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Abstract— The performance of multiple antenna systems
can be greatly improved by making the channel state
information (CSI) available at the transmitter. In practice,
therefore, a finite-rate feedback link is employed to convey
a quantized version of the CSI to the transmitter. This
semi-tutorial paper summarizes some of the recent work
on the design and analysis of multiple antenna systems with
finite rate feedback. In particular, we discuss appropriate
criteria for the design of quantizers for feedback-based
communication systems along with corresponding algo-
rithms for codebook generation. Finally, we qualitatively
show how the classical source coding theory can be ex-
tended to analyze the performance of finite rate feedback-
based multiple antenna systems.

I. I NTRODUCTION AND PROBLEM SETUP

Multiple antenna systems have received much atten-
tion for the past decade or so, due to their promise of
higher data rates compared to their single-antenna coun-
terparts. When the multiple antenna system comprises
of t transmit andr receive antennas, if we consider the
channel to be flat-fading, the input-output relation can
be expressed as

y = Hx + n, (1)

where x ∈ Ct is the channel input,y ∈ Cr is the
channel output,n ∈ Cr is the AWGN at the receiver,
and H ∈ Cr×t is the channel matrix with the(i, j)-th
entry containing the complex gain from thej-th transmit
antenna to thei-th receive antenna. Under the block
fading model, the channel matrixH remains constant
within a fading block, and changes independently from
block to block according to some statistical distribution
(e.g., Rayleigh distribution). In this case, we can omit
the time index in writing the input-output relation, as
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we have done above. It is well known that the per-
formance and complexity of multiple-input multiple-
output (MIMO) systems can be improved by making
the channel state information (CSI) available at the
transmitter. In general, the CSI has to be conveyed back
to the transmitter from the receiver through a feedback
link. However, in practical communication systems, the
CSI feedback suffers from impairments such as channel
estimation errors, quantization errors, feedback delay
and feedback errors. Recently, several interesting papers
have appeared, quantifying the effects of the partial
CSI at the transmitter caused by these impairments.
Channel feedback is also under consideration in 3rd
generational mobile and wireless LAN standards, for
example in the closed-loop mode specification in 3GPP
High Speed Downlink Packet Access (HSDPA) [1] and
in the eigenbeamforming mode specification in IEEE
802.11 [2] and IEEE 802.16 [3].

Two of the popular models for studying the effect
of partial CSI at the transmitter are statistical feedback
and instantaneous feedback. In the statistical feedback
approach, it is assumed that the channel coherence time
is too small to feedback every channel instantiation.
However, the channel statistics vary sufficiently slowly,
so that the mean and/or the covariance of the channel
can be made available to the transmitter accurately. The
channel is then modelled as Gaussian distributed with
the given mean and covariance, and the system perfor-
mance is optimized with respect to the input distribution
and analytically characterized. Examples of works that
employ statistical feedback include [4] - [10].

In the instantaneous feedback approach, which is the
focus of this paper, the receiver attempts to convey to
the transmitter the current channel instantiation, typically
through a bandwidth-constrained feedback link. That is,
given B bits of feedback, the receiver maps the current
channel instantiationH to one of N = 2B integer
indices, with each index corresponding to a particular



mode of the channel. The transmitter has knowledge
of the N -mode codebook, and therefore, it is able to
optimize its transmission strategy based on the feedback
information. Thus, it is a very interesting and challenging
problem to design optimal quantization schemes and the
associated transmission strategies for multiple-antenna
systems with finite rate feedback. The design and anal-
ysis of the optimum quantizer that takes advantage of
both the underlying channel distribution as well as the
performance metric (received SNR, outage probability,
mutual information rate, bit error rate, etc) has received
much attention in the past few years, notably in [11] -
[24]. A recent overview of work in this area is [25].

There appear to be similarities between classical fixed-
rate source coding and channel quantization. For exam-
ple, in the source coding problem, the encoder attempts
to describe a random source by a finite number of bits,
and the goal is to minimize the representation error (for
example, the Euclidean norm of the quantization error).
In channel quantization, one would like to describe the
channel state by a finite number of bits, and the goal
is to optimize a given performance metric (such as the
received SNR, channel throughput or BER). Although
several authors have remarked on this similarity (includ-
ing [11], [14] [26]), the exact connection between the
two fields has remained elusive. In this paper, we will
present qualitative arguments to show how to bridge the
gap between these two fields. This paper is organized as
follows. In section II, we present a summary of some of
the recent work in the area of quantized feedback based
systems. In section III, we present the key approach
used in classical source coding literature and examine the
similarities and differences between source coding and
channel quantization. We show how the quantizer design
problem is in fact a more general source compression
problem. We briefly summarize some of our recent
findings in this area as well.

II. REVIEW OF PAST WORK
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Fig. 1. Model of a typical multiple antenna system with finite rate
instantaneous feedback.

In this section, we will present a review of the recent
work in the area of multiple antenna system design with
quantized feedback. We illustrate a general model of a

multiple antenna system with finite rate instantaneous
feedback in Fig. 1. The channel state information (CSI)
H, CSI at the receiver (CSIR)v, and CSI at the
transmitter (CSIT)u follow a joint distribution given
by p

(
u,H, v

)
. Note that this model includes situations

where the CSIR is perfect (v = H), as well as situations
where the CSIR and CSIT suffer from estimation error
or feedback errors (u, v andH are correlated).

Skoglund et al [9] investigated the system in Fig. 1
from an information theoretic perspective. They proved
that when the receiver has full knowledge of the CSI
and the feedback information, i.e.v =

(
H, u

)
, the

capacity-achieving encoder subject to a total transmit
power constraint can be split into two parts, a fixed
codebook encoder and an adaptive weighting matrix
W(u) based on the feedback informationu. The optimal
input distribution of the fixed encoder is spatially white
i.i.d. complex Gaussian.

Lau et al [19] studied a more general finite rate
feedback system where the channel states = H, the
CSIR v, and the CSITu have a joint statistical relation
p
(
s, u, v

)
. They proved that the optimal quantizer is

a time-invariant deterministic function. The system ca-
pacity is obtained through a double optimization over
both the quantization function and the input distribution
px|u(x|uq) conditioned on the feedback informationuq,
with 1 ≤ q ≤ N . However, this joint optimization
problem is difficult to solve, and numerical techniques
have to be used to provide approximate solutions. Hence,
most of the attention in recent literature is focussed
on the case of ideal CSIR, and simple sub-optimal
input distributions (i.i.d Gaussian distribution) or sub-
optimal transmission schemes (such as employing just a
single beamforming vector or a pre-coding matrix with
orthonormal column vectors).

In [11], Narula et al considered a MISO system with
perfect CSIR and employed the finite-rate feedback link
to describe a beamforming vector. Both the channel gain
as well as the mutual information were used as per-
formance metrics. The Lloyd algorithm [27] for vector
quantization (VQ) was utilized for designing the optimal
codebook of beamforming vectors. On the analytical
side, the authors took advantage of the connection be-
tween the quantization problem and the classical rate
distortion theory. They derived an expression for the
SNR loss due to quantized beamforming as a function
of the number of feedback bitsB as

ρL = ρP − ρQ ' t− 1
t

2
−B

t , (2)

where ρP is the expected received SNR with perfect
beamforming andρQ is the expected received SNR with



quantized beamforming. The above result is based on
the assumption that the number of transmit antennast is
large.

Mukkavilli et al [14] were able to derive a lower bound
on the outage probability of quantized beamforming for
MISO systems with i.i.d. Rayleigh fading channels. They
employed a geometrical approach to derive thefractional
loss in outageF (B), defined as the relative loss in outage
performance between the best beamformer withB bits of
feedback when compared to a beamformer with perfect
CSI at the transmitter, for large SNR. They obtained an
expression of the form

F (B) = (t− 1)2
−B

t−1 . (3)

This result is suitable for an arbitrary number of transmit
antennast, and the analysis is based on the geometrical
properties of the channel space. The authors also consid-
ered the codebook design for the quantized beamforming
vectors, and proposed a min-max criterion based on
minimizing the maximum inner product between any
two distinct beamforming vectors in the codebook. The
outage probability of the codebook designed based on
this criterion was shown to be very close to the lower
bound for smallt andB.

Love et al [15], [16], [24] also proposed the above
min-max criterion for designing the codebook in a i.i.d.
Rayleigh fading MIMO channel setting, and related the
problem to that of Grassmannian line packing [28],
which is the problem of maximally separating lines in
the Grassmann manifold. A random computer search-
ing algorithm was employed to generate a codebook
that optimizes the Grassmannian beamforming criterion.
They provided necessary and sufficient conditions for
the quantized feedback scheme to achieve full diversity
order. They also obtained bounds on the codebook size
to satisfy a given loss in SNR or capacity by using results
on Grassmannian line packing such as the Rankin bound.
Another problem the authors have addressed is quantized
equal gain transmission [29], i.e., transmit beamforming
under a per-antenna power constraint. They showed that
the Grassmannian beamforming criterion can still be
used to obtain good beamforming vector codebooks.

Vector quantization (VQ) techniques along with the
Lloyd algorithm can be used to obtain codebooks that
specifically account for both the statistical distribution
of the channel as well as the performance metric (for
example, the mutual information rate or the average
received SNR). This approach was used by Xia et al
in [21], [22], [26] to derive a criterion for designing the
quantized beamforming codebook in a MISO channel to

maximize the average received SNR as

max
Q(·)

[∣∣hHQ(h)
∣∣2

]
, (4)

where v̂ = Q(h) is the quantized beamforming vector
(‖v̂‖ = 1) corresponding to the channel instantiation
h. Simultaneously, Roh et al [18], [30] considered the
system capacity loss as their performance metric. The
capacity loss was defined as the difference in expected
system mutual information rate between perfect beam-
forming (i.e., with infinite feedback rate) and quantized
beamforming. They derived a weighted inner product
criterion for the codebook design in a MISO setting as
follows:

max
Q(·)

[( ‖h‖2PT

1 + ‖h‖2PT

) ∣∣vHQ(h)
∣∣2

]
, (5)

where v , h/‖h‖. The Lloyd algorithm [27], which
is a standard algorithm in VQ literature, was used
to generate the codebook. The algorithm consists of
two iterative computing steps: the nearest neighborhood
condition and the centroid condition. At the end of each
iteration, the objective function (performance metric)
always improves, thus guaranteeing the convergence
of the algorithm to a (local) optimum. Both of these
groups analyzed the performance of MISO systems with
limited rate-feedback in the case of i.i.d. Rayleigh fading
channels, and obtained an expression of the capacity loss
(or SNR loss) as

CLoss =
t− 1

t
2−

B

t−1 . (6)

The power of these vector quantization based techniques
is that at high rates, they can be used to design code-
books that are optimal for any given distortion function
(such as SNR loss, capacity loss, BER, etc) and any
given channel distribution.

In [31], Roh et al extended the results from MISO
studies to the case of MIMO systems with quantized
feedback. They employed a transmission scheme with
a variable number of spatial channels, where the to-
tal available power is allocated equally to the spatial
channels. They proposed a new criterion for designing
the codebook of beamforming matrices based on min-
imizing the system mutual information loss resulting
from the limited rate in the feedback channel. Using the
criterion, a similar iterative Lloyd-type design algorithm
was developed that converges to an optimum codebook.
By utilizing the complex multivariate beta distribution
and tractable approximations to the Voronoi regions
associated with each code point, the effect on the system
mutual information rate of the finite-bit representation



of the beamforming matrix was analyzed for the case of
i.i.d. Rayleigh fading channel in the high SNR regime.
Furthermore, to compensate for the degradation due to
the equal power allocation assumption, a multi-mode
spatial multiplexing transmission strategy was proposed,
wherein the number of data streams is determined based
on the average SNR.

Scalar quantization of the MIMO channel parame-
ters in slowly-time varying channels was considered
in [32], where the authors used Givens rotations to
parameterize the eigenvectors of the covariance matrix
that is employed at the transmitter. Since the parameters
are smoothly changing in time for slowly time-varying
channels, adaptive delta modulation was employed to
quantize and feedback each parameter. The proposed
feedback scheme is able to track the time-varying chan-
nel and achieves a capacity close to the perfect feedback
case with a reasonable feedback rate. In [33], the authors
considered quantization of the unitary MIMO precoding
matrix, and proposed a matrix factorization approach to
exploit the spatial structure inherent in the unitary matrix.
In [34], the authors employed a vector quantization based
approach for per-antenna power constrained beamform-
ing. They derived a modified Lloyd algorithm to design
the codebook with an approximation capacity loss as the
performance metric, and also obtained analytical expres-
sions for the capacity loss with quantized feedback.

III. SOURCECODING VERSUSCHANNEL

QUANTIZATION : SIMILARITIES AND DIFFERENCES

In classical source coding, the encoder describes a
random sources ∈ Rk by one of the entries in a
codebook denoted{ŝ1, . . . , ŝN}, where ŝi ∈ Rk. The
goal of the encoder is to minimize the distortion (for
example, the expectedr-th power Euclidean distance)
betweens and its quantized version̂si. Source coding
is a well established field, and a vast body of results
are available for both the design and analysis of optimal
quantizers (see [35] and the references therein, for a
comprehensive survey of source quantization). Hence,
if the exact relationship between source coding and
channel quantization were established, one could draw
from source coding results to design as well as analyze
the performance of feedback based systems.

The major differences between channel quantization
and the classical source coding are:

1) Not all channel parameters need to be quantized.
For example, consider the quantization of the
maximum ratio transmission (MRT) beamforming
vector in a MISO system, which is given byv ,
h/‖h‖ [36]. We are only interested in the direction

of the channel vectorh rather than in its gain
‖h‖. Clearly, it is redundant to directly quantize
the channel instantiationh.

2) The channel instantiation and the actual variable
to be quantized may lie in different spaces and
may have different dimensions. In the example of
quantized MRT beamforming, the vectorv ∈ Ct

that we need to quantize is constrained to be
unit-norm and hence lies on the unit hyper-sphere
or manifold, whereas the channel instantiationh
could be anywhere in theCt space.

3) The additional information which is not the quan-
tization objective, for example the gain‖h‖ of the
MISO channel, can be utilized as side information
at the quantizer (or the receiver) to improve the
quantization performance.

4) The distortion measure may be a more general
non-mean-square error function, for example, if
the average received SNR loss is the performance
metric, then the distortion measure is given by

ρL , E
{

PT · ‖h‖2 ·
(
1− ∣∣vH v̂

∣∣2
)}

, (7)

where PT is the transmit power (assuming the
AWGN at the receiver has unit variance). Notice
that the distortion function is clearly not of the
form ‖v − v̂‖r, i.e., not a distance distortion
function.

Due to the above reasons, classical rate distortion
results cannot be directly applied to the design and
analysis of finite rate feedback systems. In order to
take advantage of the vast body of literature on source
coding, we need to modify the source coding problem
to allow for constrained quantization and non-mean-
squared distortion functions. We start by summarizing
some of the major approaches used in classical source
coding studies and show how it may be extended to fit
our case of interest.

In 1948, W. R. Bennett [37] used a companding model
for nonuniform scalar quantization and showed that the
distortion could be approximated by the integral

D ' 1
12N2

∫
p(x)

[
E′(x)

]−2
dx, (8)

for the mean-squared quantizing error whereN is the
number of levels,p(x) is the probability density of the
source symbols, andE′(x) is the slope of what he called
the compressor curve. The problem was revisited by
Gersho in [38], where he solved the problem for the more
general case ofk-dimensional vector quantization with
ther-th power Euclidean distance distortion function. He



obtained the rate-distortion formula

D ' C(k, n)N−r/k‖p(x)‖k/(k+r), (9)

where C(k, n) is a constant known as the moment of
inertia coefficient, and‖p(x)‖α ,

[∫
[p(x)]α dx

]1/α
.

This equation provides critical insight into the asymp-
totic distortion analysis and forms the basis of most
of the later work in the area of source coding. Two
extensions of the asymptotic distortion analysis were
provided by Na and Neuhoff in [39] and by Gardner
and Rao in [40]. Na and Neuhoff [39] showed how the
loss in performance of a (possibly sub-optimal) quantizer
relative to the optimum quantizer can be decomposed
into the point density loss and the cell-shape loss. The
point density loss arises because the optimum quantizer
places the quantizated vectors differently compared to
(say) a structured codebook, whereas the cell-shape loss
arises because the partition region differs from the opti-
mum Voronoi shape. Gardner and Rao [40] considered an
arbitrary (a general non-mean-squared form) distortion
function and derived an asymptotic analysis based on a
second order approximation of the distortion function.
They showed that the distortion approaches a simple
quadratically weighted error measure, where the weight-
ing matrix (called the sensitivity matrix) captures the
scalar sensitivities of the individual parameters as well
as the cross-sensitivity terms arising from the interaction
in quantizing multiple parameters simultaneously.

IV. B RIDGING THE GAP BETWEENSOURCECODING

AND FINITE RATE FEEDBACK SYSTEMS

In this section, we qualitatively describe the machin-
ery needed to bridge the gap between source coding
and finite rate feedback systems. Specifically, the four
major differences alluded to in the previous section are
addressed in the following.

1) Since not all the information in the CSI needs to
be quanitzed, the first step is to parameterize the channel
information h = [h1, . . . , ht]T as (y, z), wherey con-
tains the smallest subset of free-parameters that need to
be quantized andz is all the remaining parameters that
serve as additional information for the quantizer at the
receiver. In the case of quantized MRT beamforming in
MISO systems, for example,y consists of the2(t − 1)
parameters that describe the relative phase and relative
amplitude of h2, . . . , ht with respect toh1. Also, z
consists ofh1, i.e., the two parameters describing its
amplitude and phase.

The key step is to quantize only the minimum set
of parameters and to ensure that the quantizer makes
appropriate use of the side informationz. It turns out that

the optimal vector quantizer will always have the same
performance although the parametrization is not unique
and different parameterizations will lead to different
quantization algorithms and codebooks. The choice of
the parametrization is important from the point of view
of designing the codebook and encoder, since some
parameterizations yield simpler designs than others.

2) Since the channel and the quantized vector lie
in different spaces, Gersho’s asymptotic analysis [38]
cannot be directly employed in the channel space. In-
stead, it should be applied in the reduced-dimension
parameter spacey, accounting for any constraints on the
parameters.

3) The additional information in the parametersz at
the encoder does not have to be quantized, however,
it can be used to improve the performance of the
encoder. The encoder thus has to be designed to take
this side information into account. As a simple example,
consider the case of correlated fading MISO channel
with quantized MRT beamforming, the gain information
‖h‖ is not statistically independent of the directionv.
If the distortion is given by (7), it is clear that the
optimum encoder must try to quantize the beamforming
vectors v corresponding to channels with larger‖h‖
more accurately than those with smaller‖h‖ since the
distortion is proportional to‖h‖2.

4) The case of non-mean squared distortion function
has already been considered in [40]. Two important
differences from the past approach is that (a) we need
to use aprojectedsensitivity matrix, where the conven-
tional sensitivity matrix is projected onto a space that is
orthogonal to the gradient of the constraint conditions;
and (b) the distortion function is parameterized by the
additional informationz (see item (3) above).

Due to space considerations, we have only provided
a brief description of how to extend the asymptotic
analysis of source coding to the case of finite rate feed-
back systems. Interestingly, after detailed derivations, it
can be proved [41] that the high-SNR, high-resolution
(largeB) performance of MISO systems with quantized
MRT beamforming is in fact given by (6), though it
was obtained from a completely different perspective.
Furthermore, the source coding framework is sufficiently
general to include many more complicated finite rate
feedback systems. As an example, consider the case of
i.i.d. Rayleigh fading MIMO channel witht transmit and
r receive antennas and usingn beamforming vectors
(as a pre-coding matrix) with equal power allocation.
The system distortion function is theaverage mutual
information loss, i.e., the the difference between the
average mutual information with perfect pre-coding and



that of finite-rate quantized pre-coding. It can be shown
that, in the high-SNR and high-resolution regime, the
mutual information lossILoss is tightly lower bounded
by the following form

ILoss ≥
(

[(t− n)n]!(n− 1)!!(t− n− 1)!!
(t− 1)!!

)1/n

× (t− n)n
(t− n)n + 1

2−
B

(t−n)n , (10)

where we definek!! , k!(k − 1)! · · · 1!.

V. CONCLUSIONS

In this paper, we have summarized some of the recent
work on the design and analysis of multiple antenna
systems with finite rate feedback. In particular, we have
discussed appropriate criteria for the design of quan-
tizers for feedback-based communication systems and
corresponding algorithms for codebook generation. We
have also summarized the source-coding problem and
explained how it is similar and different from the quan-
tization problem for channels with finite rate feedback,
and provided qualitative arguments to show how to deal
with the differences. Our hope is that this can be used
to glean useful insights into the design and analysis
of finite rate feedback-based communication systems by
drawing on the vast body of source coding literature that
is available.
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