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Abstract

This paper considers the development of a general framework for the analysis of transmit
beamforming methods in multiple antenna systems with finite-rate feedback. Inspired by the
results of classical high resolution quantization theory, the problem of finite-rate quantized
communication system is formulated as a general fixed-rate vector quantization problem with
side information available at the encoder (or the quantizer) but unavailable at the decoder. The
framework of the quantization problem is sufficiently general to include quantization schemes
with general non-mean square distortion functions, and constrained source vectors. The result of
the asymptotic distortion analysis of the proposed general quantization problem is presented,
which extends the vector version of Bennett’s integral. Specifically, tight lower and upper
bounds on the average asymptotic distortion are proposed. The proposed general methodology
provides a powerful analytical tool to study a wide range of finite-rate feedback systems. To
illustrate the utility of the framework, the analysis of a finite-rate feedback MISO beamforming
system over i.i.d. Rayleigh flat fading channels is derived. Numerical and simulation results
are presented to further confirm the accuracy of the analytical results.

I. INTRODUCTION

Communication systems using multiple antennas have recently received much attention
due to their promise of providing significant capacity increases. The performance of
the multiple antenna systems depends heavily on the availability of the channel state
information (CSI) at the transmitter (CSIT) and at the receiver (CSIR). Most of the MIMO
system design and analysis adopt one of two extreme CSIT assumptions, complete CSIT
and no CSIT. In this paper, we consider systems with CSI assumptions in between these
extremes. We assume perfect CSIR is available at the receiver, and focus our attention
on MIMO systems where CSI is conveyed from the receiver to the transmitter through
a finite-rate feedback link. Recently, several interesting papers have appeared, proposing
design algorithms as well as analytically quantifying the performance of the finite-rate
feedback multiple antenna systems [1]- [7].

Most past works on the analysis of finite-rate feedback MIMO systems have adopted
one of three approaches. The first is to approximate the channel quantization region
corresponding to each code point based on the channel geometric property. Mukkavilli
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et. al. [1] derived a universal lower bound on the outage probability of quantized MISO
beamforming systems with arbitrary number of transmit antennas t over i.i.d. Rayleigh
fading channels. The second approach is based on approximating the statistical distribu-
tion of the key random variable that characterizes the system performance. This approach
was used by Xia et. al. in [2] [3] and Roh et. al. in [4]- [6], where the authors analyzed
the performance of MISO systems over i.i.d. Rayleigh fading channels, and obtained
closed form expressions of the capacity loss (or SNR loss) in terms of feedback rate
B and antenna size t. The third approach adopted by Narula et. al. in [7] is based on
relating the quantization problem to the rate distortion theory, where the authors obtained
an approximation of the expected loss of the received SNR due to finite-rate quantization
of the beamforming vectors in an MISO system. However, all these approaches are case-
specific and quite limited, i.e., i.i.d. and mainly MISO channels, and hard to extend to
more complicated schemes.

This paper attempts to provide a general framework for the analysis of quantized feed-
back multiple antenna systems by exploiting the similarities between classical fixed-rate
source coding and the channel quantization. For example, in the fixed-rate quantization
problem, the encoder attempts to describe a random source using a finite number of bits
with the goal being to minimize a chosen distortion measure (for example, a power of
the Euclidean norm of the quantization error). In multiple antenna feedback systems,
the channel state information is described using a finite number of bits with the goal
being to optimize a given performance metric (such as the received SNR, system mutual
information rate or BER). These similarities would be extremely helpful in the design and
analysis of finite-rate feedback MIMO systems as they would benefit from the vast body
of source coding theory, particularly high resolution quantization theory and VQ-based
codebook design methodology. Although several authors have remarked on this similarity
(including [1] [3] and [7]), the exact and deeper connection between the two fields still
remains elusive. A closer examination reveals that there are enough differences between
the problems that a direct use of high resolution results from source coding is not feasible.
Fortunately, however, it is possible to extend some of the results to the problem at hand
and provide an interesting general framework for analyzing a wide range of finite-rate
feedback systems.

Without narrowing the scope to a specific multi-antenna channel quantization scheme,
this paper formulates the channel quantization as a general fixed-rate vector quantization
problem with attributes tailored to meet the general issues that arise in feedback-based
communication systems. These new attributes include side information available at the
encoder (or quantizer) but unavailable at the decoder, general non-mean square distortion
functions, and source vectors with constraints. Asymptotic distortion analysis of the
proposed general quantization problem is provided by extending Bennett’s classic analysis
[8] as well as its corresponding vector extensions [9] [10]. To be specific, tight lower
and upper bounds of the average asymptotic distortion are proposed. The utility of the
framework is demonstrated by using it to analyze specific feedback communication sys-
tems. Due to space limitations, this paper only provides results for a finite-rate feedback
MISO beamforming systems over i.i.d. Rayleigh flat fading channels. Numerical and
simulation results are presented which further confirm the tightness of the proposed
asymptotic distortion bounds. As indicated earlier, the proposed methodology from the
source coding perspective provides a powerful analytical tool to study a wide range of



finite-rate feedback systems and is not limited only to this particular case. It can be
used to analyze more complicated schemes such as MISO systems over correlated fading
channels, MIMO systems (i.i.d. and correlated channels), and even MISO (or MIMO)
multicarrier systems over frequency selective fading channels. The established framework
is versatile enough to provide analysis of quantizers with mismatched channel statistics
and transformed codebooks. These topics are the subject of [11] and [12].

II. GENERALIZED VECTOR QUANTIZATION FRAMEWORK AND ASYMPTOTIC
ANALYSIS

In this section, the finite-rate feedback-based multiple antenna system is formulated
as a generalized fixed-rate vector quantization problem and analyzed by adapting tools
from high resolution quantization theory.

A. Motivation for Generalization
To better understand the need for this generalization, an illustrative example is useful.

For this purpose, consider a MISO system with t transmit antennas and a single receive
antenna where the CSI to be quantized is the vector channel realization h ∈ CT. In contrast
to the classical quantization problem, where the encoder and the codebook are designed
to minimize the distortion between the source variable and its quantized representation,
the design of finite-rate MISO feedback systems is a generalized vector quantization
problem because of the following key differences:

1) Redundant Parameters: Not all channel parameters need to be quantized. For
example, only the channel directional information v = h/‖h‖ is required by the
transmitter of a MISO system which employs maximum ratio transmission (MRT).
Therefore, it is redundant to directly quantize the channel instantiation h.

2) Constrained Vector Parameterization: The actual variable to be quantized may have
certain constraints. In the example of quantized MRT beamforming, the vector
v ∈ CT is constrained to be unit-norm and hence lies on the unit hyper-sphere.

3) Encoder Side Information: The information which is not the quantization objective,
for example the gain ‖h‖ of the MISO channel, can be utilized as side information
at the encoder to improve the quantization performance.

4) Non mean-squared performance metric: The distortion measure, for example effec-
tive SNR, system capacity, or bit error rate, is often a more general non-mean-square
error function and even parameterized by the side information.

Due to the above-mentioned differences, high resolution quantization theory results
from classical source coding cannot be directly applied to the design and analysis of
finite-rate feedback systems. In order to take advantage of the vast body of literature
on source coding, the analysis must be extended to allow for encoder side information,
constrained quantization variables and non-mean-squared distortion measures.

B. Problem Formulation
It is assumed that the source variable x can be decomposed as (y, z), where vector

y ∈ Q represents the actual quantization variable of dimension kq and z ∈ Z is the
additional side information of dimension kz. The encoder side information z is available
at the encoder but not at the decoder. Source variable y and side information z have joint
probability density function given by p (y, z). This paper considers a fixed-rate (B bits)



quantizer with N = 2B quantization levels. Based on a particular source realization x, the
encoder (or the quantizer) represents vector y by one of the N vectors ŷ1, ŷ2, · · · , ŷN ,
which form the codebook. The encoding or the quantization process is denoted as ŷ =
Q(y, z). The distortion of a finite-rate quantizer is defined as

D = Ex

[
DQ

(
y, ŷ ; z

)]
, (1)

where DQ
(
y, ŷ ; z

)
is a general non mean-squared distortion function between y and

ŷ that is parameterized by z. It is further assumed that function DQ has a continuous
second order derivative (or Hessian matrix w.r.t. to y) Wz(ŷ) with the (i, j)th element
given by

wi,j =
1

2
· ∂2

∂ yi∂ yj

∣∣∣∣
y=by

DQ
(
y , ŷ ; z

)
. (2)

Viewed from a conventional source coding perspective, the described general quantiza-
tion problem is equivalent to the quantization of a mixed density source with each source
component having probability density given by p

(
y
∣∣z), and general distortion function

DQ
(
y, ŷ ; z

)
parameterized by the encoder side information z, which is also the index

information of the source component.

C. Asymptotic Distortion Integral
Under high resolution assumptions, the asymptotic distortion of a finite-rate feedback

system can be represented by the following form [13], which is similar to Bennett’s
integral provided in [8] and its vector extension provided in [9]

D = E
[
DQ

(
y , Q(y, z) ; z

)]
= 2

− 2B
kq

∫

Z

∫

Q
m

(
y ; z ; Ez(y)

)
p
(
y, z

)
λ
(
y
)− 2

kq dy d z,

(3)
where Ez(y) denotes the asymptotic projected Voronoi cell that contains y with side
information z as N approaches infinity. In equation (3), λ(y) is a function representing
the relative density of the codepoints, which is referred to as the point density, such that
λ(y) dy is approximately the fraction of quantization points in a small neighborhood of
y. Function m

(
y ; z ; E

)
is the normalized inertial profile that represents the asymptotic

normalized distortion or the relative distortion of the quantizer Q at position y conditioned
on side information z with Voronoi shape E. Both λ(y) and m

(
y ; z ; E

)
are the key

performance determining characteristics that can be used to analyze the effects of different
system parameters, such as source distribution, distortion function, quantization rate etc.,
on the finite-rate quantizer.

The normalized inertial profile of an optimal quantizer is defined as the minimum
inertia of all admissible regions Ez(y), i.e.

mopt
(
y ; z

) 4
= min
Ez(y)∈HQ

m
(
y ; z ; Ez(y)

)
, (4)

where HQ representing the set of all admissible tessellating polytopes that can tile space
Qz. The optimal inertial profile can be tightly lower bounded (or approximated) by

mopt
(
y ; z

)
' m̃opt

(
y ; z

)
=

kq

kq + 2
·
(∣∣Wz(y)

∣∣
κ2

kq

)1/kq

, κn =
πn/2

Γ(n/2 + 1)
. (5)



D. Minimization of the Distortion Integral & Different Distortion Bounds
Due to the new attribute of the encoder side information, the generalized vector

quantization problem can be viewed as quantizing a multi-component source variable
with different distortion functions. Therefore, the codebook should be designed to match
the overall distortion averaged over all source components in the sense that both the
Voronoi shape and the point density function are optimized. Average system distortion
of the optimal quantizer are characterized and bounded in the following.
• Asymptotic Distortion Lower Bound

The distortion integral given by equation (3) allows the minimization of the system
distortion by optimizing the choice of the Voronoi shape Ez(y) as well as the point
density function λ(y). Therefore, by substituting the lower bound of the inertial profile
(5) derived from the hyper-ellipsoidal approximation into the distortion integral (3) and
optimizing λ(y) w.r.t. to the overall distortion, the following distortion lower bound of
the optimal quantizer can be obtained:

DOpt ≥ D̃Low,1 =

(∫

Q

(
m̃w

opt

(
y
) · p(y)) kq

2+kq
dy

) 2+kq
kq

· 2− 2B
kq , (6)

where DOpt represents the distortion of the optimal quantizer, and m̃w
opt

(
y
)

is the average
optimal inertial profile defined as

m̃w
opt

(
y
)

=

∫

Z
m̃opt

(
y ; z

) · p(z
∣∣y)

d z . (7)

The optimal point density that minimizes the asymptotic system distortion is given by

λ∗
(
y
)

=
(
m̃w

opt

(
y
) · p(y)) kq

2+kq ·
( ∫

Q

(
m̃w

opt

(
y
) · p(y)) kq

2+kq
dy

)−1

. (8)

It can be shown that this bound is asymptotically achievable in high dimensions by using
a random coding argument.
• An Alternative Distortion Lower Bound

If the side information z is not only available at the encoder but also accessible at
the receiver, multiple codebooks ŷz,1, ŷz,2, · · · , ŷz,N (indexed by the side information z)
can be utilized and designed to match each source component. In this case, conditioned
on a particular instantiation z, the asymptotic distortion by quantizing a source y with
distribution p

(
y
∣∣ z) and distortion function DQ

(
y, ŷ ; z

)
can be lower bounded by [9],

Dopt(z) ≥ D̃Low,2
(
z
)

=

(∫

Q

(
m̃opt

(
y ; z

) · p(y
∣∣ z)

) kq
2+kq

dy

) 2+kq
kq

· 2− 2B
kq . (9)

In order to achieve the lower bound DLow,2(z), each component quantizer (parameterized
by z) has independent codebook with optimized point density λ∗z(y) given by

λ∗z
(
y
)

=
(
mopt

(
y ; z

) · p(y
∣∣ z)

) kq
2+kq ·

( ∫

Q

(
mopt

(
y ; z

) · p(y
∣∣ z)

) kq
2+kq

dy

)−1

. (10)

In the generalized vector quantization problem, due to the unavailability of encoder side
information at the decoder, a quantization scheme with multiple codebooks and different



point density functions λz(y) that are matched to each source component, is not feasible.
Hence, an alternative distortion lower bound D̃Low,2, which is itself a lower bound on
DLow,1, can be obtained

DOpt ≥ D̃Low,1 ≥ D̃Low,2 = Ez

[
D̃Low,2

(
z
)]

=

∫

Z
D̃Low,2

(
z
) · p(z) d z . (11)

• Asymptotic Distortion Upper Bound
If the side information z is unavailable both at the encoder and the decoder, the

generalized quantization problem reduces to be a classical fixed-rate vector quantization
problem with single component source. In this case, the source variable y has marginal
distribution p (y) and average distortion function DW

Q given by

Dw
Q

(
y, ŷ

)
=

∫

Z
DQ

(
y, ŷ ; z

) · p(z
∣∣y)

d z , (12)

whose corresponding (average) sensitivity matrix can be represented as

Ww(
ŷ

)
=

∫

Z
Wz

(
ŷ

) · p(z
∣∣ ŷ)

d z . (13)

Due to the fact that the generalized vector quantizer benefits from the availability of the
side information at the encoder, the distortion of a side-information-aided quantizer is less
than that of quantizing a mixed-component source without side information. Therefore,
the average distortion of the side-information-absent quantizer is actually a distortion
upper bound of the generalized vector quantizer, which is given by

DOpt ≤ D̃Upp =

(∫

Q

(
m̃w

Upp

(
y
) · p(y)) kq

2+kq
dy

) 2+kq
kq

· 2− 2B
kq , (14)

where m̃w
Upp (y) is a tight approximation of the inertial profile obtained by applying the

same hyper-ellipsoidal approximation on the cell shape as in equation (5),

m̃w
Upp (y) =

kq

kq + 2
·
(∣∣Ww(y)

∣∣
κ2

kq

) 1
kq

. (15)

• Losses Due in the Context of Side Information
Armed with the above-derived bounds and their corresponding interpretations, the

performance loss for quantization with side information can be quantified. First, the
loss due to ignorance of the side information at the decoder, where the point density is
constrained to be independent of the side information, gives rise to a performance loss:

Ldec = D̃low,1
/

D̃low,2 . (16)
Next, consider the loss due to ignorance of the side information at both the encoder and
decoder. In this case, the cell-shapes are constrained to be constant and are optimized
under an “averaged” distortion measure. The performance loss in this case is given by:

Lenc = D̃Upp
/

D̃low,1 . (17)
This term represents the additional loss due solely to encoder ignorance, and so the total
loss of a system with no access to the side information, relative to a system in which
both the encoder and receiver have the side information, is given by Ltot = Lenc · Ldec.
Note that these loss functions specify the penalty in terms of excess distortion, and so
the minimum loss is 1. The units can be converted into bits per dimension as 1

2
log2(L).



E. Asymptotic Analysis of Constrained Source
The analysis provided above is for the case that the input source y is a free random

vector of dimension kq. In some situations, it is required to quantize the kq dimensional
source vector y ∈ Q subject to a multi-dimensional constraint function g(y) = 0 of size
kc × 1. In this case, the proposed asymptotic distortion analysis is still valid with the
following modifications. First, the degrees of freedom in y reduce from kq to k′q = kq−kc.
Second, the sensitivity matrix is replaced by its constrained version Wc, z(y) given by

Wc, z
(
y
)

= VT
2 ·Wz

(
y
) ·V2 , (18)

where V2 ∈ Rkq×k′q is an orthonormal matrix with its columns constituting an orthonormal
basis for the orthogonal compliment of the range space R(

∂
∂ y

g(y)
)
. By utilizing a similar

approach as that used in obtaining equation (5), the normalized inertial profile for the
constrained source y can be lower bounded by

mc-opt
(
y ; z

) ≥ m̃c, opt
(
ŷi ; z

)
=

k′q
k′q + 2

·
(∣∣Wc, z

(
ŷi

)∣∣
κ2

k′q

) 1
k′q

. (19)

Lastly, the multi-dimensional integrations used in evaluating the average distortions are
over the constrained space g(y) = 0. For example, the asymptotic distortion lower bound
DLow,1 for constrained source variable, denoted as D̃c-Low,1, is given by

Dc-Opt ≥ D̃c-Low,1 =

(∫

g(y)=0

(
m̃w

c,opt

(
y
) · p(y)) k′q

2+k′q dy

) 2+k′q
k′q
· 2−

2B
k′q , (20)

where the constrained average inertial profile m̃w
c,opt

(
y
)

is given by

m̃w
c,opt

(
y
)

=

∫

Z
m̃c,opt

(
y ; z

) · p(z
∣∣y)

d z . (21)

Following similar derivations, other asymptotic analysis bounds, such as D̃c-Low,1, D̃c-Low,2,
and D̃c-Upp can also be readily obtained.

III. ANALYSIS OF UNCORRELATED MISO SYSTEMS WITH FINITE-RATE FEEDBACK

Although the analysis of finite-rate quantized MISO beamforming system over i.i.d.
Rayleigh fading channels has been investigated in several past works, we revisit this prob-
lem from a source coding perspective by formulating it into a general vector quantization
problem and provide analysis based on the general framework.

A. System Model
We consider an MISO system with t transmit antennas, one single receive antenna,

signaling through a frequency flat block fading channel. The channel impulse response h
is assumed to be perfectly known at the receiver but partially available at the transmitter
through CSI feedback. It is assumed that there exists a finite-rate feedback link of B(
N = 2B

)
bits per channel update between the transmitter and receiver. To be specific,

a codebook C =
{
v̂1, · · · , v̂N

}
, which is composed of unit norm transmit beamforming

vectors, is assumed known to both the receiver and the transmitter. Based on the channel



realization h, the receiver selects the best code point v̂ from the codebook and sends the
corresponding index back to the transmitter. At the transmitter, vector v̂ is employed as
the transmit beamforming vector, and the system channel model can be represented as

y = hH · (v̂ · s) + n = ‖h‖ · 〈v, v̂〉 · s + n , (22)

where y is the received signal (scalar), n ∼ Nc(0, 1) is the additive complex Gaussian
noise with zero mean and unit variance, hH ∈ C1×t is the MISO channel response with
distribution given by h ∼ Nc(0,Σh), and vector v is the channel directional vector given
by v = h/‖h‖. The transmitted signal s is normalized to have a power constraint given
by E [s2 ] = ρ, with ρ representing the average signal to noise ratio at each receive
antenna.

The performance of a finite-rate feedback MISO beamforming system can be charac-
terized by the capacity loss CLoss, which is the expectation of the instantaneous mutual
information rate loss CL(h, v̂) due to the finite-rate quantization of the transmit beam-
forming vector. This performance metric was also used in [6] and is defined as

CL(h, v̂) = − log2

(
1− ρ · ‖h‖2

1 + ρ · ‖h‖2
·
(
1− |〈v, v̂〉|2

))
, (23)

B. Problem Formulation
By employing the general framework described in Section II, the finite-rate quantized

MISO beamforming system can be formulated as a general fixed rate vector quantization
problem. Specifically, the source variable to be quantized is denoted as v =

[
vT

R , vT
I

]T of
2t real dimensions with vR and vI representing the real and imaginary parts of the complex
channel directional vector v. The encoder side information is denoted as α = ‖h‖2 of
dimension kα = 1 representing the power of the vector channel. For vectors in the
vicinity of v̂ (with v̂R and v̂I representing its real and imaginary parts), source variable
v is restricted under the constraint function given by

g
(
v
)

=

[
vT

RvR + vT
I vI − 1

vT
R v̂I − vT

I v̂R

]
= 0 , (24)

where the first element represents the norm constraint ‖v‖ = 1, and the second element
represents the phase constraint ]〈v, v̂〉 = 0. Function g(v) has size kc = 2, which leads
to the actual degrees of freedom of the quantization variable v to be k′q = 2t − 2. The
instantaneous capacity loss due to effects of finite-rate CSI quantization is taken to be the
system distortion function DQ(v, v̂ ; α), which is given by the following form according
to the definition given by (23)

DQ(v, v̂ ; α) = CL(h, v̂) = − log2

(
1− ρα

1 + ρα
·
(
1−

∣∣〈v, v̂〉
∣∣2

))
. (25)

C. High-Rate Analysis
By utilizing the proposed high-rate distortion analysis, the constrained sensitivity matrix

of the finite-rate quantized MISO beamforming system is given by

Wc, α
(
v̂
)

=
ρα

ln 2 · (1 + ρα)
· I2t−2 , (26)



Hence, by substituting (26) into the lower bound given by (19), the optimal inertial profile
is tightly lower bounded (or approximated) by the following form

m̃c, opt

(
v̂ ; α

)
=

(t− 1) · γ−1/(t−1)
t · ρα

ln 2 · t · (1 + ρα)
, γt =

πt−1

(t− 1)!
. (27)

When the elements of the channel response h are i.i.d. Gaussian distributed, α and v are
statistically independent and the weighted constrained moment of inertia coefficient can
be obtained as

m̃w
c, opt =

(t− 1) · γ−1/(t−1)
t

ln 2 · t ·
(

2F0

(
t + 1, 1; ; −ρ

) · ρ
)

, (28)

where 2F0 is the generalized hypergeometric function. Therefore, by substituting (28) into
the distortion integral (6) and after some manipulations, the average system distortion (or
capacity loss) of MISO systems with finite-rate feedback is given by

DLoss = D̃c-Low,1 =
(t− 1) 2−B/(t−1)

ln 2
·
(

2F0

(
t + 1, 1; ; −ρ

) · ρ
)

, (29)

with the optimal point density λ∗ (v) being a uniform distribution given by

λ∗ (v) = γ−1
t , v ∈

{
v

∣∣∣g (v) = 0
}

. (30)
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Fig. 1. Capacity loss of a 3× 1 MISO transmit beamforming system with finite-rate feedback

Some numerical experiments were conducted to get a better feel for the utility of the
bounds. Fig. 1 shows the capacity loss due to the finite-rate quantization of the CSI
versus feedback rate B for a 3 × 1 MISO system over i.i.d. Rayleigh fading channels



under different system SNRs at ρ = −10, 0 and 20 dB, respectively. The simulation results
are obtained from a MISO system using optimal CSI quantizers whose codebooks are
generated by the mean squared weighted inner-product (MSwIP) criterion proposed in
[5]. The analytical evaluations of the distortion lower bound Dc-Low,1 provide by equation
(29) are also included in the plot for comparisons. It can be observed from the plot that
the proposed distortion (or the capacity loss) lower bound is tight and predicts very well
the actual system capacity loss obtained from Monte Carlo Simulations.

IV. CONCLUSION

This paper has developed a general framework for the analysis of multiple antenna
systems with finite rate feedback from a source coding perspective. Without narrowing
the scope to a specific channel quantization scheme, the problem was formulated as
a general fixed-rate vector quantization problem with side information available at the
encoder but unavailable at the decoder. The proposed framework is sufficiently general
to include quantization schemes with non-mean square distortion functions, and cases
where the source vector is constrained. The results of the asymptotic distortion analysis
of the proposed general quantization problem was also presented, which extends the
vector version of Bennett’s integral. More specifically, tight lower and upper bounds of
the average asymptotic distortion were provided and related to corresponding classical
fixed-rate quantization problems. The proposed general methodology provides a powerful
analytical tool to study a wide range of finite-rate feedback systems. To illustrate the utility
of the framework, a capacity analysis of the finite-rate feedback MISO beamforming
system over i.i.d. Rayleigh flat fading channels was provided. Numerical and simulation
results were presented to further confirm the accuracy of the asymptotic distortion bound.

REFERENCES

[1] K. K. Mukkavilli, A. Sabharwal, E.Erkip, and B.Aazhang, “On beamforming with finite rate feedback in multiple-
antenna systems,” IEEE Trans. on Information Theory, vol. 49, no. 10, pp. 2562–2579, Oct. 2003.

[2] P. Xia, S. Zhou, and G. B. Giannakis, “Multiantenna adaptive modulation with beamforming based on bandwidth-
constrained feedback,” IEEE Trans. on Communications, vol. 53, no. 3, pp. 526–536, Mar. 2005.

[3] P. Xia and G. B. Giannakis, “Design and analysis of transmit-beamforming based on limited-rate feedback,”
IEEE Trans. on Signal Processing, 2005 (to appear).

[4] J. Roh and B. D. Rao, “Performance analysis of multiple antenna systems with VQ-based feedback,” in 38th
Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2004, pp. 1978–1982.

[5] J. Roh and B. D. Rao, “Transmit beamforming in multiple antenna systems with finite rate feedback: A VQ-based
approach,” IEEE Trans. on Information Theory, Submitted.

[6] J. Roh, Multiple-Antenna Communication with Finite Rate Feedback, Ph.D. thesis, Univ. of California, San
Diego, 2005.

[7] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Efficient use of side information in multiple-antenna
data transmission over fading channels,” IEEE Journal on Selected Areas in Communications, vol. 16, pp.
1423–1436, Oct. 1998.

[8] W. R. Bennett, “Spectra of quantized signals,” Bell System Technical Journal, vol. 27, pp. 446–472, July 1948.
[9] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. on Information Theory, vol. 25, pp.

373–380, July 1979.
[10] W. R. Gardner and B. D. Rao, “Theoretical analysis of the high-rate vector quantization of LPC parameters,”

IEEE Trans. Speech Audio Processing, vol. 3, pp. 367–381, Sept. 1995.
[11] J. Zheng and B. D. Rao, “Capacity analysis of correlated multiple antenna systems with finite rate feedback,”

in IEEE International Conference on Communications 2006, Istanbul, Turkey, under review.
[12] J. Zheng and B. D. Rao, “Capacity analysis of multple antenna systems with mismatched channel quantization

schemes,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing 2006, Toulouse,
France, under review.

[13] J. Zheng and B. D. Rao, “Analysis of multiple antenna systems with finite rate feedback using high resolution
quantization theory,” submitted to IEEE Trans. on Signal Processing, Nov. 2005.


