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ABSTRACT

Analysis of Coded OFDM System

over Frequency-Selective Fading Channels. (August 2003)

Jun Zheng, B.S., Tsinghua University, P.R. China

Chair of Advisory Committee: Dr. Scott L. Miller

This thesis considers the analysis of system performance and resource allocation for a

coded OFDM system over frequency selective fading channels. Due to the inseparable

role taken by channel coding in a coded OFDM system, an information theoretical

analysis is carried out and taken as the basis for the system performance and through-

put.

Based on the results of the information theoretical analysis, the optimal sys-

tem BER performance of a coded OFDM system is first shown to converge to the

outage probability for large OFDM block lengths. Instead of evaluating the out-

age probability numerically, we provide in this thesis a simple analytical closed form

approximation of the outage probability for a coded OFDM system over frequency

selective quasi-static fading channels. Simulation results of the turbo-coded OFDM

systems further confirm the approximation of the outage probability.

By taking the instantaneous channel capacity as the analytical building block,

system throughput of a coded OFDM system is then provided. With the aim to

compare the performance difference between adaptive and uniform resource alloca-

tion strategies, the system throughput of different allocation schemes under various

channel conditions is analyzed. First, it is demonstrated that adaptive power alloca-

tion over OFDM sub-carriers at the transmitter achieves very little gain in terms of

throughput over a uniform power distribution scheme. Theoretical analysis is then



iv

provided of the throughput increase of adaptive-rate schemes compared with fixed-

rate schemes under various situations. Two practical OFDM systems implement-

ing rate-compatible-punctured-turbo-code-based (RCPT-based) hybrid automatic-

repeat-request (Hybrid-ARQ) and redundancy incremental Hybrid-ARQ protocols

are also provided to verify the analytical results.
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CHAPTER I

INTRODUCTION

In this chapter, we are going to take an overview of the background information with

the aim to provide an intuitive explanation of our research motivation.

A. OFDM and Coded OFDM

Orthogonal frequency-division multiplexing (OFDM) has recently received increased

attention due to its capability of supporting high-data-rate communication in fre-

quency selective fading environments which cause inter-symbol interference (ISI)

[1][2]. Instead of using a complicated equalizer as in the conventional single car-

rier systems, the ISI in OFDM can be eliminated by adding a guard interval which

significantly simplifies the receiver structure. However, in order to take advantage

of the diversity provided by the multi-path fading, appropriate frequency interleav-

ing and coding is necessary. Therefore, coding becomes an inseparable part in most

OFDM applications and a considerable amount of research has focused on optimum

encoder, decoder, and interleaver design for information transmission via OFDM over

fading environments, e.g. [3]-[6].

B. Performance Analysis of Coded OFDM Systems

Although a considerable amount of research has addressed the design and implemen-

tation of coded OFDM systems for frequency-selective fading channels, comparatively

few of them provide satisfactory performance analysis of such systems because of the

complicated nature of this problem. Here we consider a frequency-selective quasi-

The journal model is IEEE Transactions on Automatic Control.
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static fading channel, which is a reasonable assumption for an indoor wireless envi-

ronment that has multipath fading but exhibits very slow changes over time, modeled

as quasi-static. Unlike coding in AWGN channels, where there is one dominant pair-

wise error probability, related to the minimum distance of a block code or the free

distance of a convolutional code, that determines the system performance, all pairwise

error probabilities in a fading coded OFDM system decrease as inverse polynomial of

the signal-to-noise ratio (SNR). Thus the powerful union-Chernoff bound will be too

loose at any range of SNR when the block length is large.

Motivated by the performance analysis results on block fading channels in [7], the

random coding upper bounds [8] [9] and the strong converse lower bounds [10] as well

as the concept of instantaneous channel capacity are implemented for the performance

analysis of coded OFDM system. Both the upper bounds and lower bounds are shown

to converge to the channel outage probability for large OFDM block lengths, and

hence we focus our primary attention on the channel outage probability and take it as

the theoretical achievable performance indicator for the coded OFDM system. Instead

of evaluating the outage probability numerically, a much more simple analytical closed

form approximation of the outage probability is provided in this thesis. Starting

from the capacity approximation of the binary input alphabet channel, the outage

probability for a coded OFDM system over frequency-selective fading channels is

approximated and simplified to a analytically tractable form. Simulation results of

the real outage probability as well as the performance of a practical turbo-coded

OFDM system further confirms the fitness of this approximation.
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C. Resource Allocation for Coded OFDM Systems

All of the above work is based on the assumption that only the receiver has channel

state information (CSI). If information is allowed to flow in the other direction, so that

the transmitter and the receiver share all or part of the channel state information,

adaptive power and code rate allocation within the OFDM system becomes possible

and is expected to achieve significant performance gain. Several adaptive schemes for

OFDM systems have been investigated in [11]-[16]. Ditzel [11] proposes an optimal

energy allocation scheme among different OFDM sub-carriers which minimizes the to-

tal energy necessary to achieve a desired average bit error rate over frequency-selective

fading channels. Using this optimal scheme, a 4dB performance gain is attained with

respect to uniform power allocation schemes for the same system. In [12], Czylwik in-

troduces an adaptive modulation scheme for the individual sub-carriers in an OFDM

system, and the required signal to noise ratio for certain bit error probabilities is

reduced dramatically compared to fixed modulation. Similar adaptive modulation

schemes, recommended by Maeda in [13], implement the idea of puncturing codes to

delete code bits in non-reliable sub-carriers in an OFDM frame, hence suppressing

the total power consumption. Recent research work [14] [15] focuses on joint power,

code rate, and modulation allocation among OFDM sub-carriers and achieves compa-

rable performance gains with respect to uniform resource allocation. Piazzo [16] also

provides a fast and convergent algorithm on the adaptive power and bit allocation

in OFDM systems, which proves to be useful when the channel is changing rapidly.

However, most of these approaches focus on uncoded OFDM (or systems with very

weak codes) which fails to take advantage of the significant advances that have been

made in coding for error correction and detection.

In this thesis, transmitter power and code rate allocations for a coded OFDM
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system over frequency-selective fading channels have been analyzed. The channel

state information is assumed to be accessible to both the transmitter and the re-

ceiver, which is not a stringent constraint in most wireless communication systems

where there exists a reverse link. Different from previous uncoded OFDM systems,

coding plays an important part in maintaining reliable communication between the

transmitter and receiver in our study. It is then reasonable to analyze the adap-

tive schemes from an information theoretical point of view, when powerful channel

coding techniques such as turbo codes or LDPC codes are implemented in the sys-

tem. Starting from channel capacity analysis, the concept of instantaneous channel

capacity is again implemented as the building block for the system analysis. The the-

oretical throughput for the OFDM system under optimal power and rate allocations

among different OFDM sub-carriers is provided and taken as the ultimate system

performance limit for any practical application. Various analyses are carried out on

different channel models and fading environments, and compared with the uniform

power and fixed rate allocation schemes respectively. In order to complement the an-

alytical results as well as compare with the performance limit, two practical OFDM

communication systems are proposed. Their performance analyses are also provided

and compared with the simulation results.
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CHAPTER II

SYSTEM MODEL

A. Time Domain OFDM System Model

In order to understand the mathematical principles of OFDM systems, let us first

take an overview of the time domain uncoded OFDM system model, which is shown

in Fig. 1.

...

x 0
(t)

x 1
(t)

x (t)

N-1

0
(t)

x 1
(t)

x(t)

N-1

x

...
Inverse

Orthonormal
Transformation

Add
Cyclic

Redundancy
X’

(t)

P/S

Channel
{C   }k L-1

k=0

S/P
Redundancy

Cyclic
Remove

(t)
Y’Orthonormal

Transformation
...

0
(t)

1
(t)

Y
(t)

N-1

Y

Y
...

y 0
(t)

y 1
(t)

y (t)

N-1

bk

x 0
(t)

x 1
(t)

x (t)

N-1

...Encoder
S/P

Noise

Fig. 1. Time domain OFDM system model

Let bk represent the binary data sequence to be transmitted over the channel.

This data is divided into non-overlapping blocks of n = N · log2 M bits. The n bits

of data are partitioned into N groups, with each log2 M bits mapped into a complex

symbol of constellation size M . Symbol x
(t)
k is the signal transmitted over the k-

th subcarrier during the t-th OFDM frame. At the transmitter, an inverse discrete

Fourier transform (IDFT) is performed as a method of modulation, which results in

samples X
(t)
k given by

X
(t)
k =

1√
N

N−1∑

i=0

x
(t)
i · exp(j

2πki

N
), 0 ≤ i ≤ N − 1 . (2.1)
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Assume that the channel is frequency-selective, and hence the implementation of

a cyclic redundancy of sufficient length to the N -point OFDM frame is an effective

method to counter intersymbol interference (ISI) caused by the channel. The cyclic

prefix causes the sequence {X (t)
k } to appear periodic to the channel and clears the

channel memory at the end of each OFDM frame. This action makes successive

transmissions independent. The output from the channel, with additive noise N
(t)
k ,

may be written as

Y
(t)
k = c

(t)
k ? Xk(t) + N

(t)
k , (2.2)

where c
(t)
k is the discretized fading channel coefficient.

At the receiver, the cyclic prefix is discarded to obtain a frame of N symbols

Y
(t)
k . Taking the N -point discrete Fourier transform of the received samples Y

(t)
k , we

have the output samples given by

y
(t)
k =

1√
N

N−1∑

i=0

Y
(t)
i · exp(−j

2πki

N
), 0 ≤ i ≤ N − 1 . (2.3)

B. Equivalent Frequency Domain Coded OFDM System Model

Although the time domain model provided in the previous section is conceptually

straightforward, it is much more insightful to analyze the OFDM system in the fre-

quency domain since the information symbols modulate different subcarriers in the

frequency domain. Hence, let us consider the frequency model for a coded OFDM

system illustrated in Fig. 2. A block of k information bits, denoted as b = (b1, · · · , bk),

is encoded into a codeword x = (x1, · · · , xn) of length n, where each symbol xi is an

element from a complex alphabet X . There are a total of m codewords in the code

book and the code rate is defined to be R = (log2 m)/n. Note that here we combine

encoder, modulator, and interleaver together to form one super encoder E.

The encoded block x = (x1, · · · , xn) is segmented into l frames, each of length
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Fig. 2. Frequency domain OFDM system model

N(lN = n). The individual frame is transmitted by N dependent parallel sub-

channels, each representing a different OFDM sub-carrier. According to the tapped-

delay-line model [17], the fading coefficients α
(t)
i of the tth OFDM frame are related

to the fading envelopes c
(t)
i through

c(t) = [ c
(t)
1 , · · · , c(t)

L , 0, · · · , 0 ]T ∈ CN×1, (2.4)

α
(t) = [ α

(t)
1 , · · · , α(t)

N ]T ∈ CN×1, (2.5)

α
(t) = W

N×N
c(t) , (2.6)

where the Fourier transformation W
N×N

is given by

W
N×N

=




w0 w0 . . . w0

w0 w1 . . . wN−1

w0 w2 . . . w2(N−1)

...
...

...
. . .

w0 wN−1 . . . w(N−1)(N−1)




, w = e−j 2π
N . (2.7)
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We can further stack l consecutive fading coefficients and envelopes into a compact

vector form as

c = [ c(1)T , · · · , c(l)T ]T ∈ Cn×1, (2.8)

α = [ α(1)T , · · · , α(l)T ]T ∈ Cn×1, (2.9)

where the fading envelope c(t) is assumed to be constant within one OFDM frame,

but is a function of time t from frame to frame. Each component c
(t)
i of the fading

envelope is assumed to be independent from tap to tap. A Rayleigh fading distribution

is considered in this paper with the probability density function (pdf) of |c(t)
i | given

by

f
|c

(t)
i

|
(x) =

x

σ2
exp(−x2/2σ2), x ≥ 0, (2.10)

where E[|c(t)
i |2] = 2σ2 is the average power of the fading envelope. It is further

assumed that each tap has the same average power (this model can be generalized to

have non-uniform power delay profile).

The received output vectors y(t) are given by

y(t) = [ y
(t)
1 , y

(t)
2 , · · · , y(t)

N ]T , (1 ≤ t ≤ l) (2.11)

y
(t)
i = α

(t)
i x

(t)
i + n

(t)
i , (1 ≤ i ≤ N) (2.12)

where additive complex Gaussian noise n
(t)
i is white with variance N0. The receiver is

assumed to have perfect knowledge of the channel state information (CSI) and makes

decisions based on the observation of the received vector y(t), 1 ≤ t ≤ l, and the

channel state information c.
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CHAPTER III

INFORMATION THEORETICAL ANALYSIS

In this chapter, analysis taken from an information theoretical perspective is provided

as the buildingblocks for the coded OFDM system analysis.

A. The Concept of Instantaneous Channel Capacity

The well known Shannon capacity theory states that we can send information with

arbitrarily low error probability as long as the rate in bits per channel use is less than

the channel capacity [18]. But this capacity is achieved upon coding over time with

an infinite or huge codeword length. In coded OFDM systems, coding is performed

in the frequency domain instead of the time domain, where only a limited number

of OFDM frames are taken to form one codeword. Thus the maximum achievable

information rate or the channel capacity of a coded OFDM system and its relationship

with the conventional channel capacity of an AWGN channel presents an interesting

research problem.

Using the techniques introduced in [19], via slight modifications, we can obtain

the random coding upper bound (see, e.g., [8], and [9]) and the strong converse lower

bound (see, e.g., [9], and [10]) for the OFDM system introduced in Chapter II.

Pe(α) ≤





2−n( 1
p

∑p

t=1
EN (R|α(t))), for 0 ≤ R < Cn(α) ,

1, for R ≥ Cn(α) ,
(3.1)

Pc(α) ≤





2−n( 1
p

∑p

t=1
ESC

N
(R|α(t))), for R ≥ Cn(α) ,

1, for 0 ≤ R < Cn(α) ,
(3.2)
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where

EN(R|α(t)) = max
0≤ρ≤1

[
max
q(t)

1

N

N∑

i=1

E0(ρ, q
(t)
i |α(t)

i ) − ρR
]

, (3.3)

ESC
N (R|α(t)) = max

−1≤ρ≤0

[
min
q(t)

1

N

N∑

i=1

E0(ρ, q
(t)
i |α(t)

i ) − ρR
]

, (3.4)

E0(ρ, q
(t)
i |α(t)

i ) = − log2

{
∑

y
(t)
i

[∑

x
(t)
i

q
(t)
i (x

(t)
i )p(y

(t)
i |x(t)

i , α
(t)
i )1/(1+ρ)

]1+ρ
}
, (3.5)

and

Cn(α) =
1

l

l∑

t=1

CN(α(t)) , (3.6)

where

CN(α(t)) =
1

N
max
q(t)

I(x(t);y(t)|α(t)) =
1

N

N∑

i=1

max
q
(t)
i

I(x
(t)
i ; y

(t)
i |α(t)

i ) . (3.7)

Formula (3.1) and (3.2) describe the upper and lower bounds on the performance

of a block code with rate R = (log2 m)/n. Eq. (3.1) is the upper bound of the

block error probability averaged over the ensemble codebook conditioned upon the

fading coefficients α assuming ML decoding with perfect channel state information.

Eq. (3.2) is the upper bound on the correct decoding probability for any code. From

(3.1) and (3.2), we can observe that Cn(α) is the maximum achievable information

rate in terms of bits per OFDM sub-carrier use, when the number of sub-carriers N

approaches infinity. Thus, Cn(α) is defined to be the instantaneous channel capacity

as it depends on the fading realization α. Formula (3.1) and (3.2) are the achievability

and converse of this capacity respectively.

Note that in the above bounds, it is very difficult to optimize the distribution

q
(t)
i (x) under a generalized complex alphabet X . However it is easy to prove that

the uniform distribution is optimum when the alphabet is symmetric on the complex

plane such as with M-ary PSK. Furthermore, most of the time, we are only interested



11

in an input alphabet that has an equal prior probability distribution. Thus the

following discussion restricts the input alphabet to a uniform input distribution only.

Also note that p(yi|xi, αi) in (3.5) is a general form of the transition probability for a

given sub-channel. When hard decisions are implemented at the receiver before ML

detection, each sub-channel becomes a discrete symmetric channel and p(yi|xi, αi)

can be represented as

p = [p1, p2, · · · , p|X |]. (3.8)

When soft decisions are used, the transition probability can be written as

p(yi|xi, αi) =
1

πN0

exp(−|yi − αixi|2
N0

) . (3.9)

It might be insightful to view (3.6) and (3.7) as the capacity achieved by perform-

ing independent coding over n = lN independent parallel sub-channels with different

signal to noise ratios determined by α
(t)
i . By combining the OFDM symbols in the

same sub-carrier position over a sufficient large number of OFDM frames to form one

codeword, an infinite or huge decoding delay is introduced, which is intolerable in

some applications. In coded OFDM, the only difference is that coding is performed

in the frequency domain over a sufficiently large number of sub-carriers N , instead

of coding in the time domain over a lager number of time slots and combining these

n sub-channels together. In doing so, only a limited amount of decoding delay is

introduced, which is tolerable in most applications. The more important issue is that

we do not have to apply different alphabets or information rates for each sub-carrier

due to differing signal to noise ratios. Thus it is meaningful to study the behavior of

this instantaneous channel capacity.

Finally, to readers familar with block fading channels and its performance, it is no

doubt helpful to make a comparison between our quasi-static fading OFDM channel
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and the block fading channel in [7]. First, instead of having independent fading on

different sub-channels in a block fading channel, the fading coefficients α
(t)
i of different

OFDM sub-carriers are correlated. Second, even though each OFDM sub-carrier has

block length 1 when viewed as a parallel block fading channel, the convergence of the

upper bound and lower bound still exists for OFDM system having large number of

subcarriers as is shown in the following section. This is in contrast to the convergence

condition of a block fading channel (large block length).

B. Examples of Instantaneous Capacity

The simplest channel model is the Binary Symmetric Channel (BSC), where the input

alphabet X is binary and the receiver performs hard decisions before ML detection.

In this case, the sub-channel capacity conditioned on the channel coefficient α
(t)
i is

given by

C(γ
(t)
i ) = I(x

(t)
i ; y

(t)
i |α(t)

i ) = 1 − H(Q(
√

2γ
(t)
i )) , (3.10)

where

γ
(t)
i =

|α(t)
i |2 · Es

N0

. (3.11)

When the demodulator forms soft decisions, the conditional sub-channel capacity is

given by

C(γ
(t)
i ) =

1

log(2)

(
2γ

(t)
i −

∫

yi

1

4πγ
(t)
i

log
(

cosh (Re[yi])
)
· exp ( − |yi − 2γ

(t)
i |2

4γ
(t)
i

) dyi

)
.(3.12)

If the input symbol x
(t)
i has an unconstrained alphabet and the receiver performs soft

detection, the conditional sub-channel capacity can be written as

C(γ
(t)
i ) = log2(1 + γ

(t)
i ) . (3.13)
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Fig. 3. Approximation of the conditional sub-channel capacity for binary input soft

output channel

Using (3.6) and (3.7), the instantaneous channel capacity can be expressed as

Cn(α) =
1

l

l∑

t=1

CN (α(t)) =
1

n

l∑

t=1

N∑

i=1

C(γ
(t)
i ) . (3.14)

In the following sections, a lot of attention is focused on the case of binary input

soft output channels due to fact that BPSK modulation with soft output is not only

conceptually simple but also widely used in practice. For the binary input soft output

channel, the conditional sub-channel capacity C(γi) can be well approximated by the

analytically simple form

C(γ
(t)
i ) ≈ 1 − exp(−mγ

(t)
i ), m = 1.24 . (3.15)

The details of the derivation of this approximation are provided in Appendix A.

Results of the the exact sub-channel capacity given by (3.12) through numerical

integration versus the approximation given by (3.15) are depicted in Fig. 3. From the
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plot, it is seen that the exact conditional channel capacity is well approximated and

almost identical to the approximated form.
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CHAPTER IV

PERFORMANCE ANALYSIS OF CODED OFDM SYSTEMS

A. Outage Probability and System Performance

Based on the information theoretical analysis in the previous chapter, analytical sys-

tem performance analysis is provided in this section. Here we assume each codeword

is composed of only one OFDM frame (l = 1), and omit the superscript t in vectors

x(t), y(t), c(t), and α(t). Extending the analysis to coded OFDM systems whose coding

is performed on more than one OFDM frames is straightforward.

Averaging the conditional upper bound (3.1) and the lower bound (3.2) over the

ensemble fading vector α yields

Pe = Eα

[
Pe(α)

]
≤
∫

U

(
2−NEN (R/α)

)
· f(α) dα +

∫

U
1 · f(α) dα , (4.1)

and

Pe = Eα

[
1 − Pc(α)

]
≥
∫

U

(
1 − 2−NESC

N
(R/α)

)
· f(α) dα +

∫

U
0 · f(α) dα, (4.2)

where

U = {α|CN(α) ≤ R} . (4.3)

When the number of OFDM sub-carriers N is sufficient large, both the upper

bound (4.1) and the lower bound (4.2) converge to the outage probability Pr(out),

which is defined as

Pr(out) =
∫

U
1 · f(α) dα = Pr(CN(α) ≤ R) . (4.4)

Since the upper bound is the ensemble average performance of all codebooks,

but the lower bound is for any code, there must exists at least one coding scheme
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whose performance is bounded by (4.1), (4.2) and converges to (4.4) as N goes to

infinite. From now on, we will focus our attention on the outage probability, which

will be used as an indicator of the system performance.

B. Approximation of the Outage Probability

When the channel is frequency selective and spread over L taps, it is quite clear from

(3.12) and (3.7) that CN (α) is a highly non-linear function of the vector α. Generally,

it is very difficult to get the cdf (or pdf) of a random vector’s non-linear transfor-

mation. In this paper, instead of evaluating the system performance numerically, we

provide an approximate but simple analytical form for this outage probability.

Plugging (3.15) into (3.7), we have

CN (α) ≈ 1 − 1

N

N∑

i=1

exp(−mγi), m = 1.24 . (4.5)

where γi is given by (3.11). If we perform a Taylor series expansion on each exponen-

tial term in the above equation, (4.5) can be written as

CN(α) ≈ 1 −
∞∑

j=0

N∑

i=1

(−mγi)
j

N · j! . (4.6)

Using the following fact of an exponential random variable,

E[γj
i ] = j! · E[γi]

j , (4.7)

it is reasonable to extend this property from the ensemble mean to the sample mean

by

1

N

N∑

i=1

γj
i ≈ j! ·

( 1

N

N∑

i=1

γi)
j . (4.8)

Substituting (4.8) into (4.6), the instantaneous channel capacity CN(α) can be further
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simplified to be

CN(α) ≈ 1 −
∞∑

j=0

( − m · 1

N

N∑

i=1

γi )
j

= 1 − 1

1 + m · 1
N

∑N
i=1 γi

. (4.9)

Plugging (4.9) into the outage probability definition (4.4), we can get a much more

simplified outage probability form

Pr(out) ≈ Pr(
1

N

N∑

i=1

γi ≤
R

(1 − R) · m ) . (4.10)

According to (2.6) and (3.11), we know that the sample mean of γi is a quadratic

transformation of α(or c) given by

z =
1

N

N∑

i=1

γi =
1

N
(cHW HW c)

Es

N0
= (cH · c)Es

N0
. (4.11)

From (2.10), we know that the ci are L independent Gaussian random variables.

This means that z is a central χ2 random variable with 2L degree of freedom, and

the outage probability is given by the cdf of this random variable

Pr(out) ≈ 1 − exp
(
− RL

m(1 − R)γs

) L−1∑

k=0

1

k!

( RL

m(1 − R)γs

)k
, (4.12)

where

γs =
Es

No

. (4.13)

When γs � 1, the outage probability reduces to

Pr(out) ≈ 1

L!
·
( RL

m(1 − R)γs

)L
. (4.14)

It is quite clear from (4.14) that the system can achieve maximum diversity

order of L, which is exactly the number of paths. However, in order to achieve this

maximum diversity, a powerful channel coding scheme should be implemented.
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Fig. 4. Random coding upper bound and the strong converse lower bound as well as

the approximated outage probability for a coded OFDM system with N = 1024

subcarriers over a frequency-selective fading channel with L = 1, 2, 3 paths

C. Numerical and Simulation Results

1. Upper Bounds and Lower Bounds

The random coding upper bound averaged over the fading coefficients based upon

(3.1) and (4.1) as well as the strong converse lower bound (3.2) and (4.2) are com-

puted numerically. We assume a binary symmetric channel model (perform hard

decisions before ML detection) and a Rayleigh distribution of ci with a rectangular

multipath power profile. Results for these two bounds and the approximated outage

probability are depicted in Fig. 4 for a coded OFDM system with N = 1024 sub-

carriers transmitting over a frequency-selective fading channel with several different

numbers of paths.
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Fig. 5. Upper and lower bounds for three coded OFDM systems of different numbers

of subcarriers, N = 1024, 256, 64, transmitted over frequency-selective fading

channels with L = 2 paths

Theoretically, the outage probability is greater than the lower bound but less

than the upper bound which is exactly the case shown in the above plot, although

only an approximated result is used here. Further from Fig. 4, we see that the lower

bound is only about 1dB from the upper bound, which indicates that both of these

bounds and also the approximated outage probability are quite tight and a valid

performance indication of the system for large block lengths.

To see the sensitivity of the tightness of the bounds in terms of the block length,

we depict in Fig. 5 the bounds for the same rate R = 1/2 system under three different

block lengths. From it, we see that the two bounds and the approximated outage

probability are reasonably tight when N ≥ 256.
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2. Outage Probability
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Fig. 6. Exact outage probability vs. the approximated outage probability for a coded

OFDM system with N = 1024 subcarriers over a frequency-selective fading

channel with L = 2 ∼ 9 paths

Fig. 6 shows the exact outage probability as well as our approximated results

for the coded OFDM system with N = 1024 subcarriers for various numbers of

paths, L = 2 ∼ 9. From that plot, we see that the exact outage probability is well

approximated by (4.12), especially when the number of independent paths is large.

This is expected because the approximation in (4.8) becomes more accurate when

there are a large number of independent random variables.

3. Results of Practical Codes

In order to get an indication of how close we can get to the theoretical outage proba-

bility with practical codes, simulations are carried out using various coding schemes.
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Fig. 7. Block error probability of a rate 1/2 terminated convolutional code with con-

straint length K = 9 and generator polynomial (561, 753) compared with the

approximated outage probability

In Fig. 7 and Fig. 8, the simulated block error probability of a rate 1/2 terminated

convolutional code with constraint length K = 9 and generator polynomial (561, 753)

as well as a rate 1/2 turbo code with generator polynomial (7, 5) are compared with

the approximated outage probability for different numbers of paths L = 1, 2, 3. From

the plots above, we can see that the optimum system performance can be achieved

by some near Shannon capacity coding schemes, such as turbo code. This is a direct

result of the information theoretical analysis approaches adopted in this thesis for the

evaluation of the coded OFDM system performance.
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Fig. 8. Block error probability of a rate 1/2 turbo code with component generator

polynomial (7, 5) compared with the approximated outage probability

D. Conclusion on Performance Analysis

In this chapter, performance analysis of coded OFDM systems are investigated over

frequency-selective fading channels. Both the random coding upper bounds and the

strong converse lower bounds are derived and shown to converge to the channel outage

probability for large OFDM block lengths. Hence the outage probability draws pri-

mary attention and is taken as the optimal performance indicator of a coded OFDM

system. Instead of evaluating the outage probability numerically, an approximate but

analytically close form expression of the outage probability is provided. Numerical

results of the exact outage probability as well as the simulation results of a practical

turbo-coded OFDM system well demonstrate and further confirms the fitness of this

approximation.
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Throughout the discussion in the chapter, we find this approximation of the out-

age probability not only provides us a guidance on evaluating various coding schemes

for the coded OFDM system, but also serves as a handy tool to compare with other

communication systems operating in the same multipath fading environment.
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CHAPTER V

RATE AND POWER ALLOCATION OF CODED OFDM SYSTEMS

A. Assumption on Channel State Information

In this chapter, we assume there is a reverse link between the transmitter and receiver,

which is not a stringent constraint in most wireless communication systems where

communication is duplex and the channel stays comparably static between consecutive

frames. Hence both the transmitter and receiver share the channel state information

and adaptive rate and power allocation schemes at the transmitter are possible and

expected to provide performance gain.

B. Adaptive-Modulation

When the channel experiences frequency-selective fading, the instantaneous signal

to noise ratios γ
(t)
i of the OFDM sub-carriers are different from each other. Thus

it seems reasonable to apply large constellation sizes on sub-carriers of large SNRs,

while applying small constellations or even stop transmitting information on sub-

carriers which experience deep fading. Czylwik [12] proposes an adaptive modulation

scheme for the individual sub-carriers in an OFDM system and the required signal

to noise ratio for certain bit error probabilities is reduced dramatically compared

with fixed modulations. Or equivalently, the maximum achievable information rate

increases significantly under certain bit error probabilities with the same average

power. However, due to the fact that channel capacity is an increasing function of

the constellation size [20], the performance gain of adaptive modulation is obtained

by increasing the constellation size and hence the channel capacity of sub-carriers

with large SNRs. A fair comparison should be made between schemes of adaptive
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modulation and schemes of fixed high order modulation with coding across the sub-

carriers. This implies that instead of adapting the constellation size according to the

SNRs of each sub-carrier, a good alternative is to implement the same high order

modulation scheme among all sub-carriers, and adjust the information rate through

coding in the frequency domain. Taken from an information theoretic point of view,

the maximum achievable information rate Cn(α) is achieved by randomly generated

codebooks given by (3.1) provided in Chapter III. Thus it is reasonable to believe

that as far as the information rate is below the instantaneous channel capacity, the

noise distorted symbols in small SNR sub-carriers can always be compensated by

the high SNR symbols of other sub-carriers. And there is also great reduction in

implementation complexity of this fixed modulation scheme since we don’t have to

change the constellation size and coding rate for each sub-carrier adaptively as well

as transmit this information to the receiver correctly for successful decoding.

C. Power Allocation

It is well known that allocating the power over N independent parallel channels via

water-filling can achieve maximum channel capacity. However, in this work we are

interested in the capacity difference between water-filling and uniform power alloca-

tion. Through numerical evaluation, Czylwik [21] reported that we can only achieve

a very small gain in throughput if the optimum power spectrum is used instead of a

white power spectrum. In this paper, an analytical proof for this result is provided

and the ultimate limit of this gain is established and demonstrated.

Proposition 1 Assume we have a set of N AWGN channels in parallel. For channel

i, the output yi can be written as

yi = xi + ni , (5.1)
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with

ni ∼ Nc(0, N0), (5.2)

and the complex noise ni is assumed to be independent from channel to channel. The

input has a power constraint on the total power used, such that

1

2
E(|xi|2) = pi · |αi|2 · Es,

N∑

i=1

pi = N , (5.3)

where the Rayleigh fading factor αi has pdf given by (2.10) with variance E[|αi|2] = 1,

and fading is independent from channel to channel. The maximum average channel

capacity CN
wf is achieved by water-filling the power allocation,

CN
wf = max

p1,p2,...,pN

[ 1

N

N∑

i=1

C(
pi · |αi|2 · Es

N0
)
]

, (5.4)

and the water-filling throughput is defined to be the ensemble average of this capacity

over all possible fading realizations, which is given by

T N
wf = Eα1,α2,···,αN

(CN
wf) . (5.5)

Then, for any integer N

T N
wf ≤ T∞

wf . (5.6)

Proof: Define region U to be

U =
{

p1, p2, · · · , p2N

∣∣∣
N∑

i=1

pi = N,
2N∑

i=N+1

pi = N
}

. (5.7)

According to the definition of CN
wf in (5.4), we have the following inequality

T 2N
wf ≥ Eα1 ,α2,···,α2N

(
max
U

( 1

2N

2N∑

i=1

C(
pi · |αi|2 · Es

N0
)
))

= Eα1 ,α2,···,αN

(
max

p1,p2,...,pN

( 1

2N

N∑

i=1

C(
pi · |αi|2 · Es

N0
)
))
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+ EαN+1 ,αN+2,···,α2N

(
max

pN+1,pN+2,...,p2N

( 1

2N

2N∑

i=N+1

C(
pi · |αi|2 · Es

N0
)
))

=
1

2
(T N

wf + T N
wf) = T N

wf . (5.8)

Thus, statement (5.6) is proved by the following sequence of inequalities

T N
wf ≤ T 2N

wf ≤ T 4N
wf ≤ · · · ≤ T∞

wf . (5.9)

Proposition 2 Assume we have the same set of N parallel channels described in

Proposition 1. All conditions remain the same except that the fading factors αi are

assumed to be correlated to each other, rather than being independent fading factors

between different parallel channels. The fading coefficients αi, corresponding to the

different OFDM sub-carriers, are related to fading envelopes ci by

cN,L = [c1, · · · , cL, 0, · · · , 0]T ∈ CN×1, (5.10)

α
N = [α1, · · · , αN ]T ∈ CN×1, (5.11)

α
N = WN×N · cN,L , (5.12)

where W is defined in (2.7). The fading envelope ci for each path has a pdf given

by (2.10) with variance E[|ci|2] = 1/L, and fading independently from path to path.

With the same input power constraint and the same definition of water-filling channel

capacity, the same inequality expressed in (5.6) holds.

Proof: Consider a set of 2N parallel channels with 2L independent fading paths. The

fading envelope c2N,2L can be represented as a combination of the two independent

fading envelopes c
N,L
1 and c

N,L
2 by the following format

c2N,2L = [ cN,L
1

T
, c

N,L
2

T
]T ∈ C2N×1 . (5.13)
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Using the following FFT property,





f̂2k =
∑N−1

i=0 [fi + fi+N ] · wik
N ,

f̂2k+1 =
∑N−1

i=0 [(fi − fi+N)wi
2N ] · wik

N ,
(5.14)

we can rewrite α as 



α2k−1 =
∑N

i=1 d1i
· w(i−1)k

N ,

α2k =
∑N

i=1 d2i
· w(i−1)k

N ,
(5.15)

where 



d1i
= c1i

+ c2i
,

d2i
= (c1i

− c2i
) · w(i−1)

2N .
(5.16)

It is obvious that d1i
and d2i

are independent Rayleigh fading sequences with equal

variance E[|d1i
|2] = E[|d2i

|2] = 1/L. Thus, region U is defined to be

U =
{

p1, p2, · · · , p2N

∣∣∣
N∑

i=1

p2i = N,
N∑

i=1

p2i−1 = N
}
, (5.17)

and an inequality similar to (5.8) is obtained,

T 2N,2L
wf ≥ Eα1 ,α2,···,α2N

(
max
U

( 1

2N

2N∑

i=1

C(
pi · |αi|2 · Es

N0
)
))

= Eα1 ,α3,···,α2N−1

(
max

p1,p3,...,p2N−1

( 1

2N

N∑

i=1

C(
p2i−1 · |α2i−1|2 · Es

N0
)
))

+ Eα2 ,α4,···,α2N

(
max

p2,p4,...,p2N

( 1

2N

N∑

i=1

C(
p2i · |α2i|2 · Es

N0
)
))

=
1

2
(T N,L

wf + T N,L
wf ) = T N,L

wf . (5.18)

Finally the statement proves that

T N,L
wf ≤ T 2N,2L

wf ≤ · · · ≤ T∞,∞
wf . (5.19)

Through Propositions 1 and 2, the ultimate limit of water-filling throughput is

known to be T∞
wf and T∞,∞

wf , where there are infinite number of independent fading
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variables in both cases. According to the law of large numbers, the sample distribution

of |αi| converges to the ensemble Rayleigh distribution with probability 1. This means

that the relative proportion of occurrences of the fading factor |αi| is proportional to

its ensemble distribution, and can be expressed by the following form

lim
N→∞

∣∣∣∣∣

{
αi

∣∣∣∣ |αi| ∈ [x − ε/2, x + ε/2]
}∣∣∣∣∣

N · ε = f(x), (5.20)

where f(·) is given by (2.10). Thus the problem is reduced to a standard constrained

optimization problem. Applying the Kuhn-Tucker condition and after tedious but

straightforward calculus, the solution for the above two cases are obtained.

When the input symbol xi has an unconstrained alphabet and the receiver per-

forms soft decisions, the water-filling throughput over the ensemble fading realizations

is given by

T∞
wf =

∫ ∞

0
log2( 1+p(|α|) · |α|2 ·γs ) ·f(|α|) ·d |α| =

[
µ ·exp(− 1

µ · γs
)−1

]
·γs , (5.21)

where f(·) is given by (2.10),

γs =
Es

N0
, (5.22)

and

p(|α|) = (µ − 1

|α|2γs
)+, (5.23)

where µ is chosen such that

∫ ∞

0
p(|α|) · f(|α|) · d |α| = 1. (5.24)

Here (x)+ denotes the positive part of x, i.e.,

(x)+ =





x if x ≥ 0,

0 if x < 0.
(5.25)



30

When BPSK modulation with soft decisions is used as the channel model, and

approximation (3.15) is taken to be the conditional sub-channel capacity, the through-

put can be written as

T∞
wf = 1 −

∫ ∞

0
exp(−m · p(|α|) · γs ) · f(|α|) · d |α| , (5.26)

where f(·) is given by (2.10), γs is given by (5.22), and

p(|α|) =
( log(mγs) − µ

mγs

)+
, (5.27)

where µ is chosen to satisfy (5.24).

Taken as the reference system, the throughput of uniform power allocation among

the OFDM sub-carriers averaged over the ensemble of fading realizations is given by

Tup =
∫ ∞

0
C(|α|2γs) · f(|α|) · d |α| . (5.28)

Plugging (3.13) and (3.15) into the above definition, we get

Tup =





−Ei(− 1
γs

) · exp( 1
γs

), for unconstrained input alphabets ,

m·γs

1+m·γs
, for binary input alphabets ,

(5.29)

where m = 1.24 and the exponential integral function is given by

Ei(x) = e0 + log(−x) +
∞∑

k=1

x−k

k · k!
, e0 ' 0.5772 . (5.30)

Using the results given by (5.21), (5.26), and (5.29) , η(γs) is further defined

to be the ultimate throughput gain of the water-filling power allocation with infinite

number of independent fading variables versus the uniform power allocation,

η(γs) =
T∞

wf − Tup

T∞
wf

. (5.31)
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In Fig. 9, numerical results of the water-filling throughput T N
wf and T N,L

wf , as well

as the ultimate limit T∞
wf are compared with the throughput Tup of uniform power

allocations for the channels with unconstrained input alphabets. We have evaluated

the water-filling throughput for different numbers of independent parallel channels

with N = 2, 16, 128, as well as the throughput for correlated channels, which are the

sub-carriers of the OFDM system with frame length 1024 and independent multi-

path numbers, L = 2, 16, 128. For illustration purposes, Fig. 9 includes only the

cases of N = 2, 16 for independent channels and L = 2, 16 for correlated channels,

since the throughput curves are getting very close to the ultimate throughput curve

T∞
wf when N ≥ 16 (orL ≥ 16). The ultimate throughput gain of the water-filling

power allocation versus the uniform power allocation, given by (5.31), is illustrated

in Fig. 10. Similar results of throughput and throughput gain for the channels with

a binary input alphabet and soft outputs are shown in Fig. 11 and Fig. 12.

From the results in Fig. 9-12, it is seen that for both the unconstrained input

alphabet or the binary input alphabet, water-filling the power among different parallel

channels adaptively only achieves a limited gain in terms of throughput. The ultimate

gain plotted in Fig. 12 further demonstrates that for the binary input channel the

additional throughput achieved by water-filling in an OFDM system is less than 5%

as long as the average signal-to-noise-ratio is larger than 2dB. This implies that

with high probability, the capacity gain compared with uniform power allocation is

insignificant, although water-filling is optimal at any given channel realization. Thus,

an insignificant amount of average channel capacity is lost in the long run when using

uniform power allocation instead of performing power allocation adaptively according

to the instantaneous signal to noise ratio of each sub-carrier.
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Fig. 9. Throughput comparison between the water-filling power allocation and the

uniform power allocation (for unconstrained input and soft output channels)

D. Rate Allocation

In Section C, we reached the conclusion that from an information-theoretic stand-

point water-filling is not a promising technique for coded OFDM systems over a fading

environment. However, the discussion is based upon the assumption that the informa-

tion rate of the OFDM system is adjusted adaptively according to the instantaneous

channel state information. This implies that the system always transmits with the

maximum information rate that the channel can support at any given time. This

adaptive nature is reasonable when the channel changes slowly and is thus easy to

track. However, a potential problem is incurred when the channel is rapidly chang-

ing or when the application cannot afford timely and accurate feedback. Under this

situation, the information rate must be fixed during the entire fading process.
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Fig. 10. Ultimate throughput gain of the water-filling power allocation over the uni-

form power allocation (for unconstrained input and soft output channels)

Suppose the instantaneous channel capacity Cn(c) has a distribution g
Cn

(x) il-

lustrated in Fig. 13. Define Ta and Tf to be the throughput (average information rate

over the ensemble fading realizations c) of the rate-adaptive and rate-fixed schemes

respectively, given by the following equations

Ta = Ec

[
Cn(c)

]
=
∫ ∞

0
x · g

Cn
(x) d x , (5.32)

Tf = max
Rf

(
Rf · Pr

(
Cn(c) ≥ Rf

) )
= max

Rf

(
Rf ·

∫ ∞

Rf

g
Cn

(x) d x
)

. (5.33)

It is quite clear from (3.10), (3.12), (3.13), and (3.14) that the instantaneous

channel capacity Cn(c) is a highly nonlinear function of the vector c. Generally

speaking, it is very difficult if not impossible to get the pdf (or cdf) of a random

vector’s non-linear transformation. By applying the central limit theorem to Cn(c)
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Fig. 11. Throughput comparison between the water-filling power allocation and the

uniform power allocation (for binary input and soft output channels)

when there are a large number of independent paths, its pdf is well approximated by

a Gaussian distribution for the range in which we are interested.

In order to illustrate the fitness of this approximation, the histograms of the

instantaneous channel capacity CN(α(t)) for the OFDM system with 1024 sub-carriers

are shown in Fig. 14. For a common signal to noise ratio (γs = 4dB), each solid

curve in the above plot represents a histogram with a different number of paths

(L = 2, 5, 10, 40, 100 respectively). Their corresponding Gaussian approximations

are also shown as the dotted curves for comparison. Note that this approximation

may become nonsense in certain capacity ranges, such as CN ≤ 0, for the capacity

is a non-negative variable. Fortunately, we are not interested in the tail part of

this distribution, which only corresponds to an insignificant amount of throughput.

From this point of view, it is seen that the instantaneous channel capacity is well
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Fig. 12. Ultimate throughput gain of the water-filling power allocation over the uni-

form power allocation (for binary input and soft output channels)

approximated as a Gaussian random variable when the multi-path fading spreads

over more than 5 taps, which is a reasonable assumption in many applications.

For the sake of simplicity, the following discussion focuses on binary input sym-

bols, since it is straightforward to extend the results to larger alphabets. According

to (3.15) and (2.6), the following mean and variance for CN(c(t)) are obtained:

E[ CN(c(t)) ] =
mγs

1 + mγs

, (5.34)

V ar[CN (c(t)) ] =
1

N

N−1∑

k=0

1

(1 + mγs)2 − (mγs)2 · |rk|2
− 1

(1 + mγs)2
, (5.35)

where

rk =
1

L
· sin (kLπ/N)

sin (kπ/N)
, (5.36)
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and

m = 1.24, γs =
Es

N0
. (5.37)

Recall that N is the number of sub-carriers in one OFDM frame and L represents

the number of independent paths in the frequency-selective fading channels. When

L � N , which is a reasonable assumption for OFDM systems, (5.35) can further be

simplified and approximated by

V ar[CN(c(t)) ] =
∞∑

k=1

(mγs)
2k

(1 + mγs)2k+2
· hk(L) ≈

K∑

k=1

(mγs)
2k

(1 + mγs)2k+2
· hk(L) , (5.38)

where the approximation is carried out by taking into account only the first K terms

of the series. The variance of the instantaneous channel capacity is well approximated

by the truncated series of truncation length K = 5 in a wide SNR range. The first

five terms of hk(L) are given by

h1(L) = 1,

h2(L) = (1 + 2L2)L2/3,

h3(L) = (4 + 5L2 + 11L4)L4/20,

h4(L) = (45 + 49L2 + 70L4 + 151L6)L6/315,

h5(L) = (4032 + 4100L2 + 5187L4 + 7350L6) + 15619L8)L8/36288 . (5.39)

A detailed derivation of the approximation process is given in Appendix B.

Suppose it takes up to l OFDM frames to form one codeword. In quasi-static

fading channels, where the fading envelope c(t) is assumed to be constant during one

codeword, but independent from codeword to codeword, the mean and variance of

the instantaneous channel capacity are

µ
Cn

= E[ Cn(c) ] =
1

l

l∑

t=1

E[ CN(c(t)) ] = E[ CN(c(t)) ] = µ
CN

, (5.40)
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σ2
Cn

= V ar[ Cn(c) ] = V ar
[ 1

l

l∑

t=1

CN(c(t))
]

= V ar[ CN(c(t)) ] = σ2
CN

. (5.41)

In fast fading channels, where c(t) is independent from time to time, the mean and

variance are

µ
Cn

= E[CN(c(t)) ] = µ
CN

, (5.42)

σ2
Cn

=
1

l
V ar[CN(c(t)) ] =

1

l
σ2

CN
. (5.43)

Applying a Gaussian approximation to (5.32) and (5.33), Ta and Tf can be written

as

Ta = µ
Cn

, (5.44)

Tf = max
Rf

[
Rf · Q(

µ
Cn

− Rf

σ
Cn

)
]
. (5.45)

From (5.38), it is seen that by increasing the number of independent paths L or

the signal to noise ratio γs, the variance of the instantaneous channel capacity will

decrease. It is also known that the throughput loss of the fixed-rate scheme is due to

the following two reasons: 1) the code rate is fixed at Rf even when the channel can

support higher information rates; and 2) once the instantaneous channel capacity falls

below Rf , the achievable information rate decreases to zero. Thus when the channel

has a large number of independent paths or a high signal to noise ratio, the small

capacity variance will cause the pdf g
Cn

(x) to become spike-shape. It is then obvious

from Fig. 13 that the throughput difference between Ta and Tf will be diminished

making rate-adaptation less important.

Taking the throughput Ta of the adaptive-rate schemes as a reference, which is

normalized to be 1, the throughput of the fixed-rate schemes for different number

of paths and different signal to noise ratios is shown in Fig. 15. In the top sub-

plot, each curve represents the throughput of the OFDM system with 1024 sub-

carriers and L paths. From the bottom to the top, the number of paths increases
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as L = 1, 2, 5, 10, 40, 100. The bottom sub-plot illustrates the corresponding optimal

rate needed to achieve these throughputs. Notice that the underlying assumption for

the throughput obtained in this section is that the ideal Shannon code is available at

any given rate.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

snr(db)

th
ro

ug
hp

ut

adaptive−rate −vs.− fixed−rate

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

snr(db)

ra
te

optimal rate for different number of paths

1 path
2 path
5 path
10 path
40 path
100 path

Fig. 15. Ideal throughput comparison between the rate-adaptive schemes and the

rate-fixed schemes (under the condition of perfect coding and infinite available

code rates)

From the plot, it is seen that the throughput increases with the average signal

to noise ratio γs and the number of independent paths L, which is consistent with

the analysis in equation (5.38). Taken from another point of view, increasing the

system power will cause the system to operate in a capacity region near 1 with high

probability and hence adjusting the information rate adaptively is less important.

Increasing the system diversity order has an effect of averaging the system perfor-

mance, which means that the probability of all channels running into extremely good
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or bad situations decreases, making adapting the rate have a less significant impact

on the system throughput. Further more, it is seen from Fig. 15 that the throughput

of the fixed-rate schemes achieves more than 75% of the throughput of adaptive-rate

schemes, when there are at least 5 paths with total signal to noise ratio greater than

4dB.

E. Practical Schemes

So far, our discussion is based upon the analysis of the ideal information rate and

throughput. To complement the theoretical results, two practical coded OFDM sys-

tems are introduced to implement an adaptive-rate and a fixed-rate scheme as dis-

cussed above.

In order to implement adaptive schemes, both the transmitter and the receiver

are required to have knowledge of the channel state information. Notice that all of the

information about the channel state at the transmitter is obtained from the receiver

through a feedback link. Adaptive schemes which require immediate CSI feedback for

the transmitter to decide appropriate transmission rates would probably be impracti-

cal, especially in a fast fading environment. Thus a rate compatible punctured turbo

code combined with an automatic repeat-request protocol (RCPT-ARQ) [22], which

only requires a simple low rate feedback channel without any delay requirement, and

takes advantage of the powerful turbo code, has been implemented in our application.

The binary source is first encoded into blocks in accordance with a low redun-

dancy (n, k) block error detection code. This encoded data source is input to the

RCPT encoder which turbo encodes the data sequence and partitions the resulting

code symbols of each systematic and parity stream into sub-blocks of size (n/p = N),

where p is called the puncturing period. The underlying rate 1/M turbo encoder, con-
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Fig. 16. Rate compatible punctured turbo (RCPT) encoder

sists of M−1 rate 1/2 constituent recursive systematic convolutional (RSC) encoders.

Note that the composite encoders can have other rates, and need not necessarily be

equal rate. As shown in Fig. 16, the systematic bits of all but the first encoder are

discarded and the resulting single systematic plus (M-1) parity streams are arranged

into a block structure shown in the figure, which partitions each stream into p sub-

blocks. The sub-block A1, for example, contains a fraction 1/P of the systematic bits

consisting of bit 0, bit p, bit 2p, etc. If we take each of these sub-block as an element

of an M × p matrix, as shown in the figure, each row corresponds to a different sys-

tematic/parity stream, and each column refers to a different decimated subsequence

of that data stream. The interleavers, {πi}M−1
i=2 are “S-random” permutations [23],

which satisfy a distance condition ensuring that each symbol to be permuted is a

distance S or more from the previous S adjacent symbols.

According to the RCPT puncturing rule, each codeword consists of one or more

sub-blocks of the above turbo encoded data such that at least p + 1 sub-blocks are
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sent, and no sub-block is sent twice. This code construction allows for a family of

codes rates

Rr =
p

p + r
, 1 ≤ r ≤ (M − 1)p . (5.46)

A binary M × p puncturing matrix a(r) is associated with each rate Rr in a manner

that the ones in the matrix a(r) of a higher rate code must be covered by the punc-

turing matrix of any lower rate code. By overlaying the matrix a(r) over the depicted

matrix of data as shown Fig. 16, the RCPT codeword of rate Rr can be constructed

by selecting the sub-blocks of data corresponding to each 1 in the puncturing matrix

and sending them over N sub-carriers as one OFDM frame.

For the sake of simplicity, we assume, without loss of generality, a selective-repeat

ARQ strategy is implemented, noting that the RCPT-ARQ protocol can be trivially

adapted to either stop-and-wait or go-back-N schemes. It is further assumed that a

low rate error-less feedback channel is available from the receiver to transmitter which

guarantees one bit acknowledge information received by the transmitter correctly from

the receiver once every OFDM frame.

The RCPT-ARQ protocol performs the following steps:

1. Encode k information bits by a (n, k) block error detection code. Input the n bit

coded bits into the rate 1/M RCPT encoder. Store the resulting M systematic

and parity streams at the transmitter, for potential transmission.

2. Initialize r = 1.

3. Transmit the sub-blocks as indicated by a(r) (that have not yet been transmit-

ted)

4. Decode the rate Rr RCPT code using the code symbols received so far. Af-

ter each iterative decoding process, hard quantize the likelihood ratios on the
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systematic sequence and calculate the syndrome of the (n, k) error detection

codeword. Exit the iterative loop, output the k decoded information bits and

send an ACK to the transmitter, when there is an all-zeros syndrome. Oth-

erwise, continue the iterative decoding process until a maximum number of

iterations and send a NAK to the transmitter if the syndrome is still nonzero.

5. At the transmitter, reset the protocol and proceed to step 1) if an ACK is

received, or increment r to the next available value and proceed to step 3) when

a NAK is received.

Notice that instead of giving up and reseting the protocol when the decoding

fails after the transmission of all the systematic and parity symbols [ r = (M − 1)p ],

as in the above schemes, alternative schemes such as packet combining [25] and data

merging [24] strategies can provide better performance. Detailed comparison of these

schemes is beyond the scope of this thesis.

The above RCPT-ARQ schemes fall into the so-called class of redundancy in-

cremental Hybrid-ARQ protocols in the sense that the parity information is incre-

mentally transmitted to adaptively meet the error performance requirement of the

the system. This is also appealing from an information theoretic standpoint that

no received information is discarded (as is the case of other Hybrid-ARQ schemes).

However by performing redundancy-combing in the above RCPT-ARQ schemes, we

are paying almost l − p times decoding complexity than the regular turbo code with

the same codeword length, where l is the average number of transmitted sub-blocks

that result in a successful decoding. Thus the simple Hybrid-ARQ scheme combined

with a fixed rate RCPT code would be good candidate when the application cannot

afford the complexity required by RCPT-ARQ, or when the throughput difference

between these two schemes is not that significant.
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F. Throughput Analysis of Practical Schemes

Generally, throughput and accepted packet error rate are the two parameters that

are of most interests to us. In this section, the analysis of these two parameters is

provided for the previously described ARQ schemes.

The decoded information bits from the turbo decoder are not independent since

the decoder makes decisions based on the whole received sequence and hence the

decoded bits are correlated. However, due to the fact that the component convolu-

tional codes have a short memory, usually of only 4 bits or less, the correlation of

the output information sequence only exists between a few neighboring bits. Being

randomly deinterleaved as opposed to the interleaver between the outer error detec-

tion code and inner RCPT code, the correlation has been scrambled and averaged

over the whole sequence. Hence the correlation between the output bits is fairly small

and it is reasonable to assume an i.i.d decoded information sequence from the turbo

decoder with bit error probability pb. The accepted packet error probability is then

given by

Pa(E) =
n∑

j=dmin

Aj · pj
b(1 − pb)

n−j , (5.47)

where Aj is the weight distribution of the (n, k) block code. Although the weight

distribution of an extended BCH code, which is used as the error detection code, is

known in most cases, the error performance of the turbo code itself is a challenging

problem. Thus we resort to a simple upper bound as shown below

Pa(E) ≤
n∑

j=dmin

Aj · pj
b(1 − pb)

n−j
∣∣∣
pb=

1
2

= 2−(n−k) . (5.48)

For example, the accepted packet error rate Pa(E) for a (1024, 993) extended BCH

code with dmin = 8 is less than 4.7× 10−10. The numerical results in the next section

will further verify this result.
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The analytical results obtained in Section D are for an ideal Shannon code with

arbitrary code rates available at the transmitter. Due to the imperfection of the turbo

code, and finite puncturing period p, there is a limited number of available code rates,

and hence the system performance in terms of throughput will degrade somewhat.

For the sake of discussion, the critical capacity for a given RCPT code with rate Rr

is defined to be CRr

th , such that the probability of decoding error is assumed to be

zero when the instantaneous channel capacity is beyond this threshold, and on the

other hand, the error probability is regarded as one when the instantaneous channel

capacity falls below this value. Thus the throughput for Hybrid-ARQ and redundancy

incremental Hybrid-ARQ schemes in a quasi-static fading channel is given by

Ta =
p · (1 − q

(M−1)p+1
)

∑(M−1)p
r=1 (p + r) · qr + Mp · q

(M−1)p+1

, (5.49)

Tf = max
r

( p

p + r
· sr

)
. (5.50)

Where each qr and sr represent probabilities such that

q1 = Pr

(
CR1

th ≤ CN(c)
)

= Q
( CR1

th − µ
CN

σ2
CN

)
, (5.51)

qr+1 = Pr

(
C

Rr+1

th ≤ CN (c) ≤ CRr

th

)

= Q
(C

Rr+1

th − µ
CN

σ2
CN

)
− Q

(CRr

th − µ
CN

σ2
CN

)
, 1 ≤ r ≤ (M − 1)p − 1, (5.52)

q(M−1)p+1 = Pr

(
CN(c) ≤ C

R(M−1)p

th

)
= 1 − Q

( C
R(M−1)p

th − µ
CN

σ2
CN

)
, (5.53)

and

sr = Pr

(
CRr

th ≤ CN(c)
)

= Q
( CRr

th − µ
CN

σ2
CN

)
, 1 ≤ r ≤ (M − 1)p . (5.54)

For fast fading channels, Ta and Tf are given by the same equations, (5.49) and (5.50),
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while qr and sr are given by

q1 = Pr

(
CR1

th ≤ 1

p + 1

p+1∑

t=1

CN(c(t))
)

= Q
( CR1

th − µ
CN

σ2
CN

/(p + 1)

)
, (5.55)

qr+1 = Pr

(
C

Rr+1

th ≤ 1

p + r + 1

p+r+1∑

t=1

CN(c(t))
⋂

CRr

th ≥ 1

p + r

p+r∑

t=1

CN(c(t))
)

=
∫ (p+r)CRr

th

−∞

1√
2π

exp
(
−

(x − (p + r)µ
CN

)2

(p + r)σ2
CN

)

·Q
( (p + r + 1)C

Rr+1

th − x − µ
CN

σ2
CN

)
dx, 1 ≤ r ≤ (M − 1)p − 1,(5.56)

q(M−1)p+1 = Pr

( 1

Mp

Mp∑

t=1

CN(c(t)) ≤ C
R(M−1)p

th

)
= 1 − Q

( C
R(M−1)p

th − µ
CN

σ2
CN

/Mp

)
, (5.57)

and

sr = Pr

(
CRr

th ≤ 1

p + r

p+r∑

t=1

CN(c(t))
)

= Q
( CRr

th − µ
CN

σ2
CN

/(p + r)

)
, 1 ≤ r ≤ (M − 1)p .

(5.58)

Since the regular performance bounds for turbo codes [26], or the density evo-

lution method introduced in [27] [28], only provide reasonable results for asymptotic

analysis (as block size goes to infinity) and assumes a perfect interleaver structure,

we thus resort to the simulations, and represent the critical capacity CRr

th as

CRr

th = 1 − exp(−m · γRr

th ) , (5.59)

where γRr

th is the simulated signal to noise ratio required to achieve the critical bit

error probability pth for a given RCPT code with rate Rr in an AWGN channel.

Notice that the critical capacity obtained here is from simulation results in an AWGN

channel, not the fading environment, but it gives us a crude indication of correct

decoding when comparing the instantaneous channel capacity with this threshold.

The numerical results in Section G will illustrate the usefulness of this analysis and

shed some insights into the system design.



47

G. Simulation Results

Simulations were conducted to estimate the throughput of the proposed Hybrid-ARQ

and redundancy incremental Hybrid-ARQ coded OFDM systems, and to compare

these results with the analytical throughput obtained in Section C and D.

For the RCPT-ARQ schemes, the underlying turbo encoder consists of two rate

1/2 RSC encoders with generator polynomial (1, 21/37)octal. The S-random inter-

leavers used in the simulations were selected via an ad hoc search procedure [29]. The

puncturing period p is 4 and all possible RCPT code rates were used. The optimal

puncturing table, given by Table I, is chosen according to [22] via computer search.

The log-MAP algorithm was used for the SISO decoding element and the maximum

number of iterations allowed at any given decoding attempt was fixed at 8. In the

simulations, the ARQ protocol terminated upon reaching the lowest code rate (1/M)

and the received codeword of that unsuccessful block is simply discarded. For the

results presented in this section, an OFDM system with N = 256 sub-carriers is

employed as the simulation model. The information block size of the turbo code is

n = pN = 1024. A triple-error-correcting systematic extended binary primitive BCH

code (1024,993) is implemented as the low redundancy error detection code. For the

simple Hybrid-ARQ schemes, a fixed rate RCPT code is used for a given signal to

noise ratio γs and a given number of paths L in the same OFDM system with 256

sub-carriers.

The simulated throughput for the Hybrid-ARQ and redundancy incremental

Hybrid-ARQ under both quasi-static fading and fast fading environments are shown

in Fig. 17. The ideal throughput of the adaptive-rate and fixed-rate schemes under

these two fading conditions are also illustrated for comparison. For illustration pur-

poses, simulations are restricted to a 5-path fading channel. For each signal to noise
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Table I. Puncturing tables for the RCPT code with puncturing period p = 4 and

information block size N = 1024

Code Rate 4/5 2/3 4/7 1/2 4/9 2/5 4/11 1/3

Puncturing

patterm

16

01

01

17

01

01

17

05

01

17

05

05

17

15

05

17

15

15

17

17

15

17

17

17

ratio simulated in the plot, 104 information blocks and thus approximately 107 bits

were simulated. No accepted packet errors were observed. From the plot, it is seen

that the redundancy incremental Hybrid-ARQ (RCPT-ARQ) outperforms the simple

Hybrid-ARQ with fixed rate RCPT codes in both cases, but the gain which is shown

in Fig. 18 is rather small over a wide range of signal to noise ratios. As can be seen

from Fig. 18, the throughput gain is less than 20% when the fading is quasi-static,

and less than 10% when the fading is fast. Further from Fig. 17, it is seen that the

simulated throughput curves are away from the ideal throughput curve by a certain

amount of information rate due to the imperfection of the turbo code. There is also

some jaggedness along the throughput curve under careful observations such as near

the point SNR= 8dB for Hybrid-ARQ systems over a fast fading channel. Due to the

large number of simulation samples, we can hypothesize that this jaggedness is the

true reflection of the curve rather than simulation variations. Thus it is reasonable

to predict that the curve will exhibit a “stairway-like” shape if the sampled SNR is

dense enough. This is because the puncturing period adopted by the RCPT code is

finite, which results in a limited number of available code rates (8 in our case).

Throughput for the same OFDM systems under time varying fading channels
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Fig. 17. Simulation throughput for Hybrid-ARQ (Type I) and redundancy incremental

Hybrid-ARQ (Type II) OFDM systems

with different Doppler frequencies are illustrated in Fig. 19. The normalized Doppler

frequency fdTframe takes the OFDM frame period Tframe = NTs as a reference. As

expected, all these throughputs are upper and lower bounded by the throughput of

quasi-static fading channels and that of fast-fading channels.

The performance analysis of the throughput, which is given by (5.49) ∼ (5.58) in

Section F, is illustrated and compared to the simulated throughput in Fig. 20. The

critical capacity CRr

th used in the above analysis was obtained by selecting the critical

bit error probability pth equal to 10−2 for quasi-static fading channels, and 0.5× 10−2

for fast fading channels. From the plot, it is seen that the analysis can predict the

throughput behavior over a wide range of signal to noise ratios, thus confirming the

simulated loss from the ideal throughput curve.
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Fig. 18. Simulation throughput gain for Hybrid-ARQ (Type I) and redundancy incre-

mental Hybrid-ARQ (Type II) OFDM systems

H. Conclusion on Resource Allocation

In this chapter, we have analyzed the power and rate allocations for the coded OFDM

systems over frequency-selective fading environments. Taking an information theo-

retical point of view, the concept of instantaneous channel capacity was introduced

and utilized as the building block of the system throughput analysis. Established as

the ultimate limit for any OFDM system, the optimal throughput was compared with

that of the uniform power and fixed rate allocation schemes under various channel

conditions. After numerical evaluation of the analytical throughput was obtained, we

reached the conclusion that over a wide range of signal to noise ratios, the throughput

gain achieved by optimal water-filling power allocation and adaptive rate schemes is

insignificant. Two practical OFDM systems implementing the Hybrid-ARQ and re-

dundancy incremental Hybrid-ARQ schemes further verified limited throughput gain
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Fig. 19. Simulation throughput for Hybrid-ARQ (Type I) and redundancy incremental

Hybrid-ARQ (Type II) OFDM systems under different fading rates (normal-

ized Doppler frequency fdTframe = 10−2, 10−3)

through simulations and analysis.
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Fig. 20. Performance analysis of the throughput for Hybrid-ARQ (Type I) and redun-

dancy incremental Hybrid-ARQ (Type II) OFDM systems
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CHAPTER VI

SUMMARY

A. Performance Analysis of Coded OFDM Systems

In this thesis, performance analysis of coded OFDM systems over frequency-selective

quasi-static fading channels are provided. Both the random coding upper bounds and

the strong converse lower bounds are derived and shown to converge to the channel

outage probability for large OFDM block lengths. Hence the outage probability is

taken as the optimal performance indicator of a coded OFDM system and serves as

a tool to compare with other communication systems operating in the same multi-

path fading environment. Instead of evaluating the outage probability numerically,

an approximate but analytically close form expression of the outage probability is

provided.

B. Rate and Power Allocation of Coded OFDM Systems

In this thesis, we have also analyzed the power and rate allocations for the coded

OFDM systems over frequency-selective fading environments. Taken from an infor-

mation theoretical point of view, the concept of instantaneous channel capacity is

implemented as the building block of the system throughput analysis. Established as

the ultimate limit for any OFDM system, the optimal throughput was compared with

that of the uniform power and fixed rate allocation schemes under various channel

conditions. After numerical evaluation, we reached the conclusion that over a wide

range of signal to noise ratios, the throughput gain achieved by optimal water-filling

power allocation and adaptive rate schemes is insignificant. Two practical OFDM

systems implementing the Hybrid-ARQ and redundancy incremental Hybrid-ARQ
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schemes further verified limited throughput gain through simulations and analysis.
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APPENDIX A

CONDITIONAL SUB-CHANNEL CAPACITY

In this appendix, a derivation is provided for the approximate conditional sub-channel

capacity C(γi) given in (3.15). To begin it is noted that

ln cosh(y) = ln
(exp(−y) + exp(y)

2

)
= |y| + ln

(1 + exp(−2|y|)
2

)
. (A.1)

Denote the second term in the above equation by

g(y) = ln
(1 + exp(−2|y|)

2

)
. (A.2)

It can be approximated as an exponential function given by

ĝ(y) = a ·
(

exp(−b · |y|)− c
)

, (A.3)

where a, b and c are chosen such that

ĝ(y)|y=0 = g(y)|y=0 , (A.4)

ĝ(y)′|y=0 = g(y)′|y=0 , (A.5)

ĝ(y)|y=∞ = g(y)|y=∞ . (A.6)

By matching the approximation according to (A.5)-(A.6), ĝ(y) and g(y) are forced to

have the same origin, the same terminal, and the same first order derivative at the

origin. After some straightforward calculus, we have

a = ln 2, b =
1

ln 2
, c = 1 , (A.7)

and thus

ln cosh(y) ≈ |y| + ln 2 ·
(

exp(− |y|
ln 2

) − 1
)
. (A.8)
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Plugging the approximation (A.8) into the definition of conditional sub-channel ca-

pacity in (3.12), we get

C(γi) ≈ h(γi) = 1 − 4γi

k
Q(
√

2γi) − exp
(
(k2 + 2k)γi

)
Q
(
(k + 1)

√
2γi

)

− exp
(
(k2 − 2k)γi

)
Q
(
(k − 1)

√
2γi

)
− 2

√
γi√

πk
· exp(−γi), k =

1

ln 2
. (A.9)

Once again, the above formula can be approximated as an exponential function by

ĥ(γi) = d − c · exp(−mγi) , (A.10)

where d, c, and m are chosen following the same reasoning as (A.5)-(A.6), such that

ĥ(γi)|γi=0 = 0 , (A.11)

ĥ(γi)|γi=∞ = 1 , (A.12)

ĥ′(γi)|γi=δ = h′(γi)|γi=δ . (A.13)

It then follows that

d = 1, c = 1, m = 1.24 (δ = 0.2) , (A.14)

C(γi) ≈ 1 − exp(−mγi) . (A.15)
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APPENDIX B

MEAN AND VARIANCE OF THE CONDITIONAL SUB-CHANNEL CAPACITY

Utilizing the approximation obtained in Appendix A, the mean and variance of the

instantaneous channel capacity are evaluated in this appendix.

According to the definition, the instantaneous channel capacity is given by

CN (α(t)) =
1

N

N∑

i=1

C(|α(t)
i |2 · γs) , (B.1)

where γs is given by (5.22), and |α(t)
i | follows a Rayleigh distribution given by (2.10)

with variance E[ |α(t)
i |2] = 1. Plugging (A.15) in to the above equation,

E
α

(t)
i

(
C(|α(t)

i |2 · γs)
)
≈ 1 − E

α
(t)
i

(
exp(−m · |α(t)

i |2γs)
)

=
mγs

1 + mγs
. (B.2)

Thus it is obvious that

µ
CN

≈ mγs

1 + mγs

. (B.3)

Applying the approximation (A.15) once again, the variance can be written as

E[C2
N(α(t))] ≈ 1 − 2

N

N∑

i=1

E
α

(t)
i

(
exp(−m · |α(t)

i |2γs)
)

+
1

N2

N∑

i=1

N∑

j=1

E
α

(t)
i

, α
(t)
j

(
exp

(
− m ·

(
|α(t)

i |2 + |α(t)
j |2

)
· γs

))
. (B.4)

It is also straightforward to develop the following equation

E
α

(t)
i

, α
(t)
j

(
exp

(
− m ·

(
|α(t)

i |2 + |α(t)
j |2

)
· γs

))

= E
α

(t)
i

(
exp(−m · |α(t)

i |2γs) · Eα
(t)
j

/α
(t)
j

(
exp(−m · |α(t)

j |2γs)
))

. (B.5)

Conditioned on α
(t)
i , α

(t)
j is still a complex Gaussian random variable with mean ρ

i,j
α

(t)
i

and variance E(|αt
j|2) = (1− ρ2

i,j
), where ρ

i,j
is the correlation coefficient. Thus |α(t)

j |
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has a Rician distribution conditioned on α
(t)
i . Using the characteristic function of the

Rician distribution, the following expectation is obtained:

E
α

(t)
j

/α
(t)
i

(
exp(−m · |α(t)

j |2γs)
)

=
1

1 + m(1 − |ρ
i,j
|2)γs

· exp
(
− mγs(1 − |ρ

i,j
|2)|ρ

i,j
|2|α(t)

i |2
1 + mγs(1 − |ρ

i,j
|2)

)
. (B.6)

Plugging (B.6) into (B.5),

E
α

(t)
i

, α
(t)
j

(
exp

(
−m ·

(
|α(t)

i |2 + |α(t)
j |2

)
· γs

))
=

1

(1 + mγs)2 − (mγs)2 · |ρ
i,j
|2 . (B.7)

From (2.6) and (2.7), the cross-correlation matrix of α
(t) is given by the following

format

Σαα = W
N×N

· Σcc · W H
N×N

, Σcc =




IL×L 0

0 0


 /L . (B.8)

After some calculus, the correlation coefficient between α
(t)
i and α

(t)
j is

|ρ
i,j
| =

1

L
·
sin

(
L(i − j)π/N

)

sin
(
(i − j)π/N

) . (B.9)

Plugging (B.7) and (B.9) into (B.4), the variance of the instantaneous channel capac-

ity can be represented as

σ2
CN

= E[C2
N(α(t))] − µ2

CN
≈ 1

N

N−1∑

k=0

1

(1 + mγs)2 − (mγs)2 · |rk|2
− 1

(1 + mγs)2
,

(B.10)

where rk is given by (5.36).

Applying a Taylor series expansion on (B.7), we have

1

(1 + mγs)2 − (mγs)2 · |rk|2
≈

K∑

n=0

(mγs)
2n

(1 + mγs)2n+2
· |rk|2n . (B.11)
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Plugging the partial Taylor series (B.11) into (B.10), the variance of the instantaneous

channel capacity can be rewritten as

σ2
CN

≈
K∑

k=1

(mγs)
2k

(1 + mγs)2k+2
·
( 1

N

N−1∑

n=0

|rn|2k
)

. (B.12)

Since the rectangular function f [n] has a DFT given by

f [n] = (u[n] − u[n − L])/L , (B.13)

f̂ [k] =
1

L
·
sin

(
Lkπ/N

)

sin
(
kπ/N

) · exp
(
− j

(L − 1)kπ

N

)
, (B.14)

using the property of convolution and applying Parseval’s formula, we can get

N−1∑

n=0

| f ⊗ f · · · ⊗ f [n]︸ ︷︷ ︸
k

|2 =
1

N

N−1∑

n=0

( 1

L
· sin (Lkπ/N)

sin (kπ/N)

)2k
=

1

N

N−1∑

n=0

|rn|2k . (B.15)

When L � N , which is a reasonable assumption for OFDM systems, the circular

convolution between function f [n] reduced to to the standard convolution. After

straightforward calculus, Eq. (B.12) can be further simplified to be

σ2
CN

≈
K∑

k=1

(mγs)
2k

(1 + mγs)2k+2
· hk(L) , (B.16)

where hk(L) is given by (5.39), which is independent of N .
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