A. Obviously these conditions are mutually exclusive
and one and only one of them is true.

3Recall that ai 6= 0 by assumption that the columns of A are linearly independent in RVm.
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