ECE-175A

Elements of Machine Intelligence - I

Ken Kreutz-Delgado
(Nuno Vasconcelos)

ECE Department, UCSD
Winter 2012
The course

- The course will cover basic, but important, aspects of machine learning and pattern recognition.

- We will cover a lot of ground, at the end of the quarter you’ll know how to implement a lot of things that may seem very complicated today.

- Homework & (Possible) Computer Assignments will count for 30% of the overall grade. These assignments will be graded “A” for effort.

- Exams: 1 mid-term, date TBA - 30%
 1 final – 40% (covers everything)
Resources

Course web page is accessible from, http://dsp.ucsd.edu/~kreutz

- All materials, except homework and exam solutions will be available there. Solutions will be available in my office “pod”.

Course Instructor:

- Ken Kreutz-Delgado, kreutz@ece.ucsd.edu, EBU 1-5605.
- Office hours: Wednesday, Noon-1pm.

Administrative Assistant:

- Travis Spackman (tspackman@ece.ucsd.edu), EBU1 – 5600. Travis may sometimes be involved in administrative issues.
 Required Textbooks:

- *Pattern Recognition 4e*
 - S. Theodoridis & K. Koutroumbas
 Academic Press, 2009

- *Introduction to Pattern Recognition: A Matlab Approach*
 - S. Theodoridis et al.
 Academic Press, 2010

 Alternative reference texts:

- *Pattern Recognition and Machine Learning*, C.M. Bishop,

 Prerequisites you **must** know well:

- Linear algebra, as in *Linear Algebra*, Strang, 1988

Why Machine Learning?

Good question! After all there are many systems & processes in the world that are well-modeled by deterministic equations

- E.g. \(f = m a; \ V = I R \), Maxwell’s equations, and other physical laws.
- There are acceptable levels of “noise”, “error”, and other “variability”.
- In such domains, we don’t need statistical learning.

However, learning is necessary when there is a need for **predictions** about, or **classification** of, poorly known and/or random vector data \(Y \), that

- represents important events, situations, or objects in the world;
- which may (or may not) depend on other factors (variables) \(X \);
- is **impossible or too difficult** to derive an exact, deterministic model for;
- might be an instantaneous snapshot of **a constantly changing world**.
Examples and Perspectives

The “Data-Mining” viewpoint:

- HUGE amounts of data that does NOT follow deterministic rules
 - E.g. given an history of thousands of customer records and some questions that I can ask you, how do I predict that you will pay on time?
 - Impossible to derive a theory for this, must be learned

While many associate learning with data-mining, it is by no means the only important application or viewpoint.

The Signal Processing viewpoint:

- Signals combine in ways that depend on “hidden structure” (e.g. speech waveforms depend on language, grammar, etc.)
- Signals are usually subject to significant amounts of “noise” (which sometimes means “things we do not know how to model”)
Examples - Continued

Signal Processing viewpoint (Cont’d)

• E.g. *the Cocktail Party Problem*:
 • Although there are all these people talking loudly at once, you can still understand what your friend is saying.
 • How could you build a chip to separate the speakers? (As well as your ear and brain can do.)
 • Model the hidden dependence as
 – a linear combination of independent sources + noise
• Many other similar examples in the areas of wireless, communications, signal restoration, etc.
Examples (cont’d)

The Perception/AI viewpoint:

• It is a complex world; one cannot model everything in detail
• Rely on probabilistic models that explicitly account for the variability
• Use the laws of probability to make inferences. E.g.,
 • \(P(\text{burglar} \mid \text{alarm, no earthquake}) \) is high
 • \(P(\text{burglar} \mid \text{alarm, earthquake}) \) is low
• There is a whole field that studies “perception as Bayesian inference”
• In a sense, perception really is “confirming what you already know.”
• priors + observations = robust inference
Examples (cont’d)

The Communications Engineering viewpoint:

• Detection problems:

 $X \rightarrow \text{channel} \rightarrow Y$

• You observe Y and know something about the statistics of the channel. What was X?

• This is the canonical detection problem.

• For example, face detection in computer vision: “I see pixel array Y. Is it a face?”
What is Statistical Learning?

- **Goal**: Given a relationship between a feature vector x and a vector y, and iid data samples (x_i, y_i), find an approximating function $f(x) \approx y$

 $x \rightarrow f(\cdot) \rightarrow \hat{y} = f(x) \approx y$

- This is called **training** or **learning**.

- **Two major types** of learning:
 - **Unsupervised Classification (aka Clustering)** or Regression (“blind” curve fitting): only X is known.
 - **Supervised Classification** or **Regression**: both X and target value Y are known during training, only X is known at test time.
Supervised Learning

- X can be anything, but the **type** of known data Y dictates the type of supervised learning problem
 - Y in \{0,1\} is referred to as **Detection** or **Binary Classification**
 - Y in \{0, ..., M-1\} is referred to as **(M-ary) Classification**
 - Y continuous is referred to as **Regression**

- Theories are quite similar, and algorithms similar most of the time

- We will usually **emphasize classification**, but will talk about regression when particularly insightful
Example

Classification of Fish:

- Fish roll down a conveyer belt
- Camera takes a picture
- Decide if is this a salmon or a sea-bass?

Q1: What is X? E.g. what features do I use to distinguish between the two fish?

This is somewhat of an art-form. Frequently, the best is to ask domain experts.

E.g., expert says use overall length and width of scales.
Q2: How to do Classification/Detection?

- **Two major types** of classifiers
- **Discriminant**: determine the decision boundary in feature space that best separates the classes;
- **Generative**: fit a probability model to each class and then compare the probabilities to find a decision rule.

A lot more on the intimate relationship between these two approaches later!
Caution

How do we know learning has worked?

We care about generalization, i.e. accuracy outside the training set

Models that are “too powerful” on the training set can lead to over-fitting:

- E.g. in regression one can always exactly fit \(n \) pts with polynomial of order \(n-1 \).
- Is this good? how likely is the error to be small outside the training set?
- Similar problem for classification

Fundamental Rule: only hold-out test-set performance results matter!!!
Generalization

- Good generalization requires controlling the trade-off between training and test error
 - training error large, test error large
 - training error smaller, test error smaller
 - training error smallest, test error largest

- This trade-off is known by many names

- In the generative classification world it is usually due to the bias-variance trade-off of the class models
Generative Model Learning

- Each class is characterized by a probability density function (class conditional density), the so-called probabilistic generative model. E.g., a Gaussian.
- Training data is used to estimate the class pdfs.
- Overall, the process is referred to as density estimation.
- A nonparametric approach would be to estimate the pdfs using histograms:

![Histograms of salmon and sea bass](image-url)
Decision rules

- Given class pdfs, **Bayesian Decision Theory (BDT)** provides optimal rules for classification

- “Optimal” here might mean **minimum probability of error**, for example

- We will
 - Study BDT in detail,
 - Establish **connections** to other decision principles (e.g. linear discriminants)
 - Show that Bayesian decisions are usually **intuitive**

- Derive optimal rules for a range of classifiers
Features and dimensionality

For most of what we have said so far
- Theory is well understood
- Algorithms are available
- Limitations can be characterized

Usually, good features are an art-form

We will survey traditional techniques
- Bayesian Decision Theory (BDT)
- Linear Discriminant Analysis (LDA)
- Principal Component Analysis (PCA)

and (perhaps) some more recent methods
- Independent Components Analysis (ICA)
- Support Vectors Machines (SVM)
Discriminant Learning

- Instead of learning models (pdf’s) and deriving a decision boundary from the model, **learn the boundary directly**

- There are many such methods. The simplest case is the so-called **(separating) hyperplane classifier**
 - Simply find the hyperplane that best separates the classes, assuming **linear separability** of the features:
Support Vector Machines

How do we do this efficiently in high-dimensional feature spaces?

The most recently developed classifiers are based on the use of **support vectors**.

- One transforms the data into linearly separable features using **kernel functions**.
- The best performance is obtained by maximizing the **margin**.
- This is the distance between decision hyperplane and closest point on each side.
Support Vector Machine (SVM)

- For **separable classes**, the **training error** can be made zero by classifying each point correctly.

- This can be implemented by solving the optimization problem

 \[w^* = \arg\max_{w} \text{margin} (w) \]

 subject to \(x_l \) is correctly classified \(\forall l \)

- This is an optimization problem with many constraints, not trivial but solvable.

- The resulting classifier is the **“support-vector machine”**

 The points on the margin are the “support vectors”.
Kernels and Linear Separability

- The trick is to map the feature space to a higher dimensional feature space:
 - Non-linear boundary in original space
 - Becomes hyperplane in transformed space

- This can be done efficiently by the introduction of a kernel function

- Classification problem is mapped into a reproducing kernel Hilbert space

- Kernels are at the core of the success of SVM classification

- Most classical linear techniques (e.g. PCA, LDA, ICA, etc.) can be kernel-ized with significant improvement
Unsupervised learning

- So far, we have talked about supervised learning:
 - We know the class of each point
- In many problems this is not feasible to do (e.g. image segmentation)
Unsupervised learning

In these problems we are given X, but not Y

The standard algorithms for this are iterative:

• Start from best guess
• Given Y-estimates fit class models
• Given class models re-estimate Y-estimates

This “boot-strap” procedure usually converges to a locally optimal solution, although not necessarily the global optimum

Performance worse than that of supervised classifier, but this is the best we can do.
Reasons to take the course

► To learn about Classification and Statistical Learning
 • tremendous amount of theory
 • but things invariably go wrong
 • too little data, noise, too many dimensions, training sets that do not reflect all possible variability, etc.

► To learn that good learning solutions require:
 • knowledge of the domain (e.g. “these are the features to use”)
 • knowledge of the available techniques, their limitations, etc.
 • In the absence of either of these, you will fail!

► To learn skills that are highly valued in the marketplace!
END