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ABSTRACT

We consider in this paper the analysis of transmit beamforming meth-
ods in multiple antenna systems with finite-rate feedback of the chan-
nel state information. We focus our attention on providing capacity
analysis of a quantized MISO system over correlated fading channels
with sub-optimal and mismatched channel quantizers. Two types
of mismatched quantizers are investigated, which include: 1) quan-
tizers designed with simple suboptimal criterion, and 2) quantizers
whose codebooks are designed with a mismatched channel covari-
ance matrix. We approach this problem from a source coding per-
spective by formulating the quantized MISO system as a general vec-
tor quantization problem with encoder side information, constrained
quantization space and non-mean-squared distortion function. By
utilizing the high-resolution distortion analysis of the generalized
quantizer, we obtain tight lower bounds of the capacity loss of a
quantized MISO system with both optimal and mismatched channel
quantizers. Theoretical as well as empirical results reveal significant
performance degradation of the mismatched quantizers when com-
pared to the optimal channel quantizers. This elucidates the impor-
tance of choosing proper codebook design criterion and using correct
source statistical distributions.

1. INTRODUCTION

Communication systems using multiple antennas have recently re-
ceived much attention due to their promise of providing significant
capacity increases. The performance of the multiple antenna systems
depends heavily on the availability of the channel state information
(CSI) at the transmitter (CSIT) and at the receiver (CSIR). Most of
the MIMO system design and analysis adopt one of two extreme
CSIT assumptions, complete CSIT and no CSIT. In this paper, we
consider systems with CSI assumptions in between these extremes.
We assume perfect CSIR is available at the receiver, and focus our at-
tention on MIMO systems where CSI is conveyed from the receiver
to the transmitter through a finite-rate feedback link. Recently, sev-
eral interesting papers have appeared, proposing design algorithms
as well as analytically quantifying the performance of the finite-rate
feedback multiple antenna systems.

Most past works on the analysis of finite-rate feedback MIMO
systems have adopted one of three approaches. The first is to approx-
imate the channel quantization region corresponding to each code
point based on the channel geometric property. Mukkavilli et. al. [1]
derived a universal lower bound on the outage probability of quan-
tized MISO beamforming systems with arbitrary number of transmit
antennas t over i.i.d. Rayleigh fading channels. Love and et. al. [2]
related the problem to that of Grassmannian line packing and pro-
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vided corresponding performance bounds of multiple antenna sys-
tems with finite-rate feedback. The second approach is based on
approximating the statistical distribution of the key random variable
that characterizes the system performance. This approach was used
by Xia et. al. in [3] and Roh et. al. in [4], where the authors ana-
lyzed the performance of MISO systems over i.i.d. Rayleigh fading
channels, and obtained closed form expressions of the capacity loss
(or SNR loss) in terms of feedback rate B and antenna size t. The
third approach adopted by Narula et. al. in [5] is based on relating
the quantization problem to the rate distortion theory, where the au-
thors obtained an approximation of the expected loss of the received
SNR due to finite rate quantization of the beamforming vectors in an
MISO system. However, all these approaches are case specific and
quite limited, i.i.d. channels and mainly MISO channels, and hard to
extend to more complicated schemes.

In this paper, we consider the analysis of a finite-rate quantized
multiple antenna system over correlated fading channels. We focus
our attention on providing capacity analysis of a quantized MISO
system with mismatched channel quantizers and sub-optimal chan-
nel quantization schemes. To be specific, two types of mismatched
quantizers are investigated, which include: 1) quantizers that are de-
signed with minimum mean square error (MMSE) criterion, and 2)
quantizers whose codebooks are designed with a mismatched chan-
nel covariance matrix. We approach this problem from a source
coding perspective by formulating the finite-rate quantized MISO
system as a general vector quantization problem with encoder side
information, constrained quantization space and non-mean-squared
distortion function. By utilizing the high-resolution distortion anal-
ysis of the generalized vector quantizer provided in [6], we obtain
tight lower bounds of the capacity loss of a quantized MISO system
over correlated fading channels with both optimal and mismatched
channel quantizers. Theoretical results reveal significant performance
degradation of the mismatched quantizers when compared to the op-
timal channel quantizers. This elucidates the importance of choos-
ing appropriate codebook design criterion and using correct source
statistical distributions. Finally, numerical and simulation results are
presented that confirm the accuracy of the obtained analytical results.

2. SYSTEM MODEL

We consider an MISO system with t transmit antennas, one sin-
gle receive antenna, signaling through a frequency flat block fad-
ing channel. The channel impulse response h is assumed to be
perfectly known at the receiver but partially available at the trans-
mitter through CSI feedback. It is assumed that there exists a fi-
nite rate feedback link of B

`
N = 2B

´
bits per channel update be-

tween the transmitter and receiver. To be specific, a codebook C =˘bv1, · · · , bvN

¯
, which is composed of unit norm transmit beam-

forming vectors, is assumed known to both the receiver and the trans-
mitter. Based on the channel realization h, the receiver selects the



best code point bv from the codebook and sends the corresponding in-
dex back to the transmitter. At the transmitter, vector bv is employed
as the transmit beamforming vector, and the system channel model
can be represented as

y = hH · (bv · s) + n = ‖h‖ · 〈v, bv〉 · s + n , (1)

where y is the received signal (scalar), n ∼ Nc(0, 1) is the additive
complex Gaussian noise with zero mean and unit variance, hH ∈
C1×t is the MISO channel response with distribution given by h ∼
Nc(0,Σh), and vector v is the channel directional vector given by
v = h/‖h‖. The transmitted signal s is normalized to have a power
constraint given by E [s2 ] = ρ, with ρ representing the average
signal to noise ratio at each receive antenna.

The performance a finite-rate feedback MISO beamforming sys-
tem can be characterized by the capacity loss CLoss, which is the ex-
pectation of the instantaneous mutual information rate loss CL(h, bv)
due to the finite rate quantization of the transmit beamforming vec-
tor. This performance metric was also used in [4] and is defined as

CL(h, bv) = − log2

„
1− ρ · ‖h‖2

1 + ρ · ‖h‖2 ·
“
1− |〈v, bv〉|2

”«
, (2)

3. BACKGROUND INFORMATION

The analysis of finite-rate feedback multiple antenna systems has
proven to be difficult and results available to date are limited to i.i.d.
channels and mainly MISO channels. In this paper, we attempt to
provide capacity analysis of both the optimal and mismatched quan-
tizers of an MISO system over correlated fading channels. We briefly
describe in this section the generalized high rate quantization the-
ory [6] which can be used to analyze multiple antenna systems with
quantized CSIT.

3.1. General Vector Quantization Framework

The multiple antenna systems with finite-rate feedback can be mod-
eled as a generalized vector quantization problem with additional at-
tributes such as encoder side information, constrained quantization
space and non-mean-squared distortion measures. To be specific,
the source variable x = (y, z) is a two-vector tuple with vector
y ∈ Q representing the actual quantization variable of dimension
kq and z ∈ Z being the additional side information of dimension
kz. The encoder side information z is available at the encoder but
not at the decoder. Based on a particular source realization x, the
encoder (or the quantizer) represents vector y by one of the N vec-
tors by1, by2, · · · , byN , which form the codebook. The encoding or
the quantization process is denoted as by = Q(y, z). The distortion
of a finite-rate quantizer is defined as

D = Ex

»
DQ

“
y, by ; z

”–
, (3)

where DQ

“
y, by ; z

”
is a general non mean-squared distortion func-

tion between y and by that is parameterized by z. It is further as-
sumed that function DQ has a continuous second order derivative
w.r.t. to y.

Under high resolution assumptions, the average asymptotic dis-
tortion can be represented by the following form, which is similar to
the Bennett’s integral provided in [7]

D = 2
− 2B

kq

Z

Z

Z

Q
I
`
y ; z ; Ez(y)

´
p
`
y, z

´
λ
`
y
´− 2

kq dy d z, (4)

where Ez(y) denotes the asymptotic projected Voronoi cell that con-
tains y with side information z. In equation (4), λ(y) is a func-
tion representing the relative density of the codepoints, which is

called point density, such that λ(y) dy is approximately the frac-
tion of quantization points in a small neighborhood of y. Function
I
`
y ; z ; E

´
is the normalized inertia profile that represents the rel-

ative distortion of the quantizer Q at position y conditioned on side
information z with Voronoi shape E. Both λ(y) and I

`
y ; z ; E

´
are the key performance determining characteristics that can be used
to analyze the effects of different system parameters, such as source
distribution, distortion function, quantization rate etc., on the finite-
rate quantizer.

Note that if the source variable (vector) y is further subject to
kc constraints given by the vector equation g(y) = 0, the asymp-
totic distortion integral given by (4) is still valid under some minor
modifications. In these cases, the actual degrees of freedom of the
quantization variable reduce from kq to k′q = kq−kc, and the average
asymptotic distortion decays exponentially with rate 2−2B/k′q .

3.2. Application to Quantized MISO Systems

By employing the general framework described in Section 3.1, the
finite-rate quantized MISO beamforming system can be formulated
as a general fixed rate vector quantization problem.

Specifically, the source variable to be quantized is the channel
directional vector v of kq = 2t real dimensions, and the encoder
side information is the channel power α = ‖h‖2. Moreover, under
the norm and phase constraints, i.e. v is a unit norm vector and is
invariant to arbitrary phase rotation ejθ , the actual free dimensions
of vector v is reduced from kq to k′q = 2t − 2. The instantaneous
capacity loss due to effects of finite-rate CSI quantization is taken to
be the system distortion function DQ(v, bv ; α), which is given by
the following form according to the definition given by (2)

DQ(v, bv ; α) = − log2

„
1− ρα

1 + ρα
·
“
1−

˛̨
〈v, bv〉

˛̨2”«
. (5)

By utilizing the distortion analysis provided in [6], the normal-
ized inertia profile of the MISO system is tightly lower bounded by

eIc, opt(v; α) =
ρα

ln 2 · (1 + ρα)
· (t− 1) · γ−1/(t−1)

t

t
, (6)

where γt is a constant coefficient equal to γt = πt−1/(t− 1)!. The
minimal distortion of the MISO system is hence achieved by using a
codebook with an optimal point density given by

λ∗ (v) = β1 (ρ, t, Σ h)
−1 ·

 “
vHΣ−1

h v
”−(t+1)

× 2F0

„
t + 1, 1; ; − ρ

vHΣ−1
h v

«!(t−1)/t

. (7)

where 2F0 is the generalized hypergeometric function, and β1 is a
normalization constant that only depends on the antenna size t, chan-
nel correlation matrix Σ h and system SNR ρ. The average system
distortion (or capacity loss) of the quantized MISO system is then
tightly lower bounded by

eDc-Low (Σ h) =
ρ (t− 1) β1 (ρ, t, Σ h)

t/(t−1)

ln 2 · |Σ h| · γt/(t−1)
t

· 2−B/(t−1). (8)

4. ANALYSIS OF MISMATCHED QUANTIZERS

The asymptotic analysis provided in Section 3.2 is of MISO sys-
tems with optimal CSI quantizer, in the sense that the codebook or
the encoding algorithm is designed to perfectly match the distortion
function and the source distribution. However, imperfect codebook
and suboptimal quantizer might be used in practical situations in or-
der to reduce the design and encoding complexity or due to imper-
fect knowledge of the source distribution. We provide in this section



a capacity loss analysis of the quantized MISO beamforming sys-
tem when the quantizer is mismatched and suboptimal. The results
further serve to demonstrate the usefulness and generality of the pro-
posed framework in Section 3.1.

4.1. Dimensionality (Quantization Criterion) Mismatch

In this subsection, we present the analysis of a suboptimal (mis-
matched) quantizer that directly quantizes the CSI using the mean
square error (MSE) as the distortion measure to illustrate the impor-
tance of utilizing appropriate encoding (or quantizing) algorithm in
conjunction with the distortion function of interest.

For an MMSE channel quantizer, the channel state information
h is directly quantized and the system can be viewed as a conven-
tional vector quantization problem with the source variable having
2t free (real) dimensions. The corresponding distortion function of
the MMSE channel quantizer is given by the following form

Dmis
`
h, bh ´ = ‖h− bh‖2 . (9)

At the transmitter, the unit norm beamforming vector bv is obtained
by normalizing the quantized channel vector bh, i.e. bv = bh/‖bh‖.
Hence, the actual system distortion function (or the capacity loss)
can be expressed by the following form in terms of vectors h and bh,
which is given by

D′
Q
`
h, bh´ = log2

`
1+ρ·‖h‖2´−log2

“
1+ρ· |〈h, bh〉|2

‖bh‖2
”

. (10)

It is evident from the above discussion that the MMSE channel
quantizer suffers from two types of mismatches: 1) The quantizer is
designed to quantize a redundant channel state information vector h
of dimensions 2t instead of 2t − 2 in the optimal quantizer, which
leads to a dimensionality mismatch; 2) The quantizer also uses a
mismatched distortion function Dmis given by (9) as compared to
DQ given by equation (5). Due to the aforementioned suboptimality,
the codebook generated by the MMSE criterion has a suboptimal
point density given by

λmis-D(h) = p (h)t/(t+1) ·
„Z

p (h)t/(t+1) dh

«−1

, (11)

where p(x) is the PDF of the MISO channel response h. Moreover,
the suboptimal MMSE quantizer also leads to a mismatched normal-
ized inertial profile given by

Imis-D(h) =
(t− 1)(t!)1/t ρ

ln 2 · (t + 1) · π · (1 + ρ ‖h‖2) . (12)

By substituting equations (11) and (12) into the asymptotic distor-
tion integration given by (4), we can prove that the asymptotic dis-
tortion lower bound of a mismatched MMSE channel quantizer can
be represented by the following closed form expression
eDmis-D (Σ h)

=
(t− 1) · ˆ t !

˜1/t · ˆ(t + 1)/t
˜t · β2 (ρ, t, Σ h)

ln 2 · t · |Σ h|(t−1)/(t2+t)
· 2−B/t, (13)

where β6 (ρ, t, Σ h) is a constant coefficient given by

β2 (ρ, t, Σ h) = − t

t + 1

tX
i=1

0
@λh, i

Y

k 6=i

„
1− λh, k

λh, i

«1
A
−1

· exp

„
t

ρ (t + 1)λh, i

«
· E i

„
− t

ρ (t + 1)λh, i

«
. (14)

where E i(·) is the exponential integral function.
It can be observed from (13) that the system distortion of the

mismatched MMSE channel quantizer decays slower (with slope

−1/t in the exponent) than that of the optimal quantizer (with slope
−1/(t − 1)

´
. This is a significant system performance degradation

especially when the size of the antenna array is small, which means it
is very important to choose an appropriate CSI quantization scheme
as well as a proper distortion metric function.

4.2. Source Distribution Mismatch (or Point Density Mismatch)
For the correlated MISO channels, the channel distribution depends
on the covariance matrix Σ h, which needs to be estimated and is
subject to estimation error. Moreover, it is also practically infeasible
to redesign codebooks for every Σh and use it adaptively. Therefore,
in practical situations, only very limited codebooks are available and
they are designed with mismatched channel covariance matrix Σm

h ,
which will cause performance degradation.

Based on the mismatched covariance matrix Σm
h , a sub-optimal

codebook is generated with the mismatched point density given by,
from equation (7),

λmis-P (v) = β1 (ρ, t, Σm
h )
−1

 “
vH (Σm

h )
−1

v
”−(t+1)

2F0

„
t + 1, 1; ; − ρ

vH (Σm
h )−1 v

«!(t−1)/t

. (15)

By substituting the mismatched point density λmis given by (15) into
the distortion integral (4), the system distortion lower bound of the
covariance-mismatched quantizer can be obtained as,

eDmis-P =

„Z
eIc, opt(v; α)·p(h)·λmis-P (v)−

1
t−1 dh

«
·2− B

t−1 . (16)

As a special case, if the codebook designed for i.i.d. MISO channels
is used for correlated MISO systems1, i.e. Σm

h = It, the mismatched
point density λmis(v) is uniform and the asymptotic distortion of the
mismatched quantizer can be obtained by the following analytical
closed form expression after some manipulations

eDmis-P (Σ h) =
(t− 1) · β3 (ρ, Σ h)

ln 2 · t · 2−B/(t−1) , (17)

where the constant coefficient β5 (ρ, Σ h) is given by

β3 (ρ, Σ h) = 1 +

tX
i=1

0
@ρ λ h, i

Y

j 6=i

„
1− λ h, j

λ h, i

«1
A
−1

· exp

„
1

ρ λh, i

«
· Ei

„ −1

ρ λh, i

«
. (18)

4.3. Comparison With Other Quantizers

In order to understand how the mismatched channel covariance ma-
trix

`
Σm

h = It

´
affects the MISO system performance, a distortion

comparison between optimal and mismatched quantizers under both
correlated and i.i.d. fading channels is formed. By utilizing the con-
cavity property of function β3(ρ,Σh) w.r.t. matrix Σh, it can be
proved that eDmis-P-Low, 1 (Σ h) satisfies the following inequality

eDc-Low (Σ h) ≤ eDmis-P (Σ h) ≤ eDc-Low
`
It

´
. (19)

Moreover, it can also be shown that the mismatched system distor-
tion eDmis-P (Σ h) converges to the distortion of i.i.d. MISO channels
with optimal quantizers in high-SNR regimes,

eDmis-P (Σ h)
˛̨
˛
ρ→∞

= eD H-snr
c-Low

`
It

´
=

t− 1

ln 2 · t · 2
−B/(t−1) . (20)

1This can be also viewed as the case where the channel covariance matrix
is completely unavailable at both the transmitter and the receiver.



This means that: 1) The capacity loss of a correlated MISO
channel by using the mismatched quantizer is larger than that of the
optimal quantizer, but still less than the loss of an uncorrelated MISO
channel even with optimal codebook. 2) The performance of the
mismatched quantizer is dominated by its suboptimal codebook, and
does not depend on the channel correlations in high-SNR regimes.

5. NUMERICAL AND SIMULATION RESULTS
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Fig. 1. Capacity loss of a 3 × 1 MISO system versus CSI feedback
rate B using different channel quantizers (codebooks)

We plot in Fig. 1 the capacity loss due to the finite-rate quanti-
zation of the CSI versus feedback rate B for a 3 × 1 MISO system
over i.i.d. Rayleigh fading channels with different system SNRs at
ρ = −10, and 20 dB, respectively. Codebooks are designed by us-
ing both the optimal mean squared weighted inner-product (MSwIP)
criterion proposed in [4] and the simple MMSE criterion mentioned
in Section 4.1. The analytical evaluations of the system distortion
lower bound Dc-Low provide by (8) and the mismatched distortion
eDmis-D provided by (13) are also included in the plot for compar-
isons. It can be observed from the plot that the system performance
is significantly degraded by the mismatched quantizer, especially for
systems with small antenna size. Moreover, the proposed distortion
analysis is tight and predicts very well the actual system capacity
loss obtained from Monte Carlo Simulations.

We demonstrate in Fig. 2 the system capacity loss of the mis-
matched quantizer with codebook designed for a 3 × 1 i.i.d. MISO
channel but used in a correlated fading environment with SNR ρ =
20dB. The spatially correlated channel is simulated by the corre-
lation model in [8]: A linear antenna array with antenna spacing of
half wavelength, uniform angular-spread in [−30◦, 30◦] and angle
of arrival φ = 0◦. For comparison purpose, the distortion of the
optimal quantizer over correlated MISO channel with D/λ = 0.3 is
also included in the plot. Both the optimal and the mismatched code-
books are generated by the MSwIP criterion. It can be observed that
the capacity loss of the mismatched quantizer is significantly worse
than that of the optimal quantizers with optimal designed codebooks.
Furthermore, it does not depend on the channel correlation in high
SNR regimes and converges to that of i.i.d. channels.

6. CONCLUSION

In this paper, we provide a capacity analysis of a quantized MISO
system over correlated fading channels with sub-optimal and mis-
matched channel quantizers. Two types of mismatched quantizers
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Fig. 2. Capacity loss of mismatched MISO quantizers with code-
book designed for i.i.d. channels used in correlated fading channels

are investigated, which include: 1) quantizers designed with subop-
timal MMSE criterion, and 2) quantizers whose codebooks are de-
signed with a mismatched channel covariance matrix. We approach
this problem from a source coding perspective, and the finite-rate
quantized MISO system is first formulated as a general vector quan-
tization problem with encoder side information, constrained quanti-
zation space and non-mean-squared distortion function. By utilizing
the high-resolution distortion analysis of the generalized quantizer,
we obtain tight lower bounds of the capacity loss of a quantized
MISO system with both optimal and mismatched channel quantiz-
ers. Analytical results reveal significant performance degradation of
the mismatched quantizers when compared to the optimal channel
quantizers, especially for systems with small antenna array size and
high channel correlations. This elucidates the importance of choos-
ing appropriate codebook design criterion and using correct source
statistical distributions. Finally, numerical and simulation results are
presented that confirm the accuracy of the obtained analytical results.
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