Linear Algebra Concepts

Ken Kreutz-Delgado
(Nuno Vasconcelos)

ECE 175A – Winter 2012 – UCSD
Vector spaces

• **Definition:** a vector space is a set \mathcal{H} where

 – addition and scalar multiplication are defined and satisfy:

 1) $x + (x' + x'') = (x + x') + x''$
 2) $x + x' = x' + x \in \mathcal{H}$
 3) $0 \in \mathcal{H}, 0 + x = x$
 4) $-x \in \mathcal{H}, -x + x = 0$
 5) $\lambda x \in \mathcal{H}$
 6) $1x = x$
 7) $\lambda(\lambda' x) = (\lambda \lambda')x$
 8) $\lambda(x + x') = \lambda x + \lambda x'$
 9) $(\lambda + \lambda')x = \lambda x + \lambda' x$

 ($\lambda = \text{scalar}; \ x, x', x'' \in \mathcal{H}$)

• the canonical example is \mathbb{R}^d with standard
 vector addition and scalar multiplication

• Definition: a vector space is a set \mathcal{H} where
 – addition and scalar multiplication are defined and satisfy:

 1) $x + (x' + x'') = (x + x') + x''$
 2) $x + x' = x' + x \in \mathcal{H}$
 3) $0 \in \mathcal{H}, 0 + x = x$
 4) $-x \in \mathcal{H}, -x + x = 0$
 5) $\lambda x \in \mathcal{H}$
 6) $1x = x$
 7) $\lambda(\lambda' x) = (\lambda \lambda')x$
 8) $\lambda(x + x') = \lambda x + \lambda x'$
 9) $(\lambda + \lambda')x = \lambda x + \lambda' x$

 ($\lambda = \text{scalar}; \ x, x', x'' \in \mathcal{H}$)

• the canonical example is \mathbb{R}^d with standard
 vector addition and scalar multiplication

• Definition: a vector space is a set \mathcal{H} where
 – addition and scalar multiplication are defined and satisfy:

 1) $x + (x' + x'') = (x + x') + x''$
 2) $x + x' = x' + x \in \mathcal{H}$
 3) $0 \in \mathcal{H}, 0 + x = x$
 4) $-x \in \mathcal{H}, -x + x = 0$
 5) $\lambda x \in \mathcal{H}$
 6) $1x = x$
 7) $\lambda(\lambda' x) = (\lambda \lambda')x$
 8) $\lambda(x + x') = \lambda x + \lambda x'$
 9) $(\lambda + \lambda')x = \lambda x + \lambda' x$

 ($\lambda = \text{scalar}; \ x, x', x'' \in \mathcal{H}$)

• the canonical example is \mathbb{R}^d with standard
 vector addition and scalar multiplication
Vector spaces

• But there are much more interesting examples
• E.g., the \textit{space of functions} \(f: \mathcal{X} \rightarrow \mathbb{R} \) with

\[(f + g)(x) = f(x) + g(x) \quad \text{and} \quad (\lambda f)(x) = \lambda f(x) \]

• \(\mathbb{R}^d \) is a vector space of \textit{finite} dimension, e.g.
 – \(f = (f_1, \ldots, f_d)^T \)
• When \(d \) goes to infinity we have a function
 – \(f = f(t) \)
• The space of \textit{all} functions is an \textit{infinite} dimensional vector space
Data Vector Spaces

• In this course we will talk a lot about “data” and “features”
• Data/features will always be represented in a vector space:
 – an example is really just a point (“datapoint”) on such a space
 – from above we know how to perform basic operations on datapoints
 – this is nice, because datapoints can be quite abstract
 – e.g. images:
 ▪ an image is a function on the image plane
 ▪ it assigns a color \(f(x,y) \) to each each image location \((x,y) \)
 ▪ the space \(\Psi \) of images is a vector space (note: assumes that images can be negative)
 ▪ this image is a point in \(\Psi \)
Images

- Because of this \textit{we can manipulate images by manipulating their equivalent vector representations}.
- E.g., Suppose one wants to \textit{“morph”} \(a(x,y)\) into \(b(x,y)\):
 - One way to do this is via the path along the line from \(a\) to \(b\).
 \[
 c(\alpha) = a + \alpha (b-a) = (1-\alpha) a + \alpha b
 \]
 - for \(\alpha = 0\) we have \(a(x,y)\)
 - for \(\alpha = 1\) we have \(b(x,y)\)
 - for \(\alpha\) in \((0,1)\) we have a point on the line between \(a(x,y)\) and \(b(x,y)\)
- To morph an image we can simply apply this rule to the image vector representations!
Images

- When we make
 \[c(x,y) = (1-\alpha) \, a(x,y) + \alpha \, b(x,y) \]
 we get “image morphing”:

- The point is that this is possible because we exploit the structure of a vector space.
Images

- Images are usually approximated as points in \mathbb{R}^d
 - **Sample** (*discretize*) an image on a finite grid to get an array of pixels $a(x,y) \rightarrow a(i,j)$
 - Images are always stored like this on digital computers
 - We can now stack all the rows (or columns) into a vector. E.g. a 3×3 image can be converted into a 9×1 vector as follows:

 ![Image Conversion Example]

 - In general $n \times m$ image vector is transformed into a $nm \times 1$ vector
 - Note that *this is yet another vector space*

- The point is that there are generally multiple different, *but isomorphic*, vector spaces in which the data can be represented
Another common type of data is **text**.

Documents are represented by **word counts**:

- associate a counter with each word
- slide a window through the text
- whenever the word occurs increment its counter

This is the way search engines represent web pages.
Text

- E.g. word counts for three documents in a certain corpus (only 12 words shown for clarity)

- Note that:
 - Each document is a $d = 12$ dimensional vector
 - If I add two word count vectors (documents), I get a new word count vector (document)
 - If I multiply a word count vector (document) by a scalar, I get a word count vector
 - Note: once again we assume word counts could be negative (to make this happen we can simply subtract the average value)

- This means:
 - We are once again in a vector space (positive subset of \mathbb{R}^d)
 - A document is a point in this space
Bilinear forms

- One reason to use *inner product vector spaces* is that they allow us to measure distances between data points.
- We will see that this is **crucial for classification**.
- The main tool for this is the *inner product* ("dot-product").
- We can define the dot-product using the notion of a *bilinear form* (assuming a *real* vector space).

Definition: a *bilinear form* on a real vector space \mathcal{H} is a bilinear mapping

$$Q: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$$

$$(x,x') \rightarrow Q(x,x')$$

"Bi-linear" means that $\forall x,x',x'' \in \mathcal{H}$

i) $Q[(\lambda x + \lambda' x'),x''] = \lambda Q(x,x'') + \lambda' Q(x',x'')$

ii) $Q[x'',(\lambda x + \lambda' x')] = \lambda Q(x'',x) + \lambda' Q(x'',x')$
Inner Products

- **Definition**: an *inner product* on a *real* vector space \mathcal{H} is a *bilinear form*

 $$<\cdot,\cdot>: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$$
 $$(x,x') \rightarrow <x,x'>$$

 such that

 i) $<x,x> \geq 0$, $\forall \ x \in \mathcal{H}$

 ii) $<x,x> = 0$ if and only if $x = 0$

 iii) $<x,y> = <y,x>$ for all x and y

- The *positive-definiteness* conditions i) and ii) make the inner product a natural measure of similarity
- This becomes more precise with introduction of a *norm*
Inner Products and Norms

• Any inner product *induces* a **norm** via the assignment

\[\|x\|^2 = \langle x, x \rangle \]

• **By definition, any norm must** obey the following **properties**
 – Positive-definiteness: \(\|x\| \geq 0, \; \& \; \|x\| = 0 \iff x = 0 \)
 – Homogeneity: \(\|\lambda x\| = |\lambda| \|x\| \)
 – Triangle Inequality: \(\|x + y\| \leq \|x\| + \|y\| \)

• A norm defines a corresponding **metric**

\[d(x,y) = \|x-y\| \]

which is a **measure of the distance** between \(x \) and \(y \)

• Always remember that the induced norm **changes** with a different choice of inner product!
Inner Product

• Back to our examples:
 – In \mathbb{R}^d the **standard** (or **unweighted**) inner product is
 \[\langle x, y \rangle = x^T y = \sum_{i=1}^{d} x_i y_i \]
 \[\|x\| = \sqrt{x^T x} = \sqrt{\sum_{i=1}^{d} x_i^2} \]
 – Which leads to the **standard (unweighted) Euclidean norm** in \mathbb{R}^d
 – The distance between two vectors is the **standard (unweighted) Euclidean distance** in \mathbb{R}^d
 \[d(x, y) = \|x - y\| = \sqrt{(x - y)^T (x - y)} = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2} \]
Inner Products and Norms

• Note, e.g., that this immediately gives a measure of similarity between web pages
 – compute word count vector \(x_i \) from page \(i \), for all \(i \)
 – distance between page \(i \) and page \(j \) can be simply defined as:

\[
d(x_i, x_j) = \| x_i - x_j \| = \sqrt{(x_i - x_j)^T (x_i - x_j)}
\]

 – This allows us to find, in the web, the most similar page \(i \) to any given page \(j \), at least with respect to this simple metric.

• In fact, this is very close to the measure of similarity used by most search engines!

• What about norms on function spaces, as used to represent, e.g., images and other continuous valued signals?
Inner Products on Function Spaces

- Recall that the space of functions is an infinite dimensional vector space
 - The standard (unweighted) inner product is the natural extension of that in \mathbb{R}^d (just replace summations by integrals)
 \[
 \langle f(x), g(x) \rangle = \int f(x)g(x)dx
 \]
 - The norm is related to the “energy” of the function
 \[
 \| f(x) \|^2 = \int f^2(x)dx
 \]
 - The distance between functions is related to the energy of the difference between them
 \[
 d(f(x), g(x)) = \| f(x) - g(x) \|^2 = \int [f(x) - g(x)]^2 dx
 \]
Basis Vectors

• We know how to measure distances in a vector space

• Another interesting property is that we can usually fully characterize a vector space by one of its *bases*

• A *set* of vectors \(x_1, \ldots, x_k \) is a *basis* of a vector space \(\mathcal{H} \) if and only if (iff)
 – they are *linearly independent*

\[
\sum_i c_i x_i = 0 \iff c_i = 0, \forall i
\]

 – and they *span* \(\mathcal{H} \): i.e., for any \(v \) in \(\mathcal{H} \), \(v \) can be written as

\[
v = \sum_i c_i x_i
\]

• These *two conditions* mean that *any* \(v \in \mathcal{H} \) can be *uniquely* represented in this form.
Basis

- Note that
 - By making the canonical representations for the vectors x_i the columns of a matrix X, these two conditions can be compactly written as
 - Condition 1. The vectors x_i are **linear independent**:
 \[Xc = 0 \iff c = 0 \]
 - Condition 2. The vectors x_i span H
 \[\forall v \neq 0, \exists c \neq 0 \text{ such that } v = Xc \]

- Also, all bases of H have the **same** number of vectors, which is called the **dimension** of H
 - *This is valid for any vector space!*
Basis

• example
 – A basis of the vector space of images of faces
 – The figure only show the first 16 basis vectors but there actually more
 – These vectors are orthonormal
Orthogonality

- Two vectors are **orthogonal** iff their inner product is zero
 - e.g. \[\int_0^{2\pi} \sin(ax)\cos(ax)\,dx = \left. \frac{\sin^2 ax}{2a} \right|_0^{2\pi} = 0 \]

 in the space of functions defined on \([0,2\pi]\), \(\cos(ax)\) and \(\sin(ax)\) are orthogonal

- **Two subspaces** \(V\) and \(W\) are orthogonal, \(V \perp W\), if **every** vector in \(V\) is orthogonal to **every** vector in \(W\)

- a **set** of vectors \(x_1, \ldots, x_k\) is called
 - **orthogonal** if **all pairs** of vectors are orthogonal.
 - **orthonormal** if all of the orthogonal vectors also have unit norm.

\[
\langle x_i, x_j \rangle = \begin{cases}
0, & \text{if } i \neq j \\
1, & \text{if } i = j
\end{cases}
\]
Matrix

- an \textbf{m x n matrix represents} a linear operator that maps a vector from the \textit{domain} \(\mathcal{X} = \mathbb{R}^n \) to a vector in the \textit{codomain} \(\mathcal{Y} = \mathbb{R}^m \)

- E.g. the equation \(y = Ax \) sends \(x \) in \(\mathbb{R}^n \) to \(y \) in \(\mathbb{R}^m \) according to

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_m
\end{bmatrix} =
\begin{bmatrix}
a_{11} & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{nn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\]

\(\mathcal{X} \quad \xrightarrow{A} \quad \mathcal{Y} \)
Matrix-Vector Multiplication I

• Consider \(y = Ax \), i.e. \(y_i = \sum_{j=1}^{n} a_{ij} x_j, \quad i = 1, \ldots, m \)
• This is equivalent to

\[
\begin{pmatrix}
\vdots \\
y_i \\
\vdots
\end{pmatrix} =
\begin{pmatrix}
a_{i1} & \cdots & a_{in}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix}
= \sum_{j=1}^{n} a_{ij} x_j
= \begin{pmatrix}
\vdots \\
(\,-a_i\,-) x \\
\vdots
\end{pmatrix}
\quad (m \text{ rows})
\]

• where “(\,- a_i\,-)” means the \(i^{th} \) row of \(A \). Hence
 – the \(i^{th} \) component of \(y \) is the inner product of (\,- a_i\,-) and \(x \).
 – The \(m \) components of \(y \) are obtained by “projecting” \(x \) onto (i.e., taking the inner product with) the \(m \) rows of \(A \) in the domain space \(\mathcal{X} = \mathbb{R}^n \)
Matrix-Vector Multiplication II

- But there is more. Let \(y = Ax \), i.e. \(y_i = \sum_{j=1}^{n} a_{ij}x_j \), now be written as

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_m
\end{bmatrix} = \sum_{j=1}^{n} a_{ij}x_j
= \begin{bmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\
\vdots \\
a_{m1}x_1 + \cdots + a_{mn}x_n \end{bmatrix}
= \begin{bmatrix} a_1 \end{bmatrix}x_1 + \cdots + \begin{bmatrix} a_n \end{bmatrix}x_n
\]

where \(a_i \) with “|” above and below means the \(i^{th} \) column of \(A \).

- The component \(x_i \) weights the \(i^{th} \) column of \(A \) in codomain \(\mathcal{Y} = \mathbb{R}^m \) (= column space = space spanned by the \(n \) columns of \(A \)).
- I.e, \(y \) is a linear combination of the \(n \) columns of \(A \) in the codomain \(\mathcal{Y} = \mathbb{R}^m \)
Matrix-Vector Multiplication I & II

• Thus there are **two alternative** (dual) pictures of $y = Ax$:
 – “Coordinates of y” = “x ‘projected’ onto **row space of A’” (The $\mathcal{X} = \mathbb{R}^n$ viewpoint)

 ![Diagram of matrix-vector multiplication](image)

 - Domain $\mathcal{X} = \mathbb{R}^n$
 - Codomain $\mathcal{Y} = \mathbb{R}^m$

 – “Components of x” = “‘coordinates’ of y along columns of A” (\(\mathcal{Y} = \mathbb{R}^m\) viewpoint)

- $\mathbf{y} = \begin{bmatrix} 1 \mid a_1 \mid x_1 + \cdots + \mid a_n \mid x_n \end{bmatrix}$
- $\mathbf{y} = \begin{bmatrix} \vdots \end{bmatrix}$
- $\mathbf{y} = \begin{bmatrix} a_i \end{bmatrix} \mathbf{x} \begin{bmatrix} -a_1 - \cdots - a_m \end{bmatrix}$ (m rows)
Block Matrix Multiplication

- the matrix multiplication formula

\[C = AB \iff c_{ij} = \sum_k a_{ik} b_{kj} \]

also applies to “block matrices” when these are defined to be **conformal**.

- for example, if \(A,B,C,D,E,F,G,H\) are conformal matrices,

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
E & F \\
G & H
\end{bmatrix}
= \begin{bmatrix}
AE+BG & AF+BH \\
CE+DG & CF+DH
\end{bmatrix}
\]

- To be **conformal** means that the sizes of the matrices \(A,B,C,D,E,F,G,H\) have to be such that the intermediate operations make sense!
Matrix-Vector Multiplication I & II

- This makes it easy to derive the two alternative pictures

- The *row space picture (or viewpoint):*

\[
\begin{bmatrix}
\vdots \\
y_i \\
\vdots
\end{bmatrix} = \begin{bmatrix}
a_{in} & \cdots & a_{in} \\
\vdots & \ddots & \vdots \\
\vdots & & \vdots
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_n
\end{bmatrix} = \begin{bmatrix}
(\mathbf{- a_i -}) \mathbf{1}_{\times n} \\
\vdots \\
\vdots
\end{bmatrix} \begin{bmatrix}
x_{nxl}
\end{bmatrix} = \begin{bmatrix}
(\mathbf{- a_i -}) \mathbf{x}
\end{bmatrix}
\]

Scalar multiplication between the *row blocks* \((-a_i\mathbf{-})\) and \(\mathbf{x}\)

- The *column space picture (or viewpoint):*

\[
\begin{bmatrix}
\vdots \\
y_i \\
\vdots
\end{bmatrix} = \begin{bmatrix}
a_{in} & \cdots & a_{in} \\
\vdots & \ddots & \vdots \\
\vdots & & \vdots
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_n
\end{bmatrix} = \begin{bmatrix}
\mathbf{a_1} & \cdots & \mathbf{a_n} \\
\vdots & \ddots & \vdots \\
\vdots & \cdots & \vdots
\end{bmatrix} \begin{bmatrix}
(x_1)_{1\times l} \\
(x_n)_{1\times l}
\end{bmatrix} = \sum_i \begin{bmatrix}
\mathbf{a_i}
\end{bmatrix} \mathbf{x_i}
\]

Inner products between blocks given by the (scalar) blocks \(x_i\) and the *column blocks* of \(A\).
Square $n \times n$ matrices

- in this case $m = n$ and the row and column subspaces are both equal to (copies of) R^n
Orthogonal matrices

• A matrix is called **orthogonal** if it is square and has **orthonormal** columns.

• Important properties:

 1) The **inverse** of an orthogonal matrix is its **transpose**
 this can be easily shown with the block matrix trick. (Also see later.)

 \[
 A^T A = \begin{pmatrix}
 -a_i^T & \\
 \vdots & \\
 -a_n^T & \\
 \end{pmatrix}
 \begin{pmatrix}
 \vdots & \\
 a_j & \\
 \vdots & \\
 \end{pmatrix}
 = \begin{pmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1 \\
 \end{pmatrix}
 \]

 2) A **proper** (\(\det(A) = 1\)) orthogonal matrix is a rotation matrix
 this follows from the fact that it is **unitary**, i.e., does not change the norms (“sizes”) of the vectors on which it operates,

 \[
 \|Ax\|^2 = (Ax)^T (Ax) = x^T A^T A x = x^T x = \|x\|^2,
 \]

 AND does **NOT** induce a **reflection**.
Rotation matrices

• The combination of
 1. “operator” interpretation
 2. “block matrix trick”

 is useful in many situations

• Example:
 – “What is the matrix R that rotates the plane \mathbb{R}^2 by θ degrees?”
Rotation matrices

- The **key** is to consider how the matrix operates on the vectors \mathbf{e}_i of the **canonical basis**

 - note that \mathbf{R} sends \mathbf{e}_1 to \mathbf{e}'_1

$$
\begin{bmatrix}
 r_{11} & r_{12} \\
 r_{21} & r_{22}
 \end{bmatrix}
\begin{bmatrix}
 1 \\
 0
 \end{bmatrix}
$$

- using the **column space picture**

$$
\begin{bmatrix}
 r_{11} \\
 r_{21}
 \end{bmatrix}
\times 1 + \begin{bmatrix}
 r_{12} \\
 r_{22}
 \end{bmatrix}
\times 0 = \begin{bmatrix}
 r_{11} \\
 r_{21}
 \end{bmatrix}
$$

- from which we have the first column of the matrix

$$
\mathbf{R} =
\begin{bmatrix}
 e'_1 & r_{12} \\
 r_{21} & r_{22}
 \end{bmatrix}
=
\begin{bmatrix}
 \cos \theta & r_{12} \\
 \sin \theta & r_{22}
 \end{bmatrix}
$$
Rotation Matrices

- and we do the same for e_2
 - R sends e_2 to e'_2

 \[
 e'_2 = \begin{bmatrix} \bar{r}_{11} & \bar{r}_{12} \\ \bar{r}_{21} & \bar{r}_{22} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \bar{r}_{11} \\ \bar{r}_{21} \end{bmatrix} \times 0 + \begin{bmatrix} \bar{r}_{12} \\ \bar{r}_{22} \end{bmatrix} \times 1 = \begin{bmatrix} \bar{r}_{12} \\ \bar{r}_{22} \end{bmatrix}
 \]
 - from which

 \[
 R = \begin{bmatrix} e'_1 & e'_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
 \]
 - check

 \[
 R^T R = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = I
 \]
Projections

- **What if A is not orthogonal?**
 - Consider $y = A^T x$ and $x' = Ay$ (Note that $x' \in$ column space)
 - $x' = x$ for all x if and only if $AA^T = I$!
 - this means that A has to be **orthogonal** to have $x' = x$
- **What happens when this is not the case?** Then take ECE 174!!
 - E.g., if $(AA^T)^2 = AA^T$, then AA^T is **idempotent** (and also **obviously symmetric**) so we get an **orthogonal projection** of x onto the column space of A

\[A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ then } y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

\[x' = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]
Null Space of a Matrix

• What happens to the part that is lost?
• For the previous example this part belongs to the “null space” of A^T

$$N(A^T) = \left\{ x \mid A^T x = 0 \right\}$$

– In the example, this is comprised of all vectors of the type $\begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}$ since

$$A^T x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix} = \alpha \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

FACT: $N(A)$ is always orthogonal to the row space of A:

– x is in the null space iff it is orthogonal to all rows of A
– For the previous example this means that $N(A^T)$ is orthogonal to the column space of A
Orthogonal Matrices – Cont.

• An orthogonal matrix has linearly independent columns and therefore must have an inverse.

• Note that \(A^T A = I \) (proven earlier) and the existence of an inverse \(AA^{-1} = I \) implies

\[
A^{-1} = I A^{-1} = A^T AA^{-1} = A^T I = A^T .
\]

Thus

\[
A^T A = AA^T = I
\]

• This means that
 – \(A \) has **orthonormal columns and rows**
 – **Each** of these two sets of vectors span **all** of \(\mathbb{R}^n \)
 – There is **no** extra room for an orthogonal subspace in the rowspace
 – The null space of \(A^T \) has to be empty
 – The square matrix \(A \) has **full rank**
The **Four Fundamental Subspaces**

- These exist for any matrix:
 - **Column Space**: space spanned by the columns
 - **Row Space**: space spanned by the rows
 - **Nullspace**: space of vectors orthogonal to all rows (also known as the orthogonal complement of the row space)
 - **Left Nullspace**: space of vectors orthogonal to all columns (also known as the orthogonal complement of the column space)

Assume Domain of \(A = \) Codomain of \(A \). Then:

- **Special Case I**: Square Symmetric Matrices \((A = A^T)\):
 - Column Space is equal to the Row Space
 - Nullspace is equal to the Left Nullspace, and is therefore orthogonal to the Column Space

- **Special Case II**: \(n \times n \) Orthogonal Matrices \((A^TA = AA^T = I)\)
 - Column Space = Row Space = \(\mathbb{R}^n \)
 - Nullspace = Left Nullspace = \(\{0\} \) = the **Trivial Subspace**
END