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Abstract— We consider an LDPC-coded MIMO system com-
posed ofM transmit and N receive antennas operating in a flat
fading environment. The channel state information is assumed
to be unavailable both to the transmitter and the receiver. A soft
iterative receiver structure is developed which consists of three
main blocks, a soft MIMO detector and two LDPC component
soft decoders. Without forming any specific channel estimate,
we propose several soft MIMO detectors at the component
level that offer an effective tradeoff between complexity and
performance. At the structural level, the LDPC-coded MIMO
receiver is constructed in a unconventional manner where the
soft MIMO detector and LDPC variable node decoder form one
super soft-decoding unit, and the LDPC check node decoder
forms the other component of the iterative decoding scheme.
By exploiting the proposed receiver structure, tractable extrinsic
information transfer functions of the component soft decoders
are obtained, which further lead to a simple and efficient LDPC
code degree profile optimization algorithm with proven global
optimality and guaranteed convergence from any initialization.
Finally, numerical and simulation results are provided to confirm
the advantages of the proposed design approach for the coded
system.

I. I NTRODUCTION

Communication systems using multiple antennas at both the
transmitter and the receiver have recently received increased
attention due to the capability of providing great capacity
increases in a wireless fading environment [1]. However, the
capacity analysis and MIMO system design is often based on
the underlying assumption that the fading channel coefficient
between each transmit and receive antenna pair is perfectly
known at the receiver. This is not a realistic assumption for
most practical communication systems especially in fast fading
channels.

For communication systems with unknown channel state
information (CSI) at both ends, conventional receivers usually
have a two-phase structure, channel estimation using the preset
training symbols followed by coherent data detection. Due
to the importance of the channel estimator, which directly
determines estimation quality and hence the overall system
performance, various MIMO channel estimation algorithms
have been studied [2] [3]. However, conventional channel
estimators form estimates based only on the training symbols,
thereby failing to make use of the channel information con-
tained in the received data symbols. Consequently, the two-
phase model limits the performance and can not approach
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the MIMO channel capacity (or the maximum achievable
information rate). Possible solutions to the above problem
include use of blind source signal separation algorithm [4][5],
MIMO differential modulation [6] [7], and unitary space-time
modulation (USTM) [8] [9]. However, none of these schemes
can approach the non-coherent MIMO capacity limit due to
their sub-optimal code structure, and in the case of USTM,
only asymptotic (or the diversity) optimality is achieved in
high SNR regimes and the approach suffers from exponential
decoding complexity.

In this paper, we focus on the design of practical LDPC-
coded MIMO systems employing a soft iterative receiver
structure consisting of three component soft decoding blocks,
a soft MIMO detector and two soft LDPC component decoders
(variable node and check node decoders). At the component
level, we propose several soft MIMO detectors, which can
generate soft log likelihood ratio (LLR) of each coded bit
under the condition of unknown CSIR without forming any
explicit channel estimate. At the structural level, the LDPC-
coded MIMO receiver is constructed in an unconventional
manner where the soft MIMO detector and LDPC variable
node decoder form one super soft-decoding unit and the
LDPC check node decoder forms the other component of
the iterative decoding scheme. Utilizing the receiver structure,
tractable extrinsic information transfer functions (EXIT) of the
component soft decoders are obtained, which further lead to
a simple and efficient LDPC code degree profile optimization
algorithm. This algorithm is shown to have global optimality
and guaranteed convergence from any initialization, whichis
in contrast to the sub-optimal manual curve fitting technique
proposed in [10].

II. SYSTEM MODEL

Fig. 1. Transmitter model of LDPC-coded MIMO systems

We consider a MIMO system withM transmit antennas and
N receive antennas signaling through a frequency flat fading
channel with i.i.d channel coefficients between the transmit



and receive antenna pairs. As illustrated in Fig. 1, a block of
k binary information bits denotedd = {d1, · · · , dk} is first
encoded by an outer LDPC encoder with code rateR = k/n
into a codewordc = {c1, · · · , cn} of lengthn. The codeword
c is further segmented intoL consecutive sub-blocksCi of
length K. Each sub-blockCi is then encoded by the inner
space-time encoder into a coherent space-timesub-frameXi.
This encoder is composed of an interleaver, modulator, serial-
to-parallel converter, and a pilot insertion operator. Within each
sub-frame, the firstp = MTτ symbols are training pilots,
followed by MTd data symbols withTd + Tτ = T . Hence,
the transmitted signalXi can be stacked and separated into
two sub-matrices, i.e.

Xi =
√

ρ/M ·
[

XT
τ , XT

d,i

]T

, (1)

where Xτ ∈ C
Tτ×M are the fixed pilot symbols sent over

Tτ time intervals andXd,i ∈ C
Td×M are the information

bearing data symbols sent overTd transmission intervals, with
the following power constraints,

tr
(

XH
τ · Xτ

)

= MTτ , EXd, i

[

tr
(

XH
d, i · Xd, i

)

]

= MTd .

(2)
Therefore,ρ is the average signal to noise ratio (SNR) at each
receive antenna. Each element of the transmitted data signal
Xd,i comes from a finite complex alphabetX of size|X |. One
entire MIMO codewordX consists ofl = LTM complex
symbols, which are transmitted fromM transmit antennas
and acrossL consecutive coherent sub-frames of lengthTM
symbols each.

It is assumed that the fading coefficient matrixHi remains
static within each coherent sub-block and varies independently
from one sub-block to another. Hence, the signal model can
be written as

Yi = Xi · Hi + wi, 1 ≤ i ≤ L , (3)

whereYi is aT ×N received complex signal matrix,Xi is a
T × M transmitted complex signal matrix,Hi is anM × N
complex channel matrix, andwi is aT ×N matrix of additive
noise. Both matricesHi and wi are assumed to have zero
mean unit variance independent complex Gaussian entries.

III. SOFT-INPUT SOFT-OUTPUT MIMO D ETECTOR

Conventional channel estimators perform estimation only
based on the training pilots, thereby failing to make use of the
channel information contained in the data symbols. Due to the
mismatch between the actual and estimated channel, system
performance of the two-phase receiver structure (channel es-
timation followed by coherent data detection) suffers severe
degradation especially in low SNR regimes or fast fading
channels.

In this section, several novel MIMO detectors which include
the optimal soft MIMO detector as well as two modified
sub-optimal detectors are proposed that offer an effective
tradeoff between detection complexity and performance. For
the sake of simplicity, subscripti, denoting theith coherent

block, is dropped in this section while describing the soft
MIMO detection algorithms. To be specific, we denoteX =
[

XT
τ , XT

d

]T
, H, and Y =

[

YT
τ , YT

d

]T
as the transmitted

signal, channel matrix, and received signal in each coherent
block, respectively. Furthermore, sub-matricesXτ , Xd, Yτ ,
andYd have the following structures, i.e.

Xτ =
[

xT
τ,1, · · · ,xT

τ,Tτ

]T

, Xd =
[

xT
d,1, · · · ,xT

d,Td

]T

,

Yτ =
[

yT
τ,1, · · · ,yT

τ,Tτ

]T

, Yd =
[

yT
d,1, · · · ,yT

d,Td

]T

, (4)

wherexτ,k, xd,k, yτ,k, andyd,k represent complex row vectors
of size1×M . Similarly, the binary sub-codewordC that maps
to the transmitted signalX can also be decomposed into

C =
[

cT
1 , · · · , cT

Td

]T

, ck

∣

∣

Td

k=1
∈ B

1×M · log2 |X | , (5)

whereB is binary set{0, 1} and each rowck represents the
corresponding binary information that maps toxd,k.

A. Optimal soft MIMO detector

First, according to the channel model (3), the conditional
probability density of the received signal matrixY given the
transmitted signal matrixX is given by [11]

p
(

Y
∣

∣X
)

=

exp

(

− tr

{

[

IT + XXH
]−1

· YYH

}

)

πTN detN
[

IT + XXH

] . (6)

It is evident from the above transitional probability that the
unknown MIMO channel is actually a memoryless vector
channel and hence the optimal MIMO detector does not
necessarily need to form a specific channel estimate.

In order to obtain the a posteriori probability of each coded
bit, the a priori probability of the input signal matrixX is first
calculated as

p
(

X
)

= p
(

Xd

)

= p(C) =

Td
∏

k=1

p(ck) =

Td
∏

k=1

M log2 |X |
∏

j=1

p(ck,j) ,

(7)
where each element of matrixXd is a member of a complex
alphabetX of size|X |, each corresponding tolog2 |X | LDPC-
coded bits. Therefore, the log likelihood ratio of each LDPC
coded bit is given by

Lpos(ck,j) = log

(

Σ
X∈D+

k,j
p
(

Y
∣

∣X
)

· p
(

X
)

Σ
X∈D−

k,j
p
(

Y
∣

∣X
)

· p
(

X
)

)

,

1 ≤ k ≤ Td, 1 ≤ j ≤ M · log2 |X | , (8)

whereD+
k,j (D−

k,j) is the set ofX for which the(k, j)th bit ck,j

of the LDPC coded sub-blockC is “+1” (“−1”). Finally, by
subtracting the input a priori information from the obtained a
posterior log likelihood ratio, the soft extrinsic information of
each coded bit is obtained as,

Lext(ck,j) = Lpos(ck,j) − log
(p

(

ck,j = 1
)

p
(

ck,j = 0
)

)

, (9)



Notice that there is no channel estimation stage in the soft
MIMO detector described above, and therefore the proposed
detection algorithm does not depend on the unknown channel
stateH but only on its underlying statistical distribution.

B. Sub-optimal soft MIMO detector

The optimal soft MIMO detection algorithm proposed in
Section III-A provides the optimal extrinsic LLR values of
each coded bit. However, the summation in both the numerator
and the denominator of equation (8) consists of2K−1 items,
with K

(

=TdM log2 |X |
)

increasing linearly with number of
data slotsTd (or coherence timeT ). It has an unaffordable
exponential complexity for practical communication systems,
especially when the coherence timeT is large. Hence, we
propose a sub-optimal MIMO detector in this section with
complexity increasing linearly withTd.

Instead of performing soft MIMO detection by one opera-
tion, we can extract partial extrinsic information by processing
only two rows of the data matrixXd at a time, and then
combining different partial extrinsic information to formthe
final extrinsic LLR. In order to combine information from
coded rowsxd,k andxd,k′ , we first perform the optimal MIMO
detection algorithm on the following reduced sizesub-coherent
block

X[k,k′] =
[

XT
τ ,xT

d,k , xT
d,k′

]T

, Y[k,k′] =
[

YT
τ ,yT

d,k , yT
d,k′

]T

.

(10)
Therefore, the partial extrinsic LLR valueLext, k′

(

ck,j

)

of bit
ck,j obtained from the a priori information of rowck, ck′ , and
channel observationY[k,k′] is given by

Lext, k′

(

ck,j

)

= log

(

Σ
X[k,k′]∈D+

k,j
p
(

Y[k,k′]

∣

∣X[k,k′]

)

· p
(

X[k,k′]

)

Σ
X[k,k′]∈D−

k,j
p
(

Y[k,k′]

∣

∣X[k,k′]

)

· p
(

X[k,k′]

)

)

− log

(

p
(

ck,j = 1
)

p
(

ck,j = 0
)

)

, 1 ≤ k, k′ ≤ Td , (11)

where D+
k,j (D−

k,j) is the set ofX[k,k′] for which bit ck,j

is “ + 1” (“ − 1”). By the same reasoning, partial extrinsic
information of bit ck,j , related to (and contained in) the a
priori information ofck and channel observationsYτ andyd,k

can also be obtained by performing optimal detection on the
following sub-coherentblock

X[k] =
[

XT
τ , xT

d,k

]T

, Y[k] =
[

YT
τ , yT

d,k

]T

, (12)

with the corresponding extrinsic LLR value given by

Lext-p
(

ck,j

)

= log

(

Σ
X[k]∈D+

k,j
p
(

Y[k]

∣

∣X[k]

)

· p
(

X[k]

)

Σ
X[k]∈D−

k,j
p
(

Y[k]

∣

∣X[k]

)

· p
(

X[k]

)

)

− log

(

p
(

ck,j = 1
)

p
(

ck,j = 0
)

)

, 1 ≤ k ≤ Td . (13)

Having obtained extrinsic informationLext, k′

(

ck,j

)

and
Lext-p

(

ck,j

)

, one can obtain by the following substraction,

Lext-d, k′

(

ck,j

)

= Lext, k′

(

ck,j

)

− Lext-p
(

ck,j

)

, (14)

the extrinsic information of bitsck,j extracted solely from the
channel observationyd,k′ and the a priori information ofck′ .

In contrast to the situation of perfect channel state informa-
tion at the receiver (CSIR) whereLext(ck,j) only depends on
the a priori knowledge ofck and observationyd,k, a non-zero
extrinsic information ofck,j can be obtained from the a priori
knowledge ofck′ and observationyk′ (with k′ 6= k) in an
unknown MIMO fading environment. An intuitive explanation
of above difference can be made by viewingck′ as partially
fixed pilots based on the input a priori information. Therefore,
better channel knowledge is learned (although no explicit
channel estimation exists), which translates into a bettera
posterior probability ofck,j . Hence, a non-zero partial extrinsic
information solely from the a priori probability ofck′ and the
channel observationyk′ is obtained.

Due to the assumption that the input a priori information
of different bits are independent, all the partial extrinsic infor-
mationLext-d,k′(ck,j) andLext-p(ck,j) can be viewed as being
close to independent. The final output extrinsic information
Lext(ck,j) is obtained by summing all the independent partial
extrinsic information obtained from different coded rowsck′

and pilot observations, i.e.

Lext
(

ck,j

)

=

Td
∑

k′=1
k′ 6=k

Lext-d, k′

(

ck,j

)

+ Lext-p
(

ck,j

)

=

Td
∑

k′=1
k′ 6=k

Lext, k′

(

ck,j

)

− (Td − 2) · Lext-p
(

ck,j

)

, (15)

A summation of22M log2 |X | terms is required to extract the
partial extrinsic informationLext,k′(ck,j) in equation (11) and
2M log2 |X | terms forLext-p(ck,j) in equation (13). Therefore,
in order to obtain the output soft extrinsic LLR values, a
total number of

(

(Td − 1) · 22M log2 |X | + 2M log2 |X |
)

terms
of probability summation is required for each coded bit, as
opposed to2TdM log2 |X | terms in the original optimal soft
MIMO detector.

C. Sub-optimal butterfly soft MIMO detector

Motivated by the fast Fourier transform (FFT) algorithm, we
can further reduce the complexity of the soft MIMO detector
to

(

log2 Td · 22M log2 |X | + 2M log2 |X |
)

terms of summation
per coded bit by using a sub-optimal butterfly MIMO detector
structure.

It is first assumed that the number of the data slotsTd =
2m is power of 2. If not, we can appropriately zero-pad
the transmitted signal matrixX. The sub-optimal butterfly
detection algorithm obtains the extrinsic information through
a multi-level structure similar to the fast Fourier transform,
where the extrinsic information is accumulated from level to
level. Specifically, if the partial extrinsic LLR value of coded



bit ck,j at thenth level is Ln
ext-d

(

ck,j

)

, then the extrinsic LLR
value of the(n + 1)th level is updated as

Ln+1
ext-d

(

ck,j

)

= Ln
ext-d

(

ck,j

)

+ ∆Ln+1
ext-d

(

ck,j

)

, 0 ≤ n ≤ m − 1 ,
(16)

where the second term∆Ln+1
ext-d

(

ck,j

)

of equation (16) rep-
resents the additional partial extrinsic information obtained
from the information of coded bitsck′ , with sub-codeword
row indexk′ given by

k′ =

{

k + 2m−n−1 if k (mod 2m−n
)

< 2m−n−1

k − 2m−n−1 if k (mod 2m−n
)

≥ 2m−n−1 .

(17)
Similar to the extraction algorithm provided in (14),
∆Ln+1

ext-d

(

ck,j

)

is given by the following form

∆Ln+1
ext-d

(

ck,j

)

= Ln+1
ext

(

ck,j

)

− Lext-p
(

ck,j

)

, (18)

whereLext-p
(

ck,j

)

is given by equation (13), and partial extrin-
sic informationLn+1

ext

(

ck,j

)

is obtained by performing optimal
soft MIMO detection on the sub-coherent blockX[k,k′] and
Y[k,k′] with modified input a priori information, i.e.

Ln+1
ext

(

ck,j

)

= log

(

Σ
X[k,k′]∈D+

k,j
p
(

Y[k,k′]

∣

∣X[k,k′]

)

· pn+1
app

(

X[k,k′]

)

Σ
X[k,k′]∈D−

k,j
p
(

Y[k,k′]

∣

∣X[k,k′]

)

· pn+1
app

(

X[k,k′]

)

)

− log

(

p
(

ck,j = 1
)

p
(

ck,j = 0
)

)

. (19)

Furthermore, the modified a priori probabilitypn+1
app

(

X[k,k′]

)

in equation (19) is a combination of the a priori probability
of ck andck′ as well as thenth level extrinsic information of
ck′ , which can be represented as

pn+1
app

(

X[k,k′]

)

=

M log2 |X |
∏

j=1

p
(

ck,j

)

·p
(

ck′,j

)

·pn
ext

(

ck′,j

)

, (20)

wherepn
ext

(

ck′,j

)

is given by

pn
ext

(

ck′,j

)

=
exp

(

ck′,j · Ln
ext-d

(

ck′,j

)

)

1 + exp
(

Ln
ext-d

(

ck′,j

)

) . (21)

Therefore,∆Ln+1
ext-d

(

ck,j

)

can be viewed as the partial extrinsic
information obtained solely from the a priori information of
ck′ , channel observationyk′ , and its extrinsic information at
the nth level.

Starting from the initial conditionL0
ext-d(ck,j) = 0, the

extrinsic informationLn
ext-d(ck,j) of each coded bit is accu-

mulated at each level by absorbing additional partial extrinsic
information through the sub-coherent block combining pro-
cess. The final soft extrinsic LLR value of each coded bit
is formed by combining the extrinsic LLR information at the
mth (lowest) level with the extrinsic information obtained from
pilot observations, which is given by

Lext
(

ck,j

)

= Lm
ext-d

(

ck,j

)

+ Lext-p
(

ck,j

)

1 ≤ k ≤ Td . (22)

D. Discussion

Note that both the sub-optimal structure in Section III-B as
well as the sub-optimal butterfly MIMO detector in the pre-
vious subsection are modifications of the optimal soft MIMO
detection algorithm provided in Section III-A. The two sub-
optimal MIMO detection algorithms provided in Section III-B
and III-C have the following structural differences. First, the
sub-optimal MIMO detector in Section III-B forms extrinsic
information through alinear combining structure, where there
are a total of(Td − 1) partial extrinsic information terms
(each corresponding to the partial extrinsic LLR obtained from
other rowsk′); each term is computed by performing optimal
detection on the sub-coherent block given by (11)-(14). On
the other hand, the sub-optimal butterfly MIMO detector in
Section III-C performs data detection by employing a multi-
level structure, where the extrinsic information is distributed
at succeeding levels until all the input a priori information and
the channel observations are combined and exchanged between
all different rows.

IV. RECEIVER DESIGN OF THECODED MIMO SYSTEM

A. New receiver structure of the LDPC-coded MIMO system

MIMO Detector
−1

Edge
Interleaving

Π

VND

decoder

Variable node

VND

I A,DET

I E,DET

I A,DET

F(  ).

I E,VND

I A,VND

.f ( )s

decoder

Check node

E,CNDI

A,CNDI

.f ( )cIterative Loop
−

SUPER SOFT DECODER

(MIMO Detector & LDPC Variable Node Decoder)

−

Y

CND

NODE DECODER

LDPC CHECK

−

Soft−In Soft−Out

Π

Fig. 2. Receiver structure of LDPC-coded MIMO systems

Conventionally a coded MIMO receiver is obtained by
connecting the inner soft MIMO detector and the outer LDPC
decoder to form one large iterative decoding loop. The overall
MIMO receiver actually consists of two iterative decoding
loops. The soft extrinsic information, which describes the
uncertainty of each coded bits, is iteratively exchanged inthe
outer loop between the MIMO detector and LDPC decoder
as well as in the inner loop between variable node and check
node decoders inside the LDPC decoder.

In this paper, we structure the MIMO receiver differently
by combining the soft MIMO detector and LDPC variable
node decoder together as a super soft decoder, a form also
suggested in [10]. As illustrated in Fig. 2, the decoding loop
is formed by exchanging extrinsic information between the
super decoder and the LDPC check node decoder iteratively.
Compared with the conventional iterative MIMO receiver
(named as bit-interleaved coded modulation with iterative
decoding (BICM-ID) algorithm), the new receiver structure
has two advantages. First, the new receiver structure has only
one iterative decoding loop and hence has lower decoding
complexity compared to the conventional BICM-ID receiver
structure. Second, the proposed structure has the advantage of



enabling the EXIT function of the soft component decoders
to have tractable forms. By fully exploiting the closed form
EXIT functions, a simple iterative approach for the LDPC
code degree profile optimization with guaranteed convergence
and global optimality is proposed in Section IV-B, which is
superior to the sub-optimal manual curve fitting technique [12]
[10].

B. LDPC code optimization

Following the methodology given in [10] [12], the EXIT
functions of the super MIMO soft decoder (combination of
the LDPC variable node decoder and soft MIMO detector)
can be obtained as

IE,VND = fs

(

IA,VND
)

=

Dv
∑

i=1

λi · J
(

(

dv, i − 1
)

· J−1
(

IA,VND
)

+J−1

(

F
∣

∣

ρ

(

J
(

dv, i·J−1
(

IA,VND
)

)

)

)

, (23)

where λi is the fraction of the variable nodes having edge
degreedv, i, andDv is the number of different variable node
degrees. The functionJ(·) is given by

J(σ2
A) =

1

ln 2

(

1

σ2
A

−
∫ ∞

−∞

σA√
2π

ln cosh(y)

×exp
(

− (σ2
A · y − 1)2

2σ2
A

)

dy

)

, (24)

and the mappingF
∣

∣

ρ
(·) represents the input-output relations

of the MIMO detector betweenIE,DET and IA,DET at SNRρ,
i.e.

IE,DET = F
∣

∣

ρ

(

IA,DET
)

. (25)

The check nodes of the LDPC code have a transfer character-
istic given by the following [12]

IE,CND = fc

(

IA,CND
)

≈ 1−
Dc
∑

i=1

ρi ·J
(

(

dc, i −1
)

·J−1
(

1− IA,CND
)

)

, (26)

whereρi is the fraction of the check nodes having edge degree
dc, i, andDc is the number of different check node degrees.

Following the successful decoding (convergence) criterion
provided in [12], the degree profile optimization problem can
be reduced to the following maximization problem by taking
the LDPC code rateR as the objective

max
{λi,ρi}

Router = max
{λi,ρi}

(

1 −
∑Dc

i=1 ρi/dc,i
∑Dv

i=1 λi/dv,i

)

, (27)

under linear constraints given by

IE,VND(IA,VND) ≥ IA,CND(IE,CND) = IA,CND(IA,VND),
Dv
∑

i=1

λi = 1,

Dc
∑

i=1

ρi = 1, 0 ≤ λi, ρi ≤ 1 . (28)

Utilizing the closed form EXIT functions of the component
soft decoders given by (23) and (26), we propose an efficient

LDPC code degree profile optimization algorithm in the fol-
lowing, which is composed of two simple linear optimization
steps.

• Variable node degree profile optimization:
For a fixed check node degree profile{ρk

i } from the kth

iteration, the optimal variable node degree profile{λk+1
i } is

given by
{λk+1

i } = arg max
{λi}

Dv
∑

i=1

λi/dv,i , (29)

under the constraints

fs

(

fc(an)
)

≥ an,

Dv
∑

i=1

λi = 1, 0 ≤ λi ≤ 1, 1 ≤ n ≤ N, (30)

where
{

an

∣

∣an ∈ [0, 1]
}

is a set of specified constraint points,
andN is the total number of constraints on the curve.

• Check node degree profile optimization:
For a fixed variable node degree profile{λk+1

i } from the(k+
1)th iteration, the optimal check node degree profile{ρk+1

i }
is given by

{ρk+1
i } = arg min

{ρi}

Dc
∑

i=1

ρi/dc,i , (31)

under the constraints

fc

(

fs(an)
)

≥ an,

Dv
∑

i=1

ρi = 1, 0 ≤ ρi ≤ 1, 1 ≤ n ≤ N, (32)

wherean andN are defined as before.

• Initializations:
In general, we can start with any feasible degree profiles.
Based on our experience from numerical simulations, we find
that it is always a good choice to start with a regular check
node degreedc.

If we stack the LDPC code degree profile{λi, ρi} into a su-
per vectorη = [λ1, · · · , λ

Dv
, ρ1, · · · , ρ

Dc
]T . We can see that

the objectiveRouter given in equation (27) is a concave function
with respect toη and that all the constraints given in (28)
are linear. Hence, the above degree optimization problem has
only one unique optimal solution. Due to the non-decreasing
property of the proposed iterative maximization algorithm, it
is guaranteed to converge to the global maximum solutionη⋆

from any initialization point. Therefore, in contrast to the sub-
optimal manual curving fitting technique proposed in [10], the
above iterative LDPC optimization algorithm provides much
better performance and can serve as an efficient tool for coded
MIMO system design.

V. NUMERICAL AND SIMULATION RESULTS

The probability of bit error of a2 × 2 MIMO system over
unknown fading channel with coherence timeT = 6, training
numberTτ = 2, and BPSK modulation is demonstrated in
Fig. 3. The outer LDPC code is a regular(3, 6) code with
code rateR = 1/2, and codeword length8 × 104. As can be
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Fig. 3. Probability of bit error of a2×2 regular(3, 6) LDPC-coded MIMO
system over a unknown fading channel with coherence timeT = 6 and
training numberTτ = 2 using several different soft MIMO detectors.
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Fig. 4. Probability of bit error of a2 × 2 optimized LDPC-coded MIMO
system over a unknown fading channel with coherence timeT = 6 and
training numberTτ = 2 using several different soft MIMO detectors.

observed from the above plot, over1.5dB performance gain
can be achieved by using optimal soft MIMO detectors rather
than the simple MMSE-based detector. The two sub-optimal
MIMO detectors provide significant performance gain, and at
the same time maintain affordable decoding complexity.

Using the optimization algorithm provided in Section IV-B,
the optimal LDPC code degree profiles (with outer code rate
Router = 1/2) for the coded MIMO system using the different
soft MIMO detection algorithms are obtained and used in the
overall performance simulation. We consider the same2 × 2
coded MIMO system used in Fig. 3 that transmits over the
same unknown fading channel with coherence timeT = 6
and pilot numberTτ = 2 for simulations. The probability of
bit error of the LDPC-coded MIMO system with optimized

LDPC code degree profile is shown in Fig. 4. Compared with
Fig. 3, we can achieve about0.6dB performance gain by using
the optimized LDPC degree profile as opposed to the simple
regular(3, 6) LDPC code.

VI. CONCLUSION

In this paper, we developed a practical LDPC-coded MIMO
system over a flat fading wireless environment with no channel
state information neither at the transmitter nor at the receiver.
We first proposed several soft MIMO detectors, including
one optimal soft MIMO detectors and two simplified sub-
optimal detectors, that offer an effective tradeoff between
complexity and performance. A coded MIMO receiver is con-
structed in an unconventional manner, where the soft MIMO
detector and LDPC variable node decoder form one super
soft-decoding unit, and the LDPC check node decoder forms
the other component of the iterative decoding scheme. By
exploiting the proposed receiver structure, tractable extrinsic
information transfer functions of the component soft decoders
are obtained. Based on the closed form EXIT functions, a
simple and efficient LDPC code degree profile optimization
algorithm is proposed. The proposed optimization algorithm is
shown to have global optimality and guaranteed convergence
from any initialization, which is superior to the sub-optimal
manual curve fitting technique in previous work. Numerical
and simulation results of the unknown LDPC-coded MIMO
system using the optimized degree profile further confirm the
advantage of using the proposed design approach for the coded
MIMO system.
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