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Abstract

In this paper, we consider the design of a practical LDPC-coded MIMO system composed ofM

transmit andN receive antennas operating in a flat fading environment where channel state information

is assumed to be unavailable both to the transmitter and the receiver. A soft iterative receiver structure

is developed which consists of three main blocks, a soft MIMOdetector and two LDPC component

soft decoders. We first propose at the component level several soft-input soft-output MIMO detectors

whose performances are much better than the conventional MMSE-based detectors. In particular, one

optimal soft MIMO detector and two simplified sub-optimal detectors are developed that do not require an

explicit channel estimate and offer an effective tradeoff between complexity and performance. In addition,

a modified EM-based MIMO detector is developed which completely removes positive feedback between

input and output extrinsic information and provide much better performance compared to the direct EM-

based detector that has strong correlations especially in fast fading channels. At the structural level,

the LDPC-coded MIMO receiver is constructed in an unconventional manner where the soft MIMO

detector and LDPC variable node decoder form one super soft-decoding unit, and the LDPC check node

decoder forms the other component of the iterative decodingscheme. By exploiting the proposed receiver

structure, tractable extrinsic information transfer functions of the component soft decoders are obtained,

which further lead to a simple and efficient LDPC code degree profile optimization algorithm with proven

global optimality and guaranteed convergence from any initialization. Finally, numerical and simulation

results are provided to confirm the advantages of the proposed design approach for the coded MIMO

system.
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I. I NTRODUCTION

Communication systems using multiple antennas at both the transmitter and the receiver have recently

received increased attention due to their ability to provide great capacity increases in a wireless fading

environment [1] [2]. However, MIMO capacity analysis and system design is often based on the assump-

tion that the fading channel coefficient between each transmit and receive antenna pair is perfectly known

at the receiver. This is not a realistic assumption for most practical communication systems especially in

fast fading channels.

For communication systems with unknown channel state information (CSI) at both ends, conventional

receivers usually have a two-phase structure, data-aided channel estimation using the preset training

symbols followed by coherent data detection by treating theestimated channel as the actual channel

coefficients. Due to the importance of channel estimator, which directly determines estimation quality

and hence the overall system performance, various MIMO channel estimation algorithms have been

studied [3]– [5]. However, conventional channel estimators form estimates based only on the training

symbols, thereby failing to make use of the channel information contained in the received data symbols.

Consequently, the two-phase model limits the performance and can not approach the MIMO channel

capacity (or the maximum achievable information rate), especially in a fast fading environment (with

small channel coherence time). Possible solutions to the above problem include use of blind source

signal separation algorithms [6]– [8], MIMO differential modulation [9]– [11], and unitary space-time

modulation (USTM) [12]– [18]. However, none of these schemes can approach the non-coherent MIMO

capacity limit due to their sub-optimal code structure, andin the later case, USTM, only asymptotic (or

the diversity) optimality is achieved in high SNR regimes andthe approach suffers from exponential

decoding complexity.

In order to achieve better spectral efficiency than the conventional data-aided estimation algorithm that

uses large number of training symbols for accurate channel estimation, the so-called code-aided joint

channel estimation and data detection algorithms have recently received much attention. By treating the

unknown channel as unobserved (or missing) data, ML sequence estimation of the coded data frames

using the EM algorithm was proposed by Georghiades [19] and Kaleh [20] over single input single output

fading channels and extended to MIMO channels by Cozzo [21].Alternatively, several recent publications

[22]- [24] have developed EM-based algorithms that can iteratively improve the channel estimate based

on the soft extrinsic information from the outer soft decoder, and the schemes work well in an iterative

receiver structure.

In this paper, we focus on the design of practical LDPC-coded MIMO systems employing a soft

iterative receiver structure consisting of three soft decoding component blocks, a soft MIMO detector
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and two soft LDPC component decoders (variable node and check node decoders). At the component

level, we first propose a soft optimal MIMO detector, which cangenerate soft log likelihood ratio (LLR)

of each coded bit under the condition of unknown CSIR without forming any explicit channel estimate.

Based on the proposed soft optimal detector, we develop two simplified sub-optimal MIMO detectors with

polynomial and log polynomial decoding complexities. In addition, motivated by the EM-based detection

algorithm in [24], we also propose in the MIMO context a modified EM-based detector that completely

removes the positive feedback between the input and output extrinsic information and provides much better

performance compared to the direct EM-based detector that has strong correlations. By analyzing the

mutual information transfer characteristic [25] of the proposed soft MIMO detectors, system performance

of different MIMO detection algorithms are analyzed and compared under various channel conditions.

At the structural level, inspired by the turbo iterative principle [26], the LDPC-coded MIMO receiver is

constructed in an unconventional manner where the soft MIMOdetector and LDPC variable node decoder

form one super soft-decoding unit and the LDPC check node decoder forms the other component of the

iterative decoding scheme. Utilizing the proposed receiver structure, tractable extrinsic information transfer

functions of the component soft decoders are obtained, which lead to a simple and efficient LDPC code

degree profile optimization algorithm. This algorithm is shown to have global optimality and guaranteed

convergence from any initialization, and is an improvementover the sub-optimal manual curve fitting

technique proposed in [27]. Numerical and simulation results of the LDPC-coded MIMO system using

the optimized degree profile further confirm the advantages of the proposed design approach for the

coded MIMO system.

The rest of the paper is organized as follows. Section II describes the LDPC-coded MIMO system

structure as well as the unknown block fading channel model.Section III proposes several different soft

MIMO detectors that can be used as the building blocks for theturbo iterative MIMO receivers. In section

IV, the receiver design of the coded MIMO systems is addressed in detail, which includes the overall

receiver structure in Section IV-A, the extrinsic mutual information transfer characteristic analysis in

Section IV-B, and the LDPC code degree profile optimization algorithm in Section IV-C. In Section V,

the simulation results of the LDPC-coded MIMO system under various channel conditions are presented.

Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

A. MIMO transmitter structure

We consider a MIMO system withM transmit antennas andN receive antennas signaling through a

frequency flat fading channel with independent channel propagation coefficient between each transmit
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Fig. 1. Transmitter model of LDPC-coded MIMO systems

and receive antenna pair. As illustrated in Fig. 1, a block ofk binary information bits denotedd =

{d1, · · · , dk} is first encoded by an outer LDPC encoder with code rateRouter = k/n into a codeword

c = {c1, · · · , cn} of lengthn. The codewordc is further segmented intoL consecutive sub-blocksCi of

lengthK. Each sub-blockCi is then encoded by the inner space-time encoder into a coherent space-time

sub-frameXi. This encoder is composed of an interleaver, modulator, serial-to-parallel converter, and a

pilot insertion operator. The symbol structure of each sub-frameXi is illustrated in Fig. 2, where the first

Fig. 2. Transmitted symbol structure of the coded MIMO system

p symbols are training pilots, followed by(TM − p) data symbols. For the sake of simplicity, we only

consider the case where both the number of pilot symbols
(
p = Tτ ×M

)
and the number of data symbols

(
TM − p = Td × M

)
are multiples of the transmit antenna numberM . We further denote the average

signal to noise ratio (SNR) of pilot symbols byρτ and data symbols byρd. Hence, the transmitted signal
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Xi can be partitioned into two sub-matrices: training followed by data, which is represented as

Xi =




(
ρτ/M

) 1

2 · Xτ

(
ρd/M

) 1

2 · Xd, i



 , (1)

whereXτ ∈ C
Tτ×M are the fixed pilot symbols sent overTτ time intervals, andXd, i ∈ C

Td×M are the

information bearing data symbols sent overTd transmission intervals. Each element of the transmitted

data signalXd, i is a member of a finite complex alphabetX of size |X |. One entire MIMO codeword

X consists ofl = LTM complex symbols, which are transmitted fromM transmit antennas and across

L consecutive coherent sub-frames of lengthTM symbols.

It is assumed that the fading coefficient matrixHi remains static within each coherent sub-block and

varies independently from one sub-block to another. Hence,the signal model can be written as

Yi = Xi · Hi + wi, 1 ≤ i ≤ L , (2)

whereYi is aT ×N received complex signal matrix,Xi is aT ×M transmitted complex signal matrix,

Hi is an M × N complex channel matrix, andwi is a T × N matrix of additive noise matrix. Both

matricesHi andwi are assumed to have zero mean unit variance independent complex Gaussian entries.

We also assume that the entries of the transmitted signal matrix Xi have, on average, the following power

constraint,
1

T
· E

[
tr

(
XH

i Xi

)]
= ρ . (3)

whereρ is the average signal to noise ratio at each receive antenna.Conservation of time and energy

leads to the following constraints,

tr
(
XH

τ · Xτ

)
= MTτ , EXd, i

[
tr

(
XH

d, i · Xd, i

)]
= MTd ,

T = Tτ + Td, ρT = ρτTτ + ρdTd . (4)

Due to the insignificant capacity gain resulting from using optimal power allocation between training and

data symbols as reported in [28] [29], equal power allocation is assumed in this paper, with

ρτ = ρd = ρ . (5)

B. MIMO receiver structure

The MIMO receiver decodes the transmitted information bitsd based on received signal matrices
{
Yi

}L

i=1
without knowing any instantaneous channel state information

{
Hi

}L

i=1
. The channel statistical

distributionp
(
Hi

)
is assumed to be known both to the receiver and to the transmitter throughout the paper.

We know that even with ideal CSI, the optimal decoding algorithm for this system has an exponential
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Fig. 3. Conventional receiver structure of LDPC-coded MIMO systems

complexity. Hence the near-optimal iterative receiver structure based on turbo principle [26] becomes a

promising alternative.

As a standard iterative decoding procedure, the structure of the LDPC-coded MIMO receiver is

demonstrated in Fig. 3. It consists of two important components, an inner soft-input soft-output MIMO

detector (or MIMO demodulator) and an outer soft LDPC decoder,which form a bipartite graph structure

[30]. Soft log likelihood ratio of each transmitted bit is passed forward and backward between these two

soft decoders with increasing accuracy as the number of the iterations increase. At each iteration, the

MIMO detector forms soft extrinsic information of each coded bit based on the received symbols
{
Yi

}L

i=1

and the apriori information coming from the soft LDPC decoder through proper interleaving, and serves

as the apriori information for the LDPC decoder in the next iteration. Convergence is reached after certain

number of the iterations and decoded bits are hence obtained.

Notice that the LDPC decoder in Fig. 3 is itself composed of two component soft decoders (variable

node decoder and check node decoder), and the entire MIMO receiver can be viewed as a complicated

graph code structure. Therefore, any bipartite separation other than the conventional structure can lead to

an alternative iterative decoder. We utilize in Section IV-Aan unconventional MIMO receiver structure,

which combines the soft MIMO detector and LDPC variable node decoder together as a super component

soft-decoder. The proposed receiver structure has great design advantages that can easily lead to an

efficient LDPC code degree profile optimization algorithm as shown in Section IV-C.

III. SOFT-INPUT SOFT-OUTPUT MIMO D ETECTOR

As described in Section II-B, the soft-input soft-output MIMO detector is an important decoding

component of the MIMO receiver, and plays an important role in determining the performance of the

entire coded MIMO system. Regular communication systems with unknown channel state information

typically employ a two-stage decoding procedure, which consists of channel estimation followed by

coherent decoding based on the estimated channel parameters. However, conventional channel estimators

perform estimation based only on the training pilots, thereby failing to make use of the channel information

contained in the data symbols. Due to the mismatch between the actual and estimated channel, system
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performance suffers severe degradation especially in a communication environment with low signal to

noise ratio, or limited training pilots in fast fading channels.

In this section, several better MIMO detectors which include the soft MIMO detector, EM-based MIMO

detector, as well as their modified versions are proposed thatoffer an effective tradeoff between detection

complexity and performance. The MIMO detection algorithms proposed in this section are block-based

in the sense that the data detections are performed within each coherent fading block. By considering

the channel coefficient correlations between adjacent coherent blocks, one could achieve even better

performance by performing data detection on several adjacent coherent blocks together. In this case, the

data detection algorithm has higher computational complexity and depends heavily on the correlations of

the fading channel, and is beyond the scope of this paper. Therefore for simplicity, it is reasonable to use

a block fading channel model in this situation and the performance penalty of the simple block-based

MIMO detection algorithm would be small by properly tuning the channel coherence timeT according

to the actual channel correlations.

For the sake of simplicity, subscript (or time index)i, denoting theith coherent block, is dropped in

this section while describing the block-wise soft MIMO detection algorithms. To be specific, we denote

X =
[
XT

τ , XT
d

]T
, H, and Y =

[
YT

τ , YT
d

]T
as the transmitted signal, channel matrix, and received

signal in each coherent block, respectively. Furthermore, sub-matricesXτ , Xd, Yτ , and Yd have the

following structures, i.e.

Xτ =
[
xT

τ,1, · · · ,xT
τ,Tτ

]T

, Xd =
[
xT

d,1, · · · ,xT
d,Td

]T

, xτ,k

∣∣Tτ

k=1
, xd,k

∣∣Td

k=1
∈ C

1×M ,

Yτ =
[
yT

τ,1, · · · ,yT
τ,Tτ

]T

, Yd =
[
yT

d,1, · · · ,yT
d,Td

]T

, yτ,k

∣∣Tτ

k=1
, yd,k

∣∣Td

k=1
∈ C

1×M . (6)

Similarly, the binary sub-codewordC that maps to the transmitted signalX can also be decomposed into

C =
[
cT
1 , · · · , cT

Td

]T

, ck

∣∣Td

k=1
∈ B

1×M · log2 |X | , (7)

whereB is binary set{0, 1} and each rowck represents the corresponding binary information that maps

to xd,k.

A. Optimal soft MIMO detector

First, according to the channel model (2), the conditional probability density of the received signal

matrix Y given the transmitted signal matrixX is given by [31]

p
(
Y

∣∣X
)

=

exp

(
− tr

{[
IT + XXH

]−1
· YYH

})

πTN detN
[
IT + XXH

] . (8)
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It is evident from the above transitional probability that the unknown MIMO channel is actually a

memoryless vector channel and hence the optimal MIMO detector does not necessarily need to form a

specific channel estimate.

In order to obtain the a posteriori probability of each codedbit, the a priori probability of the input

signal matrixX is first calculated as

p
(
X

)
= p

(
Xd

)
= p(C) =

Td∏

k=1

p(xk) =

Td∏

k=1

p(ck) =

Td∏

k=1

M log2 |X |∏

j=1

p(ck,j) , (9)

where each element of matrixXd is a member of a complex alphabetX of size |X |, and corresponding

to log2 |X | LDPC-coded bits. Therefore, the log likelihood ratio of each LDPCcoded bit is given by

Lpos(ck,j) = log

(
p
(
ck,j = 1

∣∣Y
)

p
(
ck,j = 0

∣∣Y
)
)

= log

(
Σ

X∈D+
k,j

p
(
Y

∣∣X
)
· p

(
X

)

Σ
X∈D−

k,j
p
(
Y

∣∣X
)
· p

(
X

)

)
, 1 ≤ k ≤ Td, 1 ≤ j ≤ M · log2 |X | , (10)

whereD+
k,j (D−

k,j) is the set ofX for which the (k, j)th bit ck,j of the LDPC coded sub-blockC is

“ + 1” (“ − 1”). Finally, by subtracting the input a priori information from the obtained a posterior log

likelihood ratio, the soft extrinsic information of each coded bit is obtained as

Lext(ck,j) = Lpos(ck,j) − Lapp(ck,j), Lapp(ck,j) = log
(p

(
ck,j = 1

)

p
(
ck,j = 0

)
)

, (11)

whereLapp(ck,j) is the a priori information of the coded bitck,j from the last iteration. Notice that there

is no channel estimation stage in the soft MIMO detector described above, and therefore the proposed

detection algorithm does not depend on the unknown channel stateH but only on its underlying statistical

distribution. Furthermore, the optimality of the proposed soft MIMO detection algorithm is restricted

within the component level and does not depend on the overallreceiver structure of the coded-MIMO

system.

B. Sub-optimal soft MIMO detector

The optimal soft MIMO detection algorithm proposed in SectionIII-A provides the optimal extrinsic

LLR values of each coded bit. However, the summation in both thenumerator and the denominator of

equation (10) consists of2K−1 items, withK
(
=TdM log2 |X |

)
increasing linearly with number of data

slotsTd (or coherence timeT ). It has an unaffordable exponential complexity for practical communication

systems, especially when the coherence timeT is large. Hence, we propose a sub-optimal MIMO detector

in this section with complexity increasing linearly withTd.

Notice that the optimal extrinsic LLR value of bitck,j depends on the input a priori information as

well as the channel observations of the entire coherent block. Taking another point of view, the obtained
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−

Xτ Xτ
xd,1 xd,2 xd,Td

xd,k

xd,k′

Lext-p(ck,j)

Lext-p(ck,j) Lext-d,2(ck,j) Lext-d,Td
(ck,j)

Lext,k′(ck,j)

Lext-d(ck,j)

Lext(ck,j)
Σ

Σ

Fig. 4. Sub-optimal soft MIMO detector structure

extrinsic LLR is a combination of all the input information through the utilization of the proposed

algorithm (10) in an implicit manner. Therefore, instead of performing soft MIMO detection in one

operation, we can extract partial extrinsic information byprocessing only two rows of the data matrix

Xd at a time, and then combining different partial extrinsic information to form the final extrinsic LLR.

As illustrated in (the right side of) Fig. 4, in order to combine information from coded rowsxd,k and

xd,k′ , we first perform the optimal MIMO detection algorithm on the following reduced sizesub-coherent

block

X[k,k′] =
[
Xτ

T ,xT
d,k , xT

d,k′

]T

, Y[k,k′] =
[
Yτ

T ,yT
d,k , yT

d,k′

]T

. (12)

Therefore, the partial extrinsic LLR valueLext, k′

(
ck,j

)
of bit ck,j obtained from the a priori information

of row ck, ck′ , and channel observationY[k,k′] is given by

Lext, k′

(
ck,j

)
= log

(
Σ

X[k,k′]∈D
+
k,j

p
(
Y[k,k′]

∣∣X[k,k′]

)
· p

(
X[k,k′]

)

Σ
X[k,k′]∈D

−

k,j
p
(
Y[k,k′]

∣∣X[k,k′]

)
· p

(
X[k,k′]

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

, (13)

where

1 ≤ k, k′ ≤ Td, 1 ≤ j ≤ M log2 |X | ,

and D+
k,j (D−

k,j) is the set ofX[k,k′] for which bit ck,j is “ + 1” (“ − 1”). By the same reasoning,

partial extrinsic information of bitck,j , related to (and contained in) the a priori information ofck and

channel observationsYτ andyd,k can also be obtained by performing optimal detection on the following

sub-coherentblock

X[k] =
[
XT

τ , xT
d,k

]T

, Y[k] =
[
YT

τ , yT
d,k

]T

, (14)

with the corresponding extrinsic LLR value given by

Lext-p
(
ck,j

)
= log

(
Σ

X[k]∈D
+
k,j

p
(
Y[k]

∣∣X[k]

)
· p

(
X[k]

)

Σ
X[k]∈D

−

k,j
p
(
Y[k]

∣∣X[k]

)
· p

(
X[k]

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

, (15)

where

1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | .
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Having obtained extrinsic informationLext, k′

(
ck,j

)
and Lext-p

(
ck,j

)
, one can obtain by the following

substraction,

Lext-d, k′

(
ck,j

)
= Lext, k′

(
ck,j

)
− Lext-p

(
ck,j

)
, (16)

the extrinsic information of bitck,j extracted solely from the channel observationyd,k′ and the a priori

information ofck′ . In contrast to the situation of perfect channel state information at the receiver (CSIR)

whereLext(ck,j) only depends on the a priori knowledge ofck and observationyd,k, a non-zero extrinsic

information ofck,j can be obtained from the a priori knowledge ofck′ and observationyk′ (with k′ 6= k)

in an unknown MIMO fading environment. An intuitive explanation of the above difference can be made

by viewingck′ as partially fixed pilots based on the input a priori information. Therefore, better channel

knowledge is learned (although no explicit channel estimation exists), which translates into a better a

posterior probability ofck,j . Hence, a non-zero partial extrinsic information solely from the a priori

probability of ck′ and the channel observationyk′ is obtained.

Due to the assumption that the input a priori information of different bits are independent, all the

partial extrinsic informationLext-d,k′(ck,j) andLext-p(ck,j) can be viewed as being close to independent.

As illustrated in (the left side of) Fig. 4, the final output extrinsic informationLext(ck,j) is obtained by

summing all the independent partial extrinsic informationobtained from different coded rowsck′ and

pilot observations, i.e.

Lext
(
ck,j

)
=

Td∑

k′=1
k′ 6=k

Lext-d, k′

(
ck,j

)
+ Lext-p

(
ck,j

)
=

Td∑

k′=1
k′ 6=k

Lext, k′

(
ck,j

)
− (Td − 2) · Lext-p

(
ck,j

)
, (17)

where

1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | .

A summation of22M log2 |X | terms is required to extract the partial extrinsic information Lext,k′(ck,j)

in equation (13) and2M log2 |X | terms forLext-p(ck,j) in equation (15). Therefore, in order to obtain the

output soft extrinsic LLR values, a total number of
(
(Td−1)·22M log2 |X |+2M log2 |X |

)
terms of probability

summation is required for each coded bit, as opposed to2TdM log2 |X | terms in the original optimal soft

MIMO detector. Furthermore, the proposed sub-optimal soft MIMO detection algorithm can be easily

generalized by extracting partial extrinsic information through combining more than two (E in general)

rows of the sub-codewordC together. By choosing different combination size of2 ≤ E ≤ Td, a group

of sub-optimal MIMO detectors can be constructed which offer a varying degree of detection complexity

to system performance tradeoff.
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Ln+1
ext-d(ck,j) Ln+1
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Ln+1
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Ln+1
app (ck′,j) = Ln

ext-d(ck′,j) + Lapp(ck′,j)

ΣΣ Σ

Σ

Fig. 5. Sub-optimal soft MIMO detector using butterfly structure

C. Sub-optimal butterfly soft MIMO detector

Motivated by the fast Fourier transform (FFT) algorithm, we canfurther reduce the complexity of the

soft MIMO detector to
(
log2 Td · 22M log2 |X | + 2M log2 |X |

)
terms of summation per coded bit by using a

sub-optimal butterfly MIMO detector structure as illustrated in Fig. 5. It is first assumed that the number

of the data slotsTd = 2m, a power of2. If not, we can appropriately zero-pad the transmitted signal

matrix X. As demonstrated in (the left part of) Fig. 5, the sub-optimalbutterfly detection algorithm

obtains the extrinsic information through a multi-level structure similar to the fast Fourier transform,

where the extrinsic information is accumulated from level to level. Specifically, if the partial extrinsic

LLR value of coded bitck,j at thenth level is Ln
ext-d

(
ck,j

)
, then the extrinsic LLR value of the(n + 1)th

level can be updated by the following form, which is illustrated in (the right part of) of Fig. 5,

Ln+1
ext-d

(
ck,j

)
= Ln

ext-d

(
ck,j

)
+ ∆Ln+1

ext-d

(
ck,j

)
, 0 ≤ n ≤ m − 1 , (18)

where the second term∆Ln+1
ext-d

(
ck,j

)
of equation (18) represents the additional partial extrinsic information

obtained from the information of coded bitsck′ , with sub-codeword row indexk′ given by

k′ =





k + 2m−n−1 if k (mod 2m−n

)
< 2m−n−1

k − 2m−n−1 if k (mod 2m−n
)
≥ 2m−n−1

. (19)

Similar to the extraction algorithm provided in (16),∆Ln+1
ext-d

(
ck,j

)
is given by the following form

∆Ln+1
ext-d

(
ck,j

)
= Ln+1

ext

(
ck,j

)
− Lext-p

(
ck,j

)
, (20)

whereLext-p
(
ck,j

)
is given by equation (15), and partial extrinsic information Ln+1

ext

(
ck,j

)
is obtained by

performing optimal soft MIMO detection on the sub-coherentblock X[k,k′] and Y[k,k′] with modified

input a priori information, i.e.

Ln+1
ext

(
ck,j

)
= log

(
Σ

X[k,k′]∈D
+
k,j

p
(
Y[k,k′]

∣∣X[k,k′]

)
· pn+1

app

(
X[k,k′]

)

Σ
X[k,k′]∈D

−

k,j
p
(
Y[k,k′]

∣∣X[k,k′]

)
· pn+1

app
(
X[k,k′]

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

. (21)

Furthermore, the modified a priori probabilitypn+1
app

(
X[k,k′]

)
in equation (21) is a combination of the

a priori probability ofck and ck′ as well as thenth level extrinsic information ofck′ , which can be
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represented as

pn+1
app

(
X[k,k′]

)
= p

(
ck

)
· p

(
ck′

)
· pn

ext

(
ck′

)
=

M log2 |X |∏

j=1

p
(
ck,j

)
· p

(
ck′,j

)
· pn

ext

(
ck′,j

)
, (22)

wherepn
ext

(
ck′,j

)
is given by

pn
ext

(
ck′,j

)
=

exp
(
ck′,j · Ln

ext-d

(
ck′,j

))

1 + exp
(
Ln

ext-d

(
ck′,j

)) . (23)

Therefore,∆Ln+1
ext-d

(
ck,j

)
can be viewed as the partial extrinsic information obtainedsolely from the a

priori information ofck′ , channel observationyk′ , and its extrinsic information at thenth level.

Starting from the initial conditionL0
ext-d(ck,j) = 0, the extrinsic informationLn

ext-d(ck,j) of each coded

bit is accumulated at each level by absorbing additional partial extrinsic information through the sub-

coherent block combining process. As illustrated in (the middle part of) Fig. 5, the final soft extrinsic

LLR value of each coded bit is formed by combining the extrinsicLLR information at themth (lowest)

level with the extrinsic information obtained from pilot observations, which is given by

Lext
(
ck,j

)
= Lm

ext-d

(
ck,j

)
+ Lext-p

(
ck,j

)
1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | . (24)

Note that both the sub-optimal structure in Section III-B as well as the sub-optimal butterfly MIMO

detector in the previous subsection are modifications of the optimal soft MIMO detection algorithm

provided in Section III-A. The two sub-optimal MIMO detectionalgorithms provided in Section III-B

and III-C have the following structural differences. First,the sub-optimal MIMO detector in Section III-B

forms extrinsic information through alinear combining structure, where there are a total of(Td − 1)

partial extrinsic information terms (each corresponding to the partial extrinsic LLR obtained from other

rows k′); each term is computed by performing optimal detection on the sub-coherent block given by

(13)-(16). On the other hand, the sub-optimal butterfly MIMO detector in Section III-C performs data

detection by employing a multi-level structure, where the extrinsic information is distributed at succeeding

levels until all the input a priori information and the channel observations are combined and exchanged

between all different rows.

D. Modified EM-based MIMO detector

The soft MIMO detector and its two sub-optimal modifications proposed in previous sections perform

data detection without forming any specific channel estimate. However, forming a channel estimation

followed by coherent MIMO detection is in some cases a promising alternative especially when there

are enough training pilots. Besides, the estimated channelstate informationĤ can be easily fedback to

the transmitter for better power allocation and spectral shaping of the channel coding.
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Recently, a lot of attention has been focused on turbo MAP EM estimators, which can take into account

not only the training pilots but also the a priori information of the coded bits from the outer soft LDPC

decoder. As reported in [23] [24], the proposed turbo EM estimator provides better performance than the

conventional MMSE-based channel estimator and works well in an iterative decoding algorithm, especially

whenTd is large. However, there exists positive feedback between the input and output soft LLR values

which can cause severe performance degradation of the codedMIMO system. Therefore, we propose

in this section a modified EM-based MIMO detector that avoids positive feedback and results in better

performance than the direct EM-based detection algorithm. Mutual information transfer characteristic of

the modified EM-based detector as well as the corresponding simulation results provided in Section IV

and V further confirm our claims of superiority of the new detector.

To start with the detection algorithm, let us first look at the conventional MAP EM estimator, whose

objective is to find the channel estimation̂H that maximizes a posterior probability

Ĥ = arg max
H

p
(
H

∣∣Y
)

= arg max
H

p
(
Y ,H

)
, (25)

which is intractable by direct maximization. Hence by taking the transmitted data signal matrixXd (or

X) as the unobserved (or missing) data, the following iterative expectation maximization (EM) algorithm

(similar to [23]) is applied .

• E-step:

Q
(
H

∣∣Ĥ(n)
)

= E
X

∣∣Ĥ(n),Y

[
− log p

(
H,Y

∣∣X
)]

. (26)

After some manipulations, we have the following concise form

Q
(
H

∣∣Ĥ(n)
)

= E
X

∣∣Ĥ(n),Y

[
tr

(
HHH +

(
Y − XH

)H(
Y − XH

))]

= tr
(
HHR H + YHY −

(
YHUH + HHUHY

))
, (27)

whereR is given by

R = E
X

∣∣Ĥ(n),Y

[
XHX

]
+ IM

=
ρ

M
·
( Td∑

j=1

∑

xd,k∈XM

p
(
xd,k

∣∣Ĥ(n),yd,k

)
· xH

d,k xd,k + XH
τ Xτ

)
+ IM , (28)

andU is given by

U = E
X

∣∣Ĥ(n),Y

[
X

]
=

√
ρ

M
·
[
XT

τ , µ
T
1 , · · · , µT

Td

]T

, µk =
∑

xd,k∈XM

p
(
xd,k

∣∣Ĥ(n),yd,k

)
·xd,k .

(29)

The a posterior probabilityp
(
xd,k

∣∣Ĥ(n),yd,k

)
is given by

p
(
xd,k

∣∣Ĥ(n),yd,k

)
=

p
(
yd,k

∣∣Ĥ(n),xd,k

)
· p

(
xd,k

)
∑

xd,k∈XM p
(
yd,k

∣∣Ĥ(n),xd,k

)
· p

(
xd,k

) , (30)
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with p
(
yd,k

∣∣Ĥ(n),xd,k

)
andp

(
xd,k

)
given as

p
(
yd,k

∣∣Ĥ(n),xd,k

)
=

1

πN
exp

(
−

∥∥yd,k −
√

ρ

M
· Ĥ(n)xd,k

)∥∥2
)

, (31)

wherep
(
xd,k

)
is given by

p
(
xd,k

)
=

M log2 |X |∏

j=1

p
(
ck,j

)
. (32)

• M-step:

Ĥ(n+1) = arg min
H

Q
(
H

∣∣Ĥ(n)
)

. (33)

After some manipulations, the updated channel estimationĤ(n+1) is obtained as

Ĥ(n+1) = R−1 · UH · Y . (34)

• Initialization:

We use the conventional minimal mean square error (MMSE) channel estimator for initialization,

which is given by

Ĥ(0) =

√
ρ

M
· XH

τ ·
( ρ

M
XτX

H
τ + ITτ

)−1 · Yτ . (35)

Since the EM iteration is embedded within the large iterative decoding loop of the soft MIMO

receiver, we can also take the estimated channelH from the last decoding iteration as an EM

initialization. Compared with the simple MMSE estimator, the obtained estimation from the last

decoding iteration (through an EM algorithm) provides a better initialization since additional a

priori information of the coded bits is used. Therefore, by using the alternative initialization, EM

algorithm is able to begin at a better starting point and hence results in smaller number of EM

iterations.

Maximum a posterior channel estimation is obtained when theMAP EM algorithm converge tôH

after certain number of iterations. Hence the soft extrinsic information of each coded bitck,j is provided

by takingĤ as the true channel coefficients followed by coherent MIMO detection,

Lext
(
ck,j

)
= log

(
Σ

xd,k∈D
+
k,j

p
(
yd,k

∣∣Ĥ,xd,k

)
· p

(
xd,k

)

Σ
xd,k∈D

−

k,j
p
(
yd,k

∣∣Ĥ,xd,k

)
· p

(
xd,k

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

, (36)

where

1 ≤ k ≤ Td, 1 ≤ j ≤ M log2 |X | .

D+
k,j (D−

k,j) is the set ofxd,k for which bit ck,j is “+1” (“− 1”), and probabilitiesp
(
yd,k

∣∣Ĥ,xd,k

)
and

p
(
xd,k

)
are given by (31) and (32) respectively.
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It is well known that short girth in the LDPC Tanner graph is one of the major performance bottleneck

for short length LDPC code design [32] [33], where positive feedback of the iterative LLR values

generated by the existing short length loops directly affects the iterative message passing algorithm.

Similarly, positive feedback caused by the correlations between input and output extrinsic information

of the MIMO detector will also cause severe system performance degradation. Therefore, considerable

effort has been made in various detection algorithms to avoid the same information from counting twice,

or to avoid the output extrinsic LLR values from containing anyinput a priori information.

Unfortunately, if we study the conventional direct EM-basedsoft MIMO detection algorithm carefully,

we will find that the estimated channel coefficient does depend on the a priori information of the entire

sub-codewordC. To be specific, channel estimation̂H can be represented as a function given by

Ĥ = Ĥ
(
Y,AL-app

)
, (37)

whereAL-app ∈ R
Td×M log2 |X | is the a priori information matrix with each elementak,j equal to the a

priori LLR value Lapp(ck,j). Therefore, the extrinsic information obtained by equation(36) contains the

input a priori information througĥH, in a sense thatLext(ck,j) depends onLapp(ck,j), even though the a

priori LLR value is already subtracted from the log a posteriorvalue as demonstrated by the second term.

In order to eliminate input-output correlations introduced by the direct channel estimation̂H, which is

a function ofLapp
(
ck,j

)
, we propose a modified EM channel estimation algorithm that uses only part of

the a priori information (a subset of matrixAL-app) of the sub-codewordC. If we denoteE as a subset

of {1, 2, · · · , Td} that includesk, the partial a priori information matrix can be formed by thefollowing

weighting operation

AE
L-app = diag

(
s
)
· AL-app , (38)

where the selecting vectors of size1 × Td is given by

s =
[
s1, s2, · · · , sTd

]
, sj =





1 if j /∈ E
0 if j ∈ E

. (39)

The modified channel estimation is hence obtained by applying the same APP EM algorithm by using

AE
L-app as the input a priori information matrix instead, i.e.

ĤE = Ĥ
(
Y,AE

L-app

)
. (40)

The modified estimation̂HE can therefore be used to perform coherent detections for coded rowsck

with index k ∈ E ,

Lext
(
ck,j

)
= log

(
Σ

xd,k∈D
+
k,j

p
(
yd,k

∣∣ĤE ,xd,k

)
· p

(
xd,k

)

Σ
xd,k∈D

−

k,j
p
(
yd,k

∣∣ĤE ,xd,k

)
· p

(
xd,k

)

)
− log

(
p
(
ck,j = 1

)

p
(
ck,j = 0

)
)

, k ∈ E . (41)
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Let us further assume that the entire set{1, 2, · · · , Td} can be decomposed into the following disjoint

sets with the same size, i.e.

{1, 2, · · · , Td} =
⋃

n

En, En

⋂
En′ = φ,

∣∣En

∣∣ = SE . (42)

Instead of having only one EM estimation in the direct EM-baseddetector,⌈Td/SE⌉ separate EM

estimations are to be completed during one entire soft decoding iteration in the modified EM-based

detector. Note thatEn = {n} and En = φ correspond to special cases:En = {n} has the maximum

detection complexity, but takes into account all availablea priori information from the outer soft decoder,

while on the other handEn = φ corresponds to the case of conventional direct EM-based detection

algorithm. For a short complexity analysis, we know that within each EM estimation, there are total

NEM
sum = Ī ·

(
3Td ·2M log2 |X |

)
summation operations, wherēI is the average number of iterations required

by the convergence of the EM algorithm. Therefore, the averagenumber of the summations for each

coded bit in the modified EM-based MIMO detector is

NDEC
sum =

(
3Ī ·

⌈
Td/SE

⌉
+ 1

)
· 2M log2 |X | . (43)

The EM channel estimation algorithms proposed in this sectioncan make full use of the soft a priori

information of the coded bits from the outer LDPC decoder, and hence provide better (and more accurate)

channel estimations. From another point of view, the MAP EM estimator is generally equivalent to

extending the pilot structure to the entire transmitted signal matrix X. Instead of limiting the pilots to

Xτ , the receiver treatsXd as partially fixed pilots as well especially when the LLR ratios are getting

significantly improved as a result of the messages being updated constantly through the iterations.

Finally, a brief comparison of the pilots size required by thedifferent MIMO detection algorithms is

as follow. First, we note that the proposed optimal soft MIMO detector as well as its two sub-optimal

modifications are able to provide soft data detections with arbitrary number of pilot symbols and only

need a small number of pilots in order to remove detection ambiguity (in the first decoding iteration).

The modified EM-based detector only requires a small number (Tτ ≥ M ) of pilots for the initialization

of the EM estimation. Therefore, these four soft MIMO detection algorithms provide a wide range of

trade-offs between complexity and performance and can workin different MIMO fading environments

and support various training sizes.

IV. D ESIGN OFLDPC-CODED MIMO SYSTEMS

Conventionally the coded MIMO receiver is obtained by connecting the inner soft MIMO detector and

the outer LDPC decoder to form one large iterative decoding loop. As evident from Fig. 6, the overall

MIMO receiver actually consists of two iterative decoding loops. In the outer loop, the soft MIMO
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detector forms extrinsic information of each coded bit
{
Ci

}L

i=1
based on the received signal

{
Yi

}L

i=1
as

well as the input a priori knowledge from the LDPC decoder, and serves as the input a priori information

for the LDPC decoder in the next iteration. The soft LDPC decoder has an inner iterative decoding loop

that is composed of a variable node decoder, a check node decoder, and two connecting edge interleavers.

The soft extrinsic information, which describes the uncertainty of each coded bit, is iteratively exchanged

in the outer loop between the MIMO detector and LDPC decoder as well as in the inner loop between

variable node and check node decoders inside the LDPC decoder.

A. Receiver structure of the LDPC-coded MIMO systems

Inner Loop
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decoder
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−

−

Y
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Π

Fig. 6. Conventional receiver structure of LDPC-coded MIMO systems
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Y
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Fig. 7. New receiver structure of LDPC-coded MIMO systems

In this paper, we structure the MIMO receiver differently bycombining the soft MIMO detector and

LDPC variable node decoder as a super soft-decoder, a form alsoutilized in [27]. As illustrated in Fig. 7,

the decoding loop is formed by exchanging extrinsic information between the super decoder and the
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LDPC check node decoder iteratively. Compared with the conventional iterative MIMO receiver (named

as bit-interleaved coded modulation with iterative decoding (BICM-ID) algorithm) shown in Fig. 6, the

new receiver structure has two advantages. First, the proposed receiver structure has only one iterative

decoding loop and hence achieves smaller decoding complexity compared to the two iterative loops (inner

LDPC decoder loop and outer “MIMO detector⇄ LDPC decoder” loop) in the conventional BICM-ID

structure. Second, the proposed structure has the advantageof enabling the extrinsic information transfer

characteristic function of the soft component decoders to have tractable forms. By fully exploiting the

closed form EXIT functions, a simple and efficient LDPC code degree profile optimization algorithm

with proven global optimality and guaranteed convergence is proposed in Section IV-C, which is superior

to the sub-optimal manual curve fitting technique [25] [27].

B. Analysis of extrinsic information transfer characteristics

In order to understand as well as design the iterative decoding systems having bipartite graph structures,

we use the extrinsic information transfer characteristic of the soft MIMO detector and LDPC decoder,

which was proposed by Brink in [25], to analyze the convergence behavior of the iterative decoding

schemes of the coded MIMO system.

1) Brief introduction on EXIT-chart

We briefly describe in this section the EXIT-chart technique proposed in [25]. For readers who are

familiar with the topic, please skip to Section IV-B-2 directly. The extrinsic information transfer

(EXIT) function is used to the describe the input-output (a priori information versus extrinsic

information) relations of the soft component decoders froman information theoretical perspective.

Taking the component soft decoders in Fig. 7 as an example, thecorresponding EXIT functions of

the super soft-decoder and LDPC check node decoder can be described by the following mapping

(also depicted in Fig. 7 accordingly),

IE,VND = fs

(
IA,VND

)
, IE,CND = fc

(
IA,CND

)
, (44)

where IA,VND represents the mutual information between the coded bitx and the input a priori

information of the super soft-decoder, andIE,VND, IE,CND, as well asIA,CND are similarly defined.

According to the iterative decoding structure, where the output extrinsic information from one

component decoder is treated as a priori input to the other one, the mutual information between

the extrinsic LLR values and the coded bits is updated through the following evolution,

I k
E,CND = fc ◦ fs

(
I k−1

E,CND

)
, fc ◦ fs(·) = fc

(
fs(·)

)
, (45)
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Fig. 8. Decoding trajectory of a regular(3, 6) LDPC-coded MIMO system with optimal soft MIMO detector over a2 × 2

unknown MIMO channel with coherence timeT = 6, training lengthTτ = 2, and signal to noise ratioρ = 4dB.

with index k indicating thekth decoding iteration and the initialization is given byI 0
E,CND = 0. As

an example, we demonstrate in Fig. 8 the EXIT functionsfs andfc (with x and y axis flipped) of

the component soft decoders as well as the decoding trajectory of an LDPC-coded MIMO system.

The2×2 MIMO system considered has BPSK modulation, uses optimal softMIMO detector at the

receiver, and transmits over a fading channel with coherence timeT = 6, training numberTτ = 2,

and signal to noise ratioρ = 4dB. The outer LDPC code is a regular(3, 6) code with codeword

length8×104. We can observe from Fig. 8 that, as long as the EXIT chart curvefs is above curve

f−1
c (with the x and y axis flipped), i.e.

fs(x) ≥ f−1
c (x), 0 ≤ x ≤ 1 , (46)

the decoding trajectory is able to make its zigzag way until reaching the successful decoding point

(1, 1). Therefore, it can serve as a convergence criterion of the iterative decoding algorithm for the

LDPC code design purpose.

2) EXIT characteristic of the soft MIMO detector

According to the results provided in [25] [27], the extrinsic mutual informationIE,DET between the

transmitted bitx and the output LLR valuesLext(x), which measures the information contents of
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the output extrinsic LLR values, can be represented as

IE,DET(ρ; σ2
A) = I

(
Lext(x) ; x

)
=

1

2

∑

x=±1

∫ ∞

−∞
log2

( 2p
E
(ξ|x)

p
E
(ξ|x = +1) + p

E
(ξ|x = −1)

)
·p

E
(ξ|x) dξ,

(47)

where distributionp
E
(ξ|x = ±1) is obtained through Monte Carlo simulation (histogram measure-

ments) by setting the system SNR equal toρ and the input a priori LLR values conditioned on the

transmitted bitx have a Gaussian distribution given by

Lapp(x) = x · n, x ∈ {+1,−1}, n ∼ N
( 2

σ2
A

.
4

σ2
A

)
(48)

Therefore, the extrinsic mutual informationIE,DET depends both on the system SNRρ and the noise

variance levelσ2
A of the input a priori information. By viewingρ as an index parameter, the EXIT

function of the soft MIMO detector is given by the following form

IE,DET = IE,DET

(
ρ ; σ2

A = J−1(IA,DET)
)

, F
∣∣
ρ
(IA,DET) , (49)

where functionJ(·) is given by (equivalent to equation (24) in the Appendix of [27]),

J
(
σ2

A

)
= I

(
Iapp(x) ; x

)
=

1

ln 2

(
1

σ2
A

−
∫ ∞

−∞

σA√
2π

· ln cosh(y) ·exp
(
− (σ2

A · y − 1)2

2σ2
A

)
dy

)
. (50)

Furthermore, input mutual informationIA,DET of the soft MIMO detector is related to mutual

informationIA,VND through the following equation for a variable node of degreedv

IA,DET = J
(
dv · J−1

(
IA,VND

))
. (51)

3) EXIT characteristics of the LDPC variable node and check nodedecoders

Following the same reasoning as given in [27], the extrinsicmutual information transfer character-

istic of a variable node of degreedv is given by the following form

IE,VND

(
IA,VND , dv

)
= J

(
(dv − 1) · J−1(IA,VND) + J−1(IE,DET)

)
. (52)

According to the duality properties [34] of the EXIT curves between single parity check codes and

repetition codes over binary erasure channels, the mutual information transfer characteristic of a

degreedc check node over binary input Gaussian output channels can bewell approximated as

IE,CND(IA,VND) ≈ 1 − IE,REP(1 − IA,VND) = 1 − J
(
(dc − 1) · J−1

(
1 − IA,VND

))
. (53)
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C. LDPC code optimization

Following the methodology given in [25] [27], the EXIT functions of the super MIMO soft-decoder

(combination of the LDPC variable node decoder and soft MIMO detector) can be obtained as

IE,VND = fs

(
IA,VND

)
=

Dv∑

i=1

λi · IE,VND

(
IA,VND , dv, i

)

=

Dv∑

i=1

λi · J
(

(
dv, i − 1

)
· J−1

(
IA,VND

)
+ J−1

(
F

∣∣
ρ

(
J
(
dv, i · J−1

(
IA,VND

))))
. (54)

whereλi is the fraction of the variable nodes having edge degreedv, i, andDv is the number of different

variable node degrees. Similarly according to (53), the check nodes of the LDPC code have a transfer

characteristic given by the following form

IE,CND = fc

(
IA,CND

)
≈ 1 −

Dc∑

i=1

ρi · J
((

dc, i − 1
)
· J−1

(
1 − IA,CND

))
, (55)

whereρi is the fraction of the check nodes having edge degreedc, i, andDc is the number of different

check node degrees.

Following the successful decoding (convergence) criterion provided in [25], the degree profile opti-

mization problem can be reduced to the following maximization problem by taking the LDPC code rate

Router as the objective

max
{λi,ρi}

Router = max
{λi,ρi}

(
1 −

∑Dc

i=1 ρi/dc, i∑Dv

i=1 λi/dv, i

)
, (56)

under linear constraints given by

IE,VND(IA,VND) ≥ IA,CND(IE,CND) = IA,CND(IA,VND),
Dv∑

i=1

λi = 1,

Dc∑

i=1

ρi = 1, 0 ≤ λi, ρi ≤ 1 . (57)

Utilizing the closed form EXIT functions of the component soft decoders given by (54) and (55), we

propose an efficient LDPC code degree profile optimization algorithm in the following, which is composed

of two simple linear optimization steps.

• Variable node degree profile optimization:

For a fixed check node degree profile{ρk
i } from thekth iteration, the optimal variable node degree

profile {λk+1
i } is given by

{λk+1
i } = arg max

{λi}

Dv∑

i=1

λi/dv, i , (58)

under the constraints

fs

(
fc(an)

)
≥ an ,

Dv∑

i=1

λi = 1, 0 ≤ λi ≤ 1, 1 ≤ n ≤ N, (59)
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where
{
an

∣∣an ∈ [0, 1]
}

is a set of specified constraint points, andN is the total number of constraints

on the curve.

• Check node degree profile optimization:

For a fixed variable node degree profile{λk+1
i } from the(k +1)th iteration, the optimal check node

degree profile{ρk+1
i } is given by

{ρk+1
i } = arg min

{ρi}

Dc∑

i=1

ρi/dc, i , (60)

under the constraints

fc

(
fs(an)

)
≥ an ,

Dv∑

i=1

ρi = 1, 0 ≤ ρi ≤ 1, 1 ≤ n ≤ N, (61)

wherean andN are similarly defined as before.

• Initialization:

In general, we can start with any feasible degree profiles. Based on our experience from numerical

simulations, we find that it is always a good choice to start with a regular check node degreedc.

If we stack the LDPC code degree profile{λi, ρi} into a super vectorη = [λ1, · · · , λ
Dv

, ρ1, · · · , ρ
Dc

]T .

We can see that the objectiveRouter given in equation (56) is a concave function with respect toη and

that all the constraints given in (57) are linear. Hence, theabove degree optimization problem has only

one unique optimal solution. Due to the non-decreasing property of the proposed iterative maximization

algorithm, it is guaranteed to converge to the global maximum solutionη⋆ from any initialization point.

Therefore, in contrast to the sub-optimal manual curving fitting technique proposed in [27], the above

iterative LDPC optimization algorithm provides much better performance and can serve as an efficient

tool for coded MIMO system design.

V. NUMERICAL AND SIMULATION RESULTS

A. Elimination of positive feedback in EM-based MIMO detectors

We demonstrate in Fig. 9 the extrinsic information transfer functions of the EM-based and modified

EM-based soft MIMO detectors over an unknown2 × 2 MIMO channel with coherence time interval

T = 6 and18, training lengthTτ = 2, and signal to noise ratioρ = 4dB. BPSK modulation is assumed

for all the simulation results in this section unless explicitly mentioned. For comparison purpose, the

mutual information transfer characteristics of the simpleMMSE-based MIMO detector and detector with

ideal CSIR are also included in the plot.
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Fig. 9. Extrinsic information transfer characteristic of the EM-based MIMO detectors over a2 × 2 unknown MIMO channel

with training lengthTτ = 2 and signal to noise ratioρ = 4dB.

We can observe from the plot that for direct EM-based MIMO detector, output extrinsic mutual

informationIE,DET is even greater than that of the detector with ideal CSIR in high IA,DET ranges, which

directly indicates the existing positive feedback betweenthe input and output extrinsic information. Such

strong correlations between the output extrinsic information Lext(x) and the input a priori information

Lapp(x) will cause a severe performance degradation as verified by thesimulations results provided in

Section V-D. As expected, the modified EM-based MIMO detectors successfully eliminate the correlation

and achieve significant performance gain compared to the simple MMSE-based detector especially when

the coherence time intervalT is large.

B. EXIT function comparison between different soft MIMO detectors

As reported in [34], the area below the transfer functionIE,DET = F (IA,DET) well approximates

the maximum achievable rate of the outer LDPC encoder. Hence, the extrinsic information transfer

characteristicF (·) can be easily used to compare and evaluate the performance ofdifferent soft MIMO

detectors. We demonstrate in Fig. 10 the extrinsic information transfer functions of different MIMO

detectors described in Section III under the same2 × 2 unknown MIMO channel with coherence time

T = 6, training lengthTτ = 2, and system SNRρ = 4dB. For comparison purpose again, the mutual

information transfer characteristics of the simple MMSE-based MIMO detector and detector with ideal
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Fig. 10. Comparison of the extrinsic information transfer characteristic of different MIMO detectors in a2×2 unknown MIMO

system with coherence timeT = 6, training lengthTτ = 2, and signal to noise ratioρ = 4dB.
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Fig. 11. Comparison of the extrinsic information transfer characteristic of different MIMO detectors in a2×2 unknown MIMO

system with coherence timeT = 18, training lengthTτ = 2, and signal to noise ratioρ = 4dB.

CSIR are also included. As can be observed from the plot, all four soft MIMO detectors have comparable
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Fig. 12. EXIT-chart curve of a2×2 regular(3, 6) LDPC-coded MIMO system over a unknown fading channel with coherence

time T = 6, and training numberTτ = 2 using optimal soft MIMO detectors, under different signal to noise ratios ρ =

−2, 0, 2.2, 4, 6, 8 dB.

performance in a small coherence timeT channel environment, i.e.T ≤ 10. All of them achieve significant

performance gain over the simple MMSE-based detector but are far away from the MIMO detector with

ideal CSIR.

Furthermore, although the optimal soft MIMO detector is the best among all MIMO detectors under

the same channel condition, it is not always affordable for practical communications systems due to its

complexity especially when the coherence timeT is large. Therefore, sub-optimal soft MIMO detectors

as well as the EM-based detectors turn out to be promising alternatives for their excellent trade-offs

between complexity and performance over moderate to slow fading channels. As illustrated in Fig. 11,

the extrinsic information transfer functions of these sub-optimal MIMO detectors are compared over the

same2× 2 unknown MIMO channel with large coherence timeT = 18. In this case (with largeT ), the

modified EM-based MIMO detector outperforms other sub-optimal detectors and tends to approach the

performance of the MIMO detector with ideal CSIR.

C. LDPC code degree profile optimization

The analysis of the mutual information transfer characteristic provided in Section IV-B not only enables

us to analyze the system performance, but also provides a powerful design approach for the LDPC code
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Fig. 13. EXIT-chart curve of a2 × 2 optimized LDPC-coded MIMO system over a unknown fading channel withcoherence

time T = 6, and training numberTτ = 2 using optimal soft MIMO detectors, under different signal to noise ratios ρ =

−2, 0, 1.3, 4, 6, 8 dB.

optimization. We demonstrate in Fig. 12 the EXIT-chart curvesof a 2 × 2 regular (3, 6) LDPC-coded

MIMO system with codeword length8 × 104. The simulation is carried out over an unknown fading

channel with coherence timeT = 6 and training numberTτ = 2, using optimal soft MIMO detectors,

and under several different system SNRs. From the plot, we can observe that2.2dB is the minimal SNR

that can avoid curve intersection and hence leads to successful decoding, which is further confirmed by

the cliff region shown in the real simulation result of Fig. 14. We also illustrate in Fig. 13 the EXIT-chart

curves for the optimized LDPC-coded MIMO system with outer code rateRouter = 1/2 and codeword

length8×104 under the same system settings. It can be observed from the plot that after applying LDPC

code optimization, the two mutual information transfer functions match each other perfectly (almost fall

on top of each other), and achieve about0.9dB gain in performance.

D. Overall coded MIMO system performance

We demonstrate in Fig. 14 the bit error rate of an LDPC-coded MIMOsystem over unknown fading

channels. For the sake of simulation simplicity, we consider a small2×2 MIMO system over a relatively

fast unknown fading channel with coherence timeT = 6. According to the non-coherent MIMO capacity

analysis provided in [28] [29], the number of training symbols Tτ is set equal to the number of transmit
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antennasM , in a sense to maximizes the system capacity (or mutual information rate). The outer LDPC

code is a regular(3, 6) code with code rateRouter = 1/2, and codeword length8 × 104. By taking into

account the pilots cost, the overall system coding rate isRoverall = 1/3 bits per transmission. We can

observe from Fig. 14 that over1.5dB performance gain can be achieved by using optimal soft MIMO

detectors than the simple MMSE-based detector. The two sub-optimal MIMO detectors as well as the

modified EM-based soft MIMO detector also provide significant performance gain, and at the same time

maintain affordable decoding complexity. On the other hand, due to the existing positive feedback, the

direct EM-based MIMO detector has a2dB performance degradation compared to the modified EM-based

detector and performs even worse than the simple MMSE-based detector.
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Fig. 14. Probability of bit error of a2 × 2 regular(3, 6) LDPC-coded MIMO system over a unknown fading channel with

coherence timeT = 6 and training numberTτ = 2 using several different soft MIMO detectors.

Using the optimization algorithm provided in Section IV-C, the optimal LDPC code degree profiles

(with outer code rateRouter = 1/2 and codeword length8× 104) for the coded MIMO system using the

different soft MIMO detection algorithms are obtained and used in the overall performance simulation.

We consider the same2× 2 coded MIMO system used in Fig. 14 that transmits over the same unknown

fading channel with coherence timeT = 6 and pilot numberTτ = 2 for simulations. The probability

of bit error of the LDPC-coded MIMO system with optimized LDPC code degree profile is shown in

Fig. 15. Compared with Fig. 14, we can achieve about0.6dB performance gain by using the optimized

LDPC degree profile as opposed to the simple regular(3, 6) LDPC code. Additional simulation results,



28

1 1.5 2 2.5 3 3.5
10

−4

10
−3

10
−2

10
−1

Signal to noise ratio, E
s
/N

0

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r,

 P
b

2by2 Optimized rate (1/2) LDPC−coded MIMO System, T=6, Tτ=2

Optimal soft detector
Sub−optimal detector
Sub−optimal butterfly detector
MMSE−based detector

Fig. 15. Probability of bit error of a2×2 optimized LDPC-coded MIMO system over a unknown fading channel withcoherence

time T = 6 and training numberTτ = 2 using several different soft MIMO detectors.

not shown here, indicate that an even more significant performance gain can be achieved by the proposed

LDPC code optimization approach if higher modulation format (such as QPSK or 16-QAM) is used, or if

the coherence time intervalT is larger. Under these channel conditions, the extrinsic information transfer

functions (54) and (55) of a regular LDPC-coded MIMO system arevery dissimilar to each other and

this emphasizes the importance of the proposed curve fitting technique.

VI. CONCLUSION

In this paper, we developed a practical LDPC-coded MIMO systemover a flat fading wireless en-

vironment with channel state information unavailable bothat the transmitter and the receiver. We first

proposed several soft-input soft-output MIMO detectors, including one optimal soft MIMO detector,

two sub-optimal soft detectors, and a modified EM-based MIMO detector, whose performances are much

better than the conventional MMSE-based detectors and offer an effective tradeoff between complexity and

performance. By analyzing the extrinsic information transfer characteristic of the soft MIMO detectors,

performance of the coded MIMO system using different MIMO detection algorithms are analyzed and

compared under various channel conditions. Motivated by the turbo iterative principle, the LDPC-coded

MIMO receiver is constructed in an unconventional manner where the soft MIMO detector and LDPC

variable node decoder form one super soft-decoding unit, and the LDPC check node decoder forms the
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other component of the iterative decoding scheme. The proposed receiver structure has lower decoding

complexity and further leads to tractable EXIT functions of the component soft decoders. Based on

the obtained closed form EXIT functions, a simple and efficientLDPC code degree profile optimization

algorithm is developed with proven global optimality and guaranteed convergence from any initialization.

Finally, numerical and simulation results of the LDPC-coded MIMO system using the optimized degree

profile further confirm the advantage of using the proposed design approach for the coded MIMO system.
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