ECE 174 Homework # 3 — Due Thursday 11/1/2012

There are ten (10) questions on this homework assignment. If you do your reading and homework solutions incrementally (i.e., if you exercise good time management skills), you will find that you have been given plenty of time to do this assignment. Do NOT wait until the last minute.

Remember, the Solutions Manual is provided with the text. Furthermore, Errata and the Solutions Manual for the textbook are available at the website located at,

http://MatrixAnalysis.com

Reading From Chapter 5

Read sections §5.1; §5.3; §5.4 (ignore Example 5.4.3); §5.9; §5.11 (through page 406 inclusive); and §5.13.

The reading for this course is very important. For example, the proof of the “reverse triangle inequality” shown in Example 5.1.1 is exactly the kind of proof I might put on an exam. Further, insights provided in the reading are very illuminating.

Thus Example 5.4.6 shows that a function \(f(t) \) can be viewed as an element of a vector space which can be expanded (using Equation 5.4.3) in terms of basis vectors (basis functions) which are sines and cosines. This shows that the theory of Fourier series is a kind of generalization of Linear Algebra and helps to demystify the mathematics underlying Fourier series.

First Computer Assignment Due Date

Remember, the first computer assignment (with written report) is due Tuesday 11/6/2012. Stay on top of the project and do NOT wait until the last minute to do it.

Midterm

★ The Midterm is scheduled for Tuesday, November 13, 2012. (7th week of the quarter.)

Homework

1. Prof. Vasconcelos asked his students the following question in ECE175: Consider the matrix

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 2 & 0
\end{bmatrix}.
\]

i) What is the column space of the matrix? ii) What is its row space? iii) What is its nullspace? iv) What is its rank? v) What is the dimension of its column space?

You are to also answer these questions. (This is a nice question to place on an exam because you should be able to answer this question immediately from visual inspection of the matrix.)
2. 5.1.8, 5.1.9, 5.1.10.

3. 5.3.2.

4. 5.4.14.

5. 5.9.5.

6. 5.11.5.

7. 5.13.3.

8. Using the abstract definition of an inner product on a complex hilbert space, prove the following properties. (The complex conjugate of a scalar α is denoted by $\overline{\alpha}$.)

 a) $\langle x_1, \alpha x_2 \rangle = \langle \overline{\alpha} x_1, x_2 \rangle$.

 b) $\langle \alpha_1 x_1 + \alpha_2 x_2, x \rangle = \overline{\alpha}_1 \langle x_1, x \rangle + \overline{\alpha}_2 \langle x_2, x \rangle$.

9. Let $A : \mathcal{X} \to \mathcal{Y}$, $B : \mathcal{X} \to \mathcal{Y}$, and $C : \mathcal{Y} \to \mathcal{Z}$ be linear mappings as shown between complex finite-dimensional hilbert spaces \mathcal{X}, \mathcal{Y}, and \mathcal{Z}. Let α and β be complex numbers with complex conjugates $\overline{\alpha}$ and $\overline{\beta}$. As discussed in lecture, the adjoint operator, A^*, is defined by

$$\langle A^* x_1, x_2 \rangle = \langle x_1, Ax_2 \rangle .$$

Using the abstract definition of an inner product on a complex hilbert space prove the following properties.

 a) $(\alpha A)^* = \overline{\alpha} A^*$.

 b) $(A + B)^* = A^* + B^*$.

 c) $(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$.

 d) $A^{**} = A$.

 e) $(CA)^* = A^* C^*$.

 f) $A^* \alpha y = \alpha A^* y$.

 g) $A^*(y_1 + y_2) = A^* y_1 + A^* y_2$.

 h) $A^*(\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1 A^* y_1 + \alpha_2 A^* y_2$.

Note that property (h) shows that the adjoint operator A^*, like A itself, is also a linear operator.

10. Let $A : \mathcal{X} \to \mathcal{Y}$ be an $m \times n$ linear mapping between two hilbert spaces as shown. Let

$$\langle x_1, x_2 \rangle = x_1^H \Omega x_2 \quad \text{and} \quad \langle y_1, y_2 \rangle = y_1^H W y_2 .$$

 a) Derive the adjoint operator A^* in terms of A, Ω, and W.

 b) For $r(A) = n$, derive the pseudoinverse of A and show that it is independent of the weighting matrix Ω.

 c) For $r(A) = m$, derive the pseudoinverse of A and show that it is independent of the weighting matrix W.

2