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Design and Analysis of MIMO Spatial Multiplexing
Systems With Quantized Feedback

June Chul Roh, Member, IEEE, and Bhaskar D. Rao, Fellow, IEEE

Abstract—This paper investigates the problem of transmit
beamforming in multiple-antenna spatial multiplexing (SM) sys-
tems employing a finite-rate feedback channel. Assuming a fixed
number of spatial channels and equal power allocation, we pro-
pose a new criterion for designing the codebook of beamforming
matrices that is based on minimizing an approximation to the ca-
pacity loss resulting from the limited rate in the feedback channel.
Using the criterion, we develop an iterative design algorithm that
converges to a locally optimum codebook. Under the independent
identically distributed channel and high signal-to-noise ratio
(SNR) assumption, the effect on channel capacity of the finite-bit
representation of the beamforming matrix is analyzed. Central
to this analysis is the complex multivariate beta distribution and
tractable approximations to the Voronoi regions associated with
the code points. Furthermore, to compensate for the degradation
due to the equal power allocation assumption, we propose a
multimode SM transmission strategy wherein the number of data
streams is determined based on the average SNR. This approach
is shown to allow for effective utilization of the feedback bits re-
sulting in a practical and efficient multiple-input multiple-output
system design.

Index Terms—Channel capacity, channel information feed-
back, matrix quantization, multiple antennas, multiple-input
multiple-output (MIMO) systems, spatial multiplexing, transmit
beamforming.

I. INTRODUCTION

RECENTLY, multiple-antenna communication systems
have received much attention because of the potential

improvements in data transmission rates and/or link reliability.
The performance of a multiple-antenna channel depends on the
nature of channel information available at the transmitter and
at the receiver. When the transmitter has perfect knowledge of
channel, a higher capacity link can be achieved in the single
user case, and there are other benefits such as lower complexity
receivers and better system throughput in a multiuser environ-
ment. However, the assumption that the transmitter has perfect
knowledge of the multidimensional channel is unrealistic, as
in many practical systems the channel information is provided
to the transmitter through a finite-rate feedback channel. In a
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general multiple-input multiple-output (MIMO) flat-fading set-
ting, the feedback information is a beamforming (or precoding)
matrix, usually an orthonormal column matrix, and the power
allocation along the beams. There have been several studies
recently dealing with how to feed back the channel informa-
tion. Some researchers have worked on feedback of channel
information in vector forms, for example, for multiple-input
single-output (MISO) channels [1]–[3] and for the principal
eigenmode of MIMO channels [4]. Only recently has feedback
of channel information in matrix forms for MIMO channels
begun to be addressed [5]–[11].

In this paper, we investigate the problem of transmit beam-
forming in multiple-antenna spatial multiplexing systems with
finite-rate feedback channel. It is well known that, with perfect
channel state information at the transmitter (CSIT), the first
principal eigenmodes are the optimum beamforming vectors for
a MIMO spatial multiplexing system for data streams. How-
ever, in systems with finite-rate feedback, perfect CSIT is not
possible. The receiver usually selects, based on the channel ob-
servation, the best beamforming matrix from a codebook (a set
of a finite number of beamforming matrices), which is designed
in advance and shared with the transmitter.

For designing the codebook for the beamforming matrix, in
[12] the orthonormal matrix to be fed back was reparameter-
ized leading to quantizing of a set of independent vectors with
decreasing dimensionality. The MISO method was sequentially
applied and shown to be reasonably effective. A drawback of the
scheme is the loss that arises due to the sequential nature of the
quantization when compared to the more optimal joint quanti-
zation approach, and the difficult bit assignment task that natu-
rally arises with sequential quantization. To avoid these draw-
backs, a good design criterion is joint quantization of the beam-
forming directions and power assignments by maximizing the
average mutual information as studied in [9] and [13]. However,
such a formulation leads to a difficult quantizer design problem.
Using average mutual information as a measure directly does
not lead to an iterative design algorithm with monotonic con-
vergence property.1 This necessitates approximations in the de-
sign algorithm that make it hard to guarantee the optimality of
the resulting codebook (details will be discussed in Section III).
This difficulty motivates consideration and development of ap-
propriate design criterion that leads to effective quantizer de-
sign. In this paper, first a tractable measure of capacity loss due
to finite feedback rate is derived in the context of a fixed number
of spatial channels with equal power allocation, leading to a new
quantizer design criterion. Using the proposed criterion, an iter-
ative design algorithm is developed with guaranteed monotonic
convergence. The design algorithm is similar in nature to the

1Monotonic convergence means that an improved design is guaranteed at
every iteration.
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Lloyd algorithm in vector quantization (VQ) study [14], but it
is now for matrix quantization and with a new design objective.
Using the design method, a locally optimum beamforming code-
book can be designed for an arbitrary set of system parameters
including the number of transmit antennas, data streams, and
feedback bits. The efficacy of the approach is demonstrated by
using it to design quantizers in a variety of MIMO contexts and
evaluating their performance through computer simulations.

Next, the challenging task of analyzing the performance of
MIMO systems employing such finite-rate feedback techniques
is undertaken, and interesting analytical results are provided.
Several researchers have considered the performance analysis
of MISO systems with quantized beamforming [2], [3]. The
methodology employed in our MISO-related work [3] is ex-
tended to MIMO systems in this paper. In the analysis, we ex-
ploit results from multivariate statistics. In particular, the com-
plex matrix-variate beta distribution is found to be relevant and
useful in the capacity loss analysis. Also another interesting as-
pect of the analysis is the approximation made of the Voronoi
region associated with each code point for analytical tractability.
Recently, Love and Heath [4] considered feedback of the prin-
cipal eigenmode of MIMO channel and derived bounds on the
codebook size required to achieve some performance target (di-
versity order, capacity, and SNR loss). Santipach and Honig [7]
also presented a performance analysis by considering random
vector quantization (thereby, the codebook design problem was
circumvented). Their analysis is asymptotic in the number of
feedback bits and the number of antennas with the ratio of the
two being fixed. Our approach is quite different in flavor and
provides a direct way to characterize the performance for a given
antenna configuration and feedback bits.

To compensate for the degradation due to the equal power al-
location assumption, we also propose a multimode spatial mul-
tiplexing (SM) transmission scheme. The key features of the
transmission scheme are that the number of data streams is de-
termined based on the average SNR, and in each mode, simple
equal power allocation over spatial channels is employed. One
of the motivations for the transmission strategy is that all the
feedback bits are utilized for representing only effective beam-
forming vectors without being concerned about the power allo-
cation over the spatial channels. For example, in low SNR re-
gion, since only the principal eigenvector is used most of the
time, there is little reason to waste the limited number of bits in
representing the other eigenvectors. This approach calls for gen-
eralization of the codebook design methodology, and the overall
approach is shown to allow for effective utilization of the feed-
back bits. Another form of multimode SM transmission scheme
was developed in [15]. The difference between the two schemes
will be discussed later in Section V.

This paper is organized as follows. Section II describes the
system model and assumptions. The design of the codebook
for the beamforming matrix is presented in Section III. In
Section IV, we analyze the effect of finite-bit representation
of beamforming matrix on the channel capacity. In Section V,
we develop a variant of the multimode spatial multiplexing
transmission scheme.

We use the following notations. and indicate the con-
jugate transpose and the transpose of matrix , respectively.
is the identity matrix and is a square
diagonal matrix with along the diagonal. indi-

cates the trace of matrix , and denotes the Frobenius
norm of matrix defined as . An

matrix with orthonormal columns, i.e.,
, will be called orthonormal column matrix.

means that matrix is positive definite, and represents
the Kronecker product of and . is the -dimen-
sional proper complex Gaussian random vector with mean and
covariance . Uniform distribution over a set is denoted by

. The function is the natural logarithm unless oth-
erwise specified. Thus, mutual information and capacity are in
“nats per channel use.”

II. SYSTEM MODEL

A multiple antenna channel with transmit and receive an-
tennas that is denoted as MIMO, assuming flat fading in
each antenna pair, is modeled by the channel matrix .
That is, the channel input and the channel output
have the following relationship:

(1)

where is the additive white Gaussian noise distributed by
. For this paper, we assume2 and the rank of is

denoted by . The singular value decomposition (SVD) of is
given by , where and
are orthonormal column matrices and contains
the singular values of . The average
transmit power is denoted by , i.e., .

When perfect channel information is known at the receiver
and the transmitter, a water-filling based SM strategy is known
to be optimal. This means that information about and the
power allocation on the different channels/beams represented by
the columns of has to be fed back to the transmitter. With
only a finite number of bits available for channel information
feedback, we concentrate first on representing the first

column vectors of . For notational convenience, let
us denote the th column vector of by and define the first

column vectors of as , i.e., . We also
define , an submatrix of .

To formalize the problem, we assume that the MIMO system
has a feedback channel with a finite rate of bits per channel
update. A codebook containing , where , candi-
date beamforming matrices, i.e., with
being orthonormal column matrices, is assumed known
to both the receiver and the transmitter. The design of the code-
book is a topic of this paper. The receiver selects the optimum
beamforming matrix from the codebook based
on the current channel and transmits the index of in to
the transmitter through the feedback channel. In practical sys-
tems, the error in the feedback channel and the delay resulting
from finite-rate channel update impact the overall system per-
formance. However, this paper assumes feedback with no error
and no delay, and focuses solely on the effect of finite-bit repre-
sentation of the channel information.

The channel information is employed as the
beamforming matrix at the transmitter. That is, an information-

2The case t < r can also be handled in a similar manner.
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bearing symbol vector is transmitted as
, resulting in the received signal

(2)

Here we assume that and
with and . The vector
is the power allocation information. With

perfect knowledge of channel at the receiver, the optimum
power allocation for the equivalent channel can be cal-
culated at the receiver [16]. We can also consider quantizing
and feeding back the power allocation information. The mutual
information between and for a given channel , when the
transmitter uses the channel information for transmis-
sion, is given by

(3)

where , the power allocation associated
with .

Instead of feeding back the power allocation information,
which reduces the bit budget for the beamforming matrix, one
can employ a simple equal power allocation strategy, i.e.,

. For a given , with equal power allocation, the mutual
information is given by3

(4)

where . This paper mainly focuses on equal power
allocation because it is more amenable to optimum codebook
design, and results in minor performance degradation when cou-
pled with an efficient multimode SM transmission wherein is
chosen based on the average SNR. The multimode SM scheme
is discussed more fully in Section V.

III. CODEBOOK DESIGN FOR BEAMFORMING MATRIX

In this section, we develop a general matrix quantization
(MQ) based design method for constructing the codebook of
the beamforming matrices. We consider the case of
in this section, and is discussed in Section V. For
designing a codebook, first a suitable criterion is needed, which
is developed next.

A. Capacity Loss Due to Finite Rate Feedback

The mutual information (4) can be written as

(5)

since
. Here

we notice that when , the first term is , the mu-
tual information with the perfect beamforming matrix at the
transmitter, and the second term accounts for the loss due to fi-
nite-bit representation of . Let us define the capacity loss as

3When the equal power allocation is employed, we will drop the third argu-
ment in (3) and use a notation I(H;W ) for the mutual information for channel
H with beamforming matrix W .

the difference between the ergodic capacities associated with
and , that is

(6)

where , which is from (5)

(7)

Because of the difficulty associated with directly working
with (7) for the codebook design and analysis, the following
two approximations to are developed.

i) High-Resolution Approximation4: When is
close to (which is valid when the number of feedback bits
is reasonably large) or when (low SNR), we use the
approximation
when matrix is small. More specifically, when the eigen-
values , we have

(8)
ii) High-SNR Approximation: When (high SNR),

since

(9)

The first approximation (8) will be used for codebook design
next and the second approximation (9) for performance analysis
in Section IV.

B. Codebook Design Criterion and Design Algorithm

For designing the beamforming-matrix codebook, a natural
design criterion is maximizing the expected mutual information

or, equivalently, minimizing the capacity loss de-
fined in (6). However, using it directly does not lead to an it-
erative design algorithm with monotonic convergence property.
Lau et al. [9] consider covariance-matrix quantization, i.e., joint
quantization of the beamforming directions and power assign-
ments by maximizing the average mutual information. The dif-
ficulty with the approach is that generally there is no analytical
expression for the optimum code matrix as a function of a given
partition region5 in the channel space. This necessitates approx-
imation to the solution to the optimization problem as in [9].
Thus, the resulting iterative design algorithm does have a con-
vergence problem, which in turn makes it hard to guarantee the
optimality of the resulting codebook.

Instead of using the direct form of the capacity expression, we
utilize the approximation to the capacity loss: from (8), when
is reasonably large or when

(10)

4The underlying assumption in this section is that the quantizer is of high
resolution (B is reasonably large), therefore, the approximation (8) is valid in
all range of SNR, even in high SNR region.

5This is called the centroid condition in quantizer design.
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where . The second term inside the

bracket in (10) can be written as . Therefore,
minimizing the expectation of (10) is equivalent to the following
codebook design criterion.

New Design Criterion: Design a mapping (mathemati-
cally, ) such that

(11)

where is the quantized beamforming matrix
.

This design criterion will be called the generalized mean
squared weighted inner product (MSwIP) criterion since it
can be viewed as a generalization for MIMO channels of the
MSwIP criterion that was developed for beamforming code-
book design (for MISO systems) in [3]. In MISO system (when

), the design criterion (11) reduces to

(12)

where with , ,
, and is the quantized

beamforming vector . For details refer to [3].
One of the virtues of the new design criterion is that it does

lead to an iterative design algorithm with guaranteed monotonic
convergence. The design algorithm is essentially similar to the
Lloyd algorithm in vector quantization (VQ) study, which is
based on two necessary conditions for optimality: the nearest
neighborhood condition (NNC) and the centroid condition (CC)
[14], [17]. The same approach is used here for designing the
codebook of beamforming matrices.

Design Algorithm:

1) : For given code matrices , the
optimum partition cells satisfy

(13)

for , where is the partition cell of the
channel matrix space for the th code matrix .

2) : For a given partition , the
optimum code matrices satisfy

(14)
for . Fortunately, the above optimization
problem has a closed-form solution as

principal eigenvectors of

(15)

Proof (Proof of the CC Solution): The following lemma is
essential in this proof.

Lemma 1 [18, p. 191]: Let be Hermitian and let
be a given integer with . Then

(16)

where is the th largest eigenvalue of and the maximum
is achieved when the columns of are chosen to be orthonormal
eigenvectors corresponding to the largest eigenvalues of .

The Frobenius norm in (14) can be expressed as
. By noting that under

the condition , is a constant matrix, (14) can be
rewritten as

By directly applying Lemma 1, we arrive at the desired solution
given in (15).

The above two conditions are iterated until the design objec-
tive converges. In practice, the codebook
is designed off-line using a sufficiently large number of training
samples (channel realizations). In that case, the statistical cor-
relation matrix in (15) is estimated with
a sample average.

Beamforming Matrix Selection (Encoding): For a given
codebook , the receiver selects the optimum
beamforming matrix from the codebook based on the observed
channel so that the mutual information is maximized, i.e.,

. This is also considered in [8]. It is

useful later in performance analysis to note that this encoding
scheme is equivalent to

(17)

where is given in (7). By the encoding scheme, the
channel matrix space , where random channel lies, is
partitioned into , where

(18)

The encoding scheme (17) can be restated simply as
if .

C. Two Related Design Methods

The codebook design methodology developed above is based
on the generalized MSwIP criterion, a meaningful criterion, and
is quite effective as will be found through experimental evalu-
ations. However, a drawback of the generalized MSwIP design
method is that the codebook is optimized for a particular SNR
(or ). That is, for a given channel , the orthonormal column
matrix multiplied by a diagonal matrix (each eigenvector

is weighted by , which is depen-
dent on ) is used as a training sample matrix. As a result, we
may need more than one codebook if the system has multiple
operating SNR points. Therefore, it would be interesting to find
other design methods that do not depend on .
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1) Low SNR Optimization: When (in low SNR region)
; hence . Then, the original criterion

(11) becomes

(19)

It is interesting to see that the above design criterion is equiv-
alent to maximizing the mean squared channel norm (MSCN),
that is

(20)

This can be seen by noticing that from (2), the norm of
the composite channel can be written as

, a consequence of plugging in
the SVD of and using the property . This
design criterion (20) will be referred as the MSCN criterion.

The MSCN criterion is a reasonable choice by itself, because
naturally we can benefit by maximizing the gain of the com-
posite channel . The design algorithm can be obtained by
replacing in the NNC and the CC in Section III-B with

or . In particular, the conditional correlation matrix in
(15) is replaced with or

.
2) High SNR Optimization: Another simplification of the

generalized MSwIP criterion can be found by considering the
other extreme case. As the SNR increases , ;
hence, the original criterion (11) reduces to

(21)

where is the quantized beamforming matrix
. One can see that this criterion is based only on

and independent of and . A design algorithm corre-
sponding to this criterion is obtained by setting in the
NNC and the CC in Section III-B. In particular, the conditional
correlation matrix in (15) is replaced with .

Interestingly, the above design criterion (21) can be intu-
itively explained using a distance between two subspaces. The
columns of form an orthogonal basis for an -dimensional
subspace, and for another -dimensional
subspace. The principal angles between the two
subspaces (for definition, see [19, p. 603]) can be represented
with the singular values of . If the SVD of has
the form , we have

There are several possibilities for the distance between sub-
spaces. One of them is the chordal distance, which is defined
as [20]

Fig. 1. Ergodic capacities of MIMO channels with quantized beamforming ma-
trix for the different codebook design methods (t = 4, r = 2, n = 2, and
B = 2; 3; 4).

We can easily express in terms of the chordal
distance

(22)

Therefore, the design criterion (21) is equivalent to minimizing
the mean squared chordal distance (MSCD) between the two
subspaces specified by and , i.e.,

(23)

Love and Heath consider the chordal distance in their struc-
tured codebook design method based on Grassmann subspace
packing [21].

D. Design Examples

With the design algorithms developed above, we can obtain
an optimum codebook for any set of system parameters, i.e., the
number of antennas and , the number data streams , and the
number of feedback bits .

The performances of codebooks designed with the three
different design methods described in Section III-B and -C are
compared in Fig. 1 in terms of the ergodic channel capacity,

, for (4, 2) MIMO channel with inde-
pendent identically distributed (i.i.d.) entries. For ease
of comparison, all the capacities are normalized with respect
to , the ergodic capacity with the perfect
beamforming matrix. As expected, it turns out that in high
SNR region, the codebook optimized for high SNR region
(Section III-C-2) performs better than that optimized for low
SNR region (Section III-C-1); and in low SNR region, the re-
verse relation holds. Moreover, the generalized MSwIP method
(Section III-B) always results in a performance better than or
equal to any of the two in all the SNR range. The performance
difference decreases as the number of bits increases. As
noted before, in the generalized MSwIP method, the codebook



ROH AND RAO: DESIGN AND ANALYSIS OF MIMO SPATIAL MULTIPLEXING SYSTEMS WITH QUANTIZED FEEDBACK 2879

is optimized for each SNR point and the transmitter needs to
know the operating SNR of the system a priori. This can be
implemented in most practical systems by selecting a set of
SNR points ahead and maintaining a particular SNR point over
time using some form of power control mechanism. A simpler
approach, with a minor performance loss, is to partition the
SNR region in two and use the two codebooks optimized for
high and low SNR regions. Additionally, we also compare with
the codebook design method considered in [8], [15], and [21],
wherein a codebook is designed using the algorithm developed
for the noncoherent space-time constellation design in [22].
Details of the structured codebook design method can be found
in [21]. We can see that the MSwIP method outperforms it in
all the cases considered, especially in the low SNR range.

IV. CAPACITY LOSS WITH QUANTIZED BEAMFORMING

In this section, we will attempt to analytically quantify the ef-
fect of quantization of beamforming matrix with a finite number
of bits on the channel capacity for the i.i.d. MIMO channel. With
a given number of feedback bits, we want to know how close one
can approach the performance of the perfect beamforming-ma-
trix feedback system. We consider a MIMO system with
quantized beamforming matrix employed at the transmitter
and with equal power allocation over the transmit symbols. The
considered MIMO system is modeled as

where has i.i.d. entries, ,
, and they are all independent.

We will analyze the capacity loss defined in (6), which is
repeated here

Since from (17), the capacity loss
can be expressed as

(24)

We need to calculate the expectation in (24). Due to the com-
plex nature of the random variables involved and the compli-
cated shape of the Voronoi region associated with a code point,
it does not look analytically tractable. Instead of dealing with
the general case, we therefore only consider the high-SNR ap-
proximation to the capacity loss using (9), which will be found
to be more tractable. Also, we confine our attention to the case
where the number of data stream equals to the rank of channel
matrix, i.e., . For the rest of this section, for notational

simplicity, the subscript in will be dropped. The high-SNR
approximation to the capacity loss will be denoted by

(25)

Since the high-SNR approximation (25) depends only on and
(not on and ), it makes the problem analytically more

tractable.
In high SNR region, since is well approximated by

, the encoding scheme given in (17) can be
rewritten as

(26)

We denote the Stiefel manifold where the random matrix lies
by . With the encoding
scheme (26), the Stiefel manifold is partitioned into

, where6

(27)

Similar to (24), the high-SNR approximation (25) can be ex-
pressed as

(28)

In order to calculate (28), we need to know the conditional
statistics of a random matrix given that

( is the code matrix for the partition cell ). For that pur-
pose, we start with a simpler but related problem of the uncon-
ditional statistics of a random matrix , where

is uniformly distributed over and is a fixed matrix in
.7

A. Related Multivariate Statistics

Before continuing with the derivation of the statistics of
, we summarize related definitions and theorems from mul-

tivariate statistical analysis that are germane to the analysis.
Since the multivariate statistical literature mainly considers
real-valued matrices and it is hard to find results for the complex
matrices, we summarize the related theorems for the complex
random matrices.

Definition 1 (Complex Multivariate Gaussian Distribu-
tion): The complex random matrix is said to
have normal distribution if
and is the covariance matrix of , that is,

, where and
.

6The partitioning by (27) is subspace invariant in a sense that if V 2 �R ,
then V Q 2 �R for some unitary matrix Q. Thus, we can also think of a similar
partition of the Grassmann manifold.

7It can be shown that for the channelH with i.i.d. ~N (0; 1) entries, the random
matrix V is uniformly distributed over V [23].
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Definition 2 (Complex Wishart Distribution): If matrix
, where , then is said to

have the Wishart distribution with degrees of freedom and
covariance matrix . It will be denoted as , and
when the density function of is

(29)

where and is the complex multivariate
gamma function

See, e.g., [24, Th. 5.1] for the derivation of the density function.
Lemma 2: If and is an Her-

mitian idempotent matrix of rank , then .
Proof: See Theorem 3.2.5 of [25] or Problem 3.10 of [23].

The proof for the real matrix case in [25] also can be readily
applied to the complex case.

Definition 3 (Beta Distribution): A random variable has the
beta distribution with parameter , denoted as ,
if its density function is

(30)

for , , and elsewhere.
Definition 4 (Complex Multivariate Beta Distribution): A
random Hermitian positive definite matrix is said to have a

multivariate beta distribution with parameter , denoted as
, if its density function is given by

(31)
for , , and elsewhere. means
that and are positive definite.

Theorem 1: Let and be independent, where
and , with , .

Let where is an upper triangular matrix
and be the Hermitian matrix defined from .
Then and are independent;
and .

Proof: The proof is similar to that of [23, Th. 3.3.1] except
that now we consider the complex matrix case. For a detailed
proof, the reader is referred to [26].

Remark 1: The condition , for the definition
of the multivariate beta distribution can be relaxed in order to
include the case when the Wishart matrix in Theorem 1 is
singular (i.e., ). Mitra [27] assumed and
then studied certain properties of the random matrix (for the
real case) using a density-free approach. This method can be
extended to the complex matrix case.

Theorem 2: If with and ,
where is upper triangular, then are all indepen-
dent and for .

Proof: See the Appendix.

B. Statistics of and

Now, returning to the problem of statistics of
, using the theorems above we arrive at the fol-

lowing result.
Theorem 3 (Distribution of ): Let random matrix

and be the right singular matrix
of as defined in Section II. For a fixed orthonormal column
matrix , the random matrix has a
multivariate beta distribution with parameters and , that
is, .

Proof: We know that since and
, . By considering a idempotent

matrix , using Lemma 2, we can show that

Now we define and to use
Theorem 1. Let the QR decomposition of be given by

(in economy-size representation), where is an
orthonormal column matrix and is an upper triangular
matrix. Then, and .
From Theorem 1

(32)

By noticing that and have the same distribution, we arrive at
the result that has the distribution

.
If , where is upper triangular,

. But, it is known from Theorem 2 that
and they are independent. This is

summarized in the following corollary.
Corollary 1: is distributed as the product of inde-

pendent beta variables, that is

where and are independently
distributed.

We can obtain the density function for a given although it
has a long and complicated form (e.g., [28]). For , we
have a relatively concise expression.

Corollary 2: When , has the following
distribution:

(33)
Proof: See [28].

C. Approximate Density of

Now let us look at the conditional density of
given . From the high-SNR en-

coding given in (26) or (27), generally each partition cell has a
complicated shape defined by neighboring code matrices, and
the partition cells have all different shapes. This geometrical
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complexity in the partition cells makes it difficult to obtain the
exact analytical form for the conditional density of .

However, when is large, since is uniformly dis-
tributed over , then a reasonable approximation is that

for all , and that the shapes of the partition
cells will be approximately identical. For analytical tractability,
we consider the following approximation for the partition cell:

(34)

for some , which will be determined as a function of
using for all , i.e.,

(35)

With the partition cell approximation (34) and from the symmet-
rical property in the partition cells, we can use in the place
of . Using the density function for (e.g., the one derived
in Corollary 2), can be numerically calculated for a given .
Although in general there are overlaps in the approximated par-
tition cells, the analytical results from the approximation turn
out to be quite accurate even when is small. The quantiza-
tion cell approximation of (34) is similar in some sense to those
in quantization error analysis for high-rate VQ in source coding
study. In the high-rate VQ study, a quantization cell is approxi-
mated with a hyperellipsoid having the same volume of the cell.
In our case, each quantization cell is approximated to the simple
geometrical region defined in (34) having the same probability
as the cell. The partition cell approximation is also similar to
what was introduced in [2] and [3] for MISO systems. In [2],
Mukkavilli et al. considered a geometrical region (called spher-
ical cap) on a constant-norm sphere to obtain a union bound for
the area of no outage region.

With the partition cell approximation, since the approximated
cells have the identical geometrical shape and the probabil-
ities are the same, the random variables given

have the same density of

for all (36)

where is the indicator function having one if and
zero otherwise. Therefore, it is enough to focus on a particular
partition cell. Thus, we arrive at the following result.

Approximate Density: With the partition cell approximation
described in (34), the density function for
is approximated by a truncated distribution of , that is

(37)

D. Capacity Loss With Quantized Beamforming

Now we utilize the statistical results developed above to ana-
lyze the problem of interest, the capacity loss analysis (25). This
can be written as

(38)

For the above expectation, we will use the approximate density
given in (37) instead of the real density . The new approx-

imate is denoted by , that is

(39)

Lemma 3: The capacity loss approximation in (39) is a
lower bound on in (38). That is

(40)

Proof: This can be proved by directly following the proof
of a similar theorem for the MISO system case [3] (or [29]). It
can shown that for . By using
this and the fact that the function is a monotonically
decreasing function, the result (40) can be proved.

Using (39), a closed-form expression can be derived for
, and an efficient computational procedure is developed in the

general case . For (i.e., when and ),
since we have a relatively simple form of density function, we
can derive a closed-form expression for the capacity loss. That
is, when , using the density in Corollary 2 and the
definition of the hypergeometric function

(41)

where , called the Pochhammer
symbol. The integral in (41) can be solved using [30, (2.729.1)].
Finally, for , we have

(42)

For the general case of , one can obtain the approxi-
mate capacity loss (39) easily with an efficient Monte Carlo in-
tegration method which is described as follows: i) generate a
large number of samples for the random variable ; each is just
a product of independent beta distributed random variables as
shown in Corollary 1; ii) take a subset

; and iii) average over the subset for
, which is an estimate (39).

1) Analysis Through Gamma Distribution Fitting: We now
develop an alternate approach for based on distribution
fitting. In the multivariate analysis literature, a random variable

, where , is approximately
distributed as a distribution with appropriate degrees of
freedom that is dependent on the parameters of (see, e.g.,
[31, Ch. 8]). This is called Bartlett’s approximation. But, the
approximation is accurate only when is moderately large,
which unfortunately does not hold in our case. To circumvent
this problem, we attempt to match the distribution using a
gamma distribution. Since the gamma distribution is a larger
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Fig. 2. Probability density of 
 (t = 3; 4; 5; r = 2; n = 2).

family of distribution that includes the distribution, we
expect a better match.

The gamma distribution has the form

characterized by two parameters that have to be esti-
mated. The maximum likelihood estimate for denoted by

, is employed in this paper because of its known attractive
statistical properties as an estimator (details can be found in the
statistics literature, and also it is implemented in Matlab Statis-
tics Toolbox). To obtain a better fit in the lower end, which is
the important region in our analysis, we also consider a samples
truncation technique: For the distribution fitting, use the subset
of samples for small .

Once the approximate distribution is found, we can solve for
that satisfies in a numerical way,

where is the cumulative distribution corresponding
to the gamma density . Then, we can approximately
compute the capacity loss as

(43)

where is the incomplete gamma func-
tion [30, (8.350)].

E. Numerical Results

In Fig. 2, the analytical result for the density of derived in
Section IV-B using a multivariate statistical approach is verified
by comparing with simulation results. Fig. 3 shows the approx-
imate density for , , and various , together
with actual densities from simulations using the codebooks de-
signed by the MSCN method. We can see that as increases, the
distribution of moves towards one. The approximate density

Fig. 3. Probability density of 
 = det[V Q(V )Q(V ) V ] (t = 4, r = 2,
n = 2; B = 1; . . . ; 8).

Fig. 4. Capacity loss (in bits per channel use) of MIMO channel due to
quantized beamforming matrix (t = 4, r = 2; P = 20; 10;0 dB;
B = 1; 2; . . . ; 8).

functions follow this behavior of the simulation results. Also, if
we look at a particular approximate density, it is very close to
its counterpart (from simulation) in the area around , but
they do not agree around . This is a result of the partition
cell approximation.

Fig. 4 shows the capacity loss in bits per channel use for (
, ) MIMO channels when the beamforming matrix is

represented with . The analytical result is from
given in (42), which was derived for under the high-SNR
approximation. The figure also includes simulation results using
the beamforming-matrix codebooks. It shows that the analytical
result is close to the simulation result at high SNR (e.g.,

dB). However, at low SNR (e.g., ) it deviates
from the simulation result. This is to be expected because in our
analysis, with the high-SNR assumption, the effect of the term

is ignored, which is on average quite
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Fig. 5. Gamma distribution fitting of � = � log det(U) with samples trun-
cation (t = 6, r = 4, n = 4; 1� � = 0:96).

different from at low SNR . Therefore, the high-SNR
assumption results in higher values for capacity loss at low SNR.

For , we considered fitting to a
gamma distribution with the samples truncation technique ap-
plied. Fig. 5 shows three densities of for and :
from random channel matrix , from beta distributed indepen-
dent random variables, and from the gamma distribution fitting.
The truncation factor 1 for the gamma fitting is set to 0.96
(after several trials), which was selected for a good fit in the low
end. The two estimated parameters for the gamma distribution in
this example are and . The vertical lines
in the figure indicate the that satisfies
for different . Fig. 6 shows the capacity loss for , ,
and . From the figure we can see that the result from the
gamma fitting is very close to that from the Monte Carlo inte-
gration, and both predict the performance from simulation with
good accuracy.

V. MULTIMODE SPATIAL MULTIPLEXING

TRANSMISSION STRATEGY

Equal power allocation on each of the parallel channels is
clearly inefficient at lower SNR. To overcome this limitation,
in this section, we present a multimode MIMO spatial multi-
plexing transmission scheme that allows for efficient utilization
of the feedback bits. The transmission strategy is described as
follows:

1) The number of data streams is determined based on the
average SNR: changes from one to , the rank of the
channel, as the average SNR increases (see the example in
Section V-B).

2) In each mode, the simple equal power allocation over
spatial channels is employed; thereby the entire feedback
bits are utilized in representing only useful beamforming
vectors without concerning about the power allocation over
the spatial channels.

The average SNR is assumed to change at a much slower
rate than the beamforming vectors, and so has to be updated
less frequently consuming much fewer bits. Therefore it can

Fig. 6. Capacity loss (in bits per channel use) of MIMO channel due to quan-
tized beamforming matrix (t = 6, r = 4, n = 4; P = 20; 10 dB; B =
1; 2; . . . ; 8).

be assumed to be negligible overhead. The effectiveness of the
transmission strategy can be understood with a water-filling ar-
gument. That is, in low SNR region, only the principal spa-
tial channel is useful most of the time; and as the SNR in-
creases, more spatial channels become involved. The proposed
scheme can be viewed as a rough and indirect implementation
of water-filling power allocation over multiple spatial channels.
With the multimode transmission scheme, it will be shown later
that with perfect knowledge of and equal power allo-
cation, we can achieve most of the capacity with perfect CSIT
over all the range of SNR. For finite-rate feedback, only the rele-
vant beamforming vectors are encoded using the entire feedback
bits. From a quantization point of view, the multimode scheme
increases the quantization resolution by reducing the dimension
of the beamforming matrix in low SNR region.

A similar idea of optimizing the number of data streams
is also discussed in [7] for asymptotically large systems (the
number of transmit and receive antennas goes infinite). In [15],
another form of multimode SM scheme was studied in which
the mode is adapted using current channel condition and the
feedback bits are divided among multiple codebooks, one for
each mode. Changing the SM mode at the same rate as the
beamforming vectors is less effective for the scenario envi-
sioned here, as it lowers the quantization resolution compared
to the scheme mentioned above.

A. Codebook Design for Beamforming Matrix (When )

In Section III, we have discussed codebook design for the
full-rank beamforming matrix . Here we will discuss
codebook design for the case . Let us define submatrices

and

where and and also define
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When the transmitter uses as beamforming matrix
and equal power allocation, the mutual information given in (4)
can be written as

(44)

where (44) is obtained using

. If the number of feedback bits is reasonably large,
the second term in (44) is relatively small since the submatrices

, , and are close to zeros matrices; therefore

(45)
Then, the capacity loss defined in (6) is bounded as

(46)

where .
We employ the upper bound as the design objec-

tive for the codebook design. In a manner similar to that in
Section III, we have the following codebook design criterion:

(47)

where is the quantized beamforming matrix
( ). The corresponding design algorithm is similar to
that for in Section III-B except now submatrices and

are used in places of and . Also, as in Section III-C,
it leads to two related design methods, each optimized for low-
and high-SNR region

(48)

(49)

B. Examples

Fig. 7 shows the ergodic capacities of MIMO channel ( ,
) in different transmission modes when

the beamforming matrix is perfectly known to the transmitter
and equal power allocation over spatial channels is employed.
Even though each of the modes are by themselves not adequate
for the entire SNR range, they are near optimal over a range of
SNR. By switching modes based on the SNR, one can then make
the best of each of the modes. Even though there are losses es-
pecially around the crossing points, the loss is small. The equal
power allocation scheme is particularly attractive in the quan-
tized scenario since no bits have to be wasted to convey power
allocation information. The figure shows that with the proposed
multimode SM scheme, we can achieve most of the capacity of
full feedback without feeding back the power allocation infor-
mation.

In Fig. 8, the performance of the multimode SM scheme with
a finite number of feedback bits is shown for the same

Fig. 7. Ergodic capacity of multimode MIMO spatial multiplexing systems
with perfect beamforming matrix and equal power allocation at the transmitter
(t = 6, r = 4, n = 1; . . . ; 4).

Fig. 8. Ergodic capacity of multimode MIMO spatial multiplexing systems
with quantized beamforming matrix (t = 6, r = 4, n = 1; . . . ; 4; B = 8).

MIMO configuration as in Fig. 7. The number of data streams
is determined as follows: when , when

, and when , where
and are the boundary points (see the figure). The gap from
the performance with perfect beamforming matrix results from
the finite-bit representation of the beamforming matrix. To de-
termine the mode, the transmitter needs to know the operating
SNR of the system, which is assumed to be changing at a much
slower rate than the channel itself in most time-varying channel
environments. Therefore, only small additional feedback is nec-
essary (e.g., to notify the transmitter to increase or decrease the
number of data streams ).

VI. CONCLUSION

We have investigated the codebook design problem associ-
ated with transmit beamforming in MIMO spatial multiplexing
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systems with finite-rate feedback. Assuming a fixed number of
spatial channels and equal power allocation, we designed the
beamforming codebook by striving to minimize the capacity
loss resulting from the finite-rate feedback. The capacity loss,
under the assumption of a reasonably large number of feed-
back bits or low SNR, was suitably approximated leading to
an iterative codebook design algorithm with monotonic con-
vergence property. The developed design algorithm is based on
the Lloyd algorithm in vector quantization study but now has
as its objective matrix quantization to minimize capacity loss.
With the proposed method, we can design the optimum beam-
forming codebook for arbitrary number of transmit and receive
antennas, feedback bits, and any spatial correlation structure in
the channel. The effect on the MIMO channel capacity of fi-
nite-rate feedback was analyzed assuming high-SNR and equal
power allocation over the spatial channels. Central to the anal-
ysis is the complex multivariate beta distribution and simplifi-
cations of the Voronoi regions resulting from the codebook. To
compensate for the degradation due to the equal power alloca-
tion assumption, we also proposed a multimode spatial multi-
plexing transmission strategy that allows for efficient utilization
of the feedback bits by quantizing only relevant beamforming
vectors. The multimode transmission scheme can be viewed as
a rough and indirect implementation of water-filling power al-
location over the multiple spatial channels.

APPENDIX

PROOF OF THEOREM 2

Proof: First, we provide a proof based on the multivariate
beta density , which is valid under the condition

and . The proof follows that of [23, Th. 3.3.3],
which is for the case of real-valued matrices. In the density
function for

make change of variables ; then

and, from [24]

so that the density of is , where

(50)

Now partition as

where is 1 1 and is 1 1 and upper
triangular; note that

(51)

(52)

(53)

(54)

where in (52) an identity

is used. Now make a change variables from
to , where

Then

by the Jacobian of transformation of to , and hence the density
of , and is

This shows immediately that , , and are all independent
and has the density

By a transformation of to , it is shown that
. The density function of is proportional to

which has the same form as the density function of (50) for ,
with replaced by and replaced by . Hence the
density function of is . Repeating the
argument above on this density function then shows that

and is independent of . The proof is
completed in an obvious way by repetition of this argument.

For a more general case , [27, Lemma 3.9] is rele-
vant (see also [32, 8b.2(xi)]) and can be easily extended to the
complex matrix case, which is stated as follows. Let have the



2886 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 8, AUGUST 2006

distribution with , and let be the matrix
consisting of the first rows and columns of , with

. Then is and

are independent. By noticing that ,
where is defined as the matrix consisting of the first rows
and columns of , we can easily see that . Therefore,
we arrive at the desired result .
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