
Learning Sparse Overcomplete Codes for Images

Joseph F. Murray

Massachusetts Institute of Technology

Brain and Cognitive Sciences Department

77 Massachusetts Ave. 46-5065

Cambridge, MA 02139

and

Kenneth Kreutz-Delgado

University of California, San Diego

Electrical and Computer Engineering Department

9500 Gilman Dr. Dept 0407

La Jolla, Ca 92093-0407

Email: jfmurray@jfmurray.org, kreutz@ece.ucsd.edu

December 13, 2006

Abstract

Images can be coded accurately using a sparse set of vectors from a learned overcomplete

dictionary, with potential applications in image compression and feature selection for pat-

tern recognition. We present a survey of algorithms that perform dictionary learning and

sparse coding and make three contributions. First, we compare our overcomplete dictionary

learning algorithm (FOCUSS-CNDL) with overcomplete independent component analysis

(ICA). Second, noting that once a dictionary has been learned in a given domain the prob-

lem becomes one of choosing the vectors to form an accurate, sparse representation, we

compare a recently developed algorithm (sparse Bayesian learning with adjustable variance

Gaussians, SBL-AVG) to well known methods of subset selection: matching pursuit and

FOCUSS. Third, noting that in some cases it may be necessary to find a non-negative sparse

coding, we present a modified version of the FOCUSS algorithm that can find such non-

negative codings. Efficient parallel implementations in VLSI could make these algorithms

more practical for many applications.

1 Introduction

Most modern lossy image and video compression standards have as a basic component the
transformation of small patches of the image. The discrete cosine transform (DCT) is the most
popular, and is used in the JPEG and MPEG compression standards [1]. The DCT uses a
fixed set of basis vectors (discrete cosines of varying spatial frequencies) to represent each image
patch, which is typically 8x8 pixels. In recent years, many algorithms have been developed
that learn a transform basis adapted to the statistics of the input signals. Two widely used
basis-learning algorithms are principal component analysis (PCA), which finds an orthogonal
basis using second-order statistics [2], and independent component analysis (ICA) which finds
a non-orthogonal representation using higher order statistics [3, 4]. The set of bases used by
PCA and ICA are complete or undercomplete, i.e. the matrix defining the transformation

1

A ∈ R
m×n has m ≥ n, implying that the output has the same or lower dimensionality as the

input. Newer classes of algorithms [5, 6] allow the use of an overcomplete A, which we will
refer to as a dictionary to distinguish it from a basis, which must by definition be linearly
independent (although some authors use the term basis even when referring to an overcomplete
set). Dictionaries are also referred to as frames [7].

We discuss the problem of representing images with a highly sparse set of vectors drawn
from a learned overcomplete dictionary. The problem has received considerable attention since
the work of Olshausen and Field [8], who suggest that this is the strategy used by the visual
cortex for representing images. The implication is that a sparse, overcomplete representation
is especially suitable for visual tasks such as object detection and recognition that occur in
higher regions of the cortex. Non-learned dictionaries (often composed of Gabor functions) are
used to generate the features used in many pattern recognition systems [9], and we believe that
recognition performance could be improved by using learned dictionaries that are adapted to
the image statistics of the inputs.

The sparse overcomplete coding problem has two major parts: learning the dictionary
adapted to the input environment, and sparsely coding new patterns using that dictionary.
We present and compare experimentally algorithms for both of these tasks. In Section 2,
we discuss sparse coding assuming a known, fixed dictionary using the following algorithms:
focal-underdetermined system solver (FOCUSS) [10], sparse Bayesian learning with adjustable-
variance Gaussians (SBL-AVG) [11] and modified matching pursuit (MMP) [12]. With earlier
algorithms such as PCA, ICA and DCT transforms, finding the coefficients requires only a
matrix multiply, however with an overcomplete dictionary the representation of a signal is un-
derdetermined, so an additional criteria such as sparseness must be used. In Section 3, we
discuss algorithms for learning the dictionary: FOCUSS-CNDL (column-normalized dictionary
learning) [13, 5], and an overcomplete extension of ICA [14]. Section 4 explains the evaluation
method for comparing image codings, and Section 5 presents the experimental results.

A key result of work in sparse overcomplete coding is that images (and other data) can be
coded more efficiently using a learned dictionary than with a non-adapted basis (e.g. DCT,
wavelet or Gabor) [14, 15]. For example, it is shown in [15] (see their Table 5.3) that with
from 1 to 12 vectors per image patch, the distortion with learned dictionaries is less than with
DCT. Our earlier work using learned dictionaries has shown that overcomplete codes can be more
efficient than learned complete codes in terms of entropy (bits/pixel), even though there are many
more coefficients than image pixels in an overcomplete coding [5]. When sparse overcomplete
dictionaries are used in complete compression systems, they have shown improved compression
over standard techniques. A compression system based on methods closely related to those
presented here was shown to improve performance over JPEG for bit rates of 0.4 bits/pixel
and lower [7]. The tradeoff for this increased compression is that overcomplete coding is more
computationally demanding, but since the algorithms are based on matrix algebra they are
easily parallelizable and have potential for implementation in DSP or custom VLSI hardware, as
discussed in Section 6. Sparse coding has many other applications in signal processing including
high-resolution spectral estimation, direction-of-arrival estimation, speech coding, biomedical
imaging and function approximation (see [10] for more references to these).

In some problems, we may desire (or the physics of the problem may dictate) non-negative
sparse codings. An example of such a problem is modeling pollution, where the amount of
pollution from any particular factory is non-negative [16]. Methods for non-negative matrix
factorization were developed [17] and applied to images and text, with the additional constraint
that dictionary elements also be non-negative. A multiplicative algorithm for non-negative
coding was developed and applied to images in [18]. A non-negative Independent Component
Analysis (ICA) algorithm was presented in [19] (which also discusses other applications). In

2

[18, 19] only the complete case was considered. Here, in Section 2.1, we present an algorithm
that can learn non-negative sources from an overcomplete dictionary, which leads naturally to
a learning method that adapts the dictionary for such sources.

2 Sparse Coding and Vector Selection

The problem of sparse coding is that of representing some data y ∈ R
m (e.g. a patch of an

image) using a small number of non-zero components in a source vector x ∈ R
n under the linear

generative model
y = Ax + ν , (1)

where the full-row rank dictionary A ∈ R
m×n may be overcomplete (n > m), and the additive

noise ν is assumed to be Gaussian, pν = N (0, σ2
ν). By assuming a prior pX(x) on the sources, we

can formulate the problem in a Bayesian framework and find the maximum a posteriori solution
for x,

x̂ = arg max
x

p(x|A,y)

= arg max
x

[log p(y|A,x) + log pX(x)] . (2)

By making an appropriate choice for the prior pX(x), we can find solutions with high sparsity
(i.e. few non-zero components). We define sparsity as the number of elements of x that are
zero, and the related quantity diversity as the number of non-zero elements, so that diversity =
(n− sparsity). Assuming the prior of the sources x is a generalized exponential distribution of
the form,

pX(x) = ce−λ dp(x) , (3)

where the parameter λ and function dp(x) determine the shape of distribution and c is a nor-
malizing constant to ensure pX(x) is a density function. A common choice for the prior on x is
for the function dp(x) to be the p-norm-like measure,

dp(x) = ‖x‖pp =
n∑

i=1

|xi|p , 0 ≤ p ≤ 1 , (4)

where xi are the elements of the vector x. (Note that for p < 1, ‖x‖p = (dp(x))
1
p is not a norm.)

When p = 0, dp(x) is a count of the number of non-zero elements of x (diversity), and so dp(x)
is referred to as a diversity measure [5].

With these choices for dp(x) and pν , we find that,

x̂ = argmax
x

[log p(y|A,x) + log pX(x)]

= argmin
x
‖y−Ax‖2 + λ‖x‖pp . (5)

The parameter λ can be seen as a regularizer that adjusts the tradeoff between sparse solutions
(high λ) and accurate reconstruction (low λ). In the limit that p→ 0 we obtain an optimization
problem that directly minimizes the reconstruction error and the diversity of x. When p = 1 the
problem no longer directly minimizes diversity, but the right-hand-side of (5) has the desirable
property of being globally convex and so has no local minima. The p = 1 cost function is used
in basis pursuit [20], where the resulting linear programming problem is usually solved with an
interior point method.

Some recent theoretical results have determined conditions under which the p = 1 (basis
pursuit) solution finds the true (p = 0) sparsest solution [21]. However, an evaluation of these

3

bounds has shown that the conditions are restrictive, and that in fact the global optima asso-
ciated with p = 1 only finds the sparsest solution when that sparsity is very high [22]. These
results and related experiments show that in practice the p = 1 cost function does not always
correspond with the sparsest solution, and that p < 1 often provides a more desirable cost
function [23].

2.1 FOCUSS and Non-negative FOCUSS

For a given, known dictionary A, the focal underdetermined system solver (FOCUSS) was devel-
oped to solve (5) for p ≤ 1 [24, 10]. The FOCUSS algorithm was first applied to the problem of
magnetoencephalography (MEG), where spatially localized signals in the brain mix with each
other before reaching the sensors, leading to the related problems of localizing the sources and
removing undesired artifacts [24, 25].

FOCUSS is an iterative re-weighted factored-gradient approach, and has consistently shown
better performance than greedy vector-selection algorithms such as basis pursuit and matching
pursuit, although at a cost of increased computation [10]. Previous versions of FOCUSS have
assumed that x is unrestricted on R

n. In some cases however, we may require that the sources be
non-negative, xi ≥ 0. This amounts to a change of prior on x from symmetric to one-sided, but
this results in nearly the same optimization problem as (5). To create a non-negative FOCUSS
algorithm, we need to ensure that the xi are initialized to non-negative values, and that each
iteration keeps the sources in the feasible region. To do so, proposing a one-sided (asymmetrical)
diversity measure dp(x), the non-negative FOCUSS algorithm can be derived,

Π−1(x̂) = diag(|x̂i|2−p)

λ = λmax

(
1− ‖y −Ax̂‖

‖y‖
)

, λ > 0

x̂ ← Π−1(x̂)AT
(
λI + AΠ−1(x̂)AT

)−1
y

x̂i ←
 0 x̂i < 0

x̂i x̂i ≥ 0
, (6)

where λ is a heuristically-adapted regularization term, limited by λmax which controls the tradeoff
between sparsity and reconstruction error (higher values of λ lead to more sparse solutions, at the
cost of increased error). We denote this algorithm FOCUSS+, to distinguish from the FOCUSS
algorithm [5] which omits the last line of (6). The estimate of x is refined over iterations of (6)
and usually 10 to 50 iterations are needed for convergence (defined as the change in x being
smaller than some threshold from one iteration to the next).

That the form of the nonnegative FOCUSS+ is closely related to FOCUSS is a fortunate
property of the prior structure used here, and it is not the case in general that the nonnegative
version of a sparse coding algorithm will be of similar form to the unrestricted version. The
SBL-AVG algorithm of the next section is an example of a sparse coding algorithm that cannot
easily be used for nonnegative coding.

2.2 Sparse Bayesian Learning with Adjustable-Variance Gaussian Pri-

ors (SBL-AVG)

Recently, a new class of Bayesian model characterized by Gaussian prior sources with adjustable
variances has been developed [11]. These models use the linear generating model (1) for the
data y but instead of using a non-Gaussian sparsity inducing prior on the sources x (as FOCUSS

4

does), they use a flexibly-parameterized Gaussian prior,

pX(x) = p(x|γ) =
n∏

i=0

N (xi|0, γi) , (7)

where the variance hyperparameter γi can be adjusted for each component xi. When γi ap-
proaches zero, the density of xi becomes sharply peaked making it very likely that the source
will be zero, increasing the sparsity of the code. The algorithm for estimating the sources
has been termed sparse Bayesian learning (SBL), but we find this term to be too general, as
other algorithms (including the earlier FOCUSS algorithm) also estimate sparse components in
a Bayesian framework. We use the term SBL-AVG (adjustable-variance gaussian) to be more
specific.

To insure that the prior probability p(x|γ) is sparsity-inducing, an appropriate prior on the
hyperparameter γ must be chosen. In general, the Gamma(γ−1

i |a, b) distribution can be used
for the prior of γi, and in particular with a = b = 0, the prior on γi becomes uniform. As shown
in Section 3.2 of [26], this leads to p(xi) having a Student’s t-distribution which qualitatively
resembles the �p-norm-like distributions (with 0 < p < 1) used to enforce sparsity in FOCUSS
and other algorithms.

SBL-AVG has been used successfully for pattern recognition, with performance comparable
to support vector machines (SVMs) [11, 26]. In these applications the known dictionary A is
a kernel matrix created from the training examples in the pattern recognition problem just as
with SVMs. The performance of SBL-AVG was similar to SVM in terms of error rates, while
using far fewer support vectors (non-zero xi) resulting in simpler models. Theoretical properties
of SBL-AVG for subset selection have been elucidated in [23], and simulations on synthetic data
show superior performance over FOCUSS and other basis selection methods. To our knowledge,
results have not been previously reported for SBL-AVG on image coding.

The posterior density of x is a multivariate Gaussian,

p(x|y, Γ, σ2) = N (µ, Σx) , (8)

which has mean and covariance,

µ = σ−2ΣxATy

Σx =
(
σ−2AT A + Γ−1

)−1
, (9)

where the matrix Γ contains the hyperparameters γi, i.e. Γ = diag(γ). To implement the
SBL-AVG algorithm for finding x̂, we perform iterations of the update,

x̂← ΓAT (σ2I + AΓAT)−1y

γi ← (Σx)i,i + µ2
i . (10)

Iterative updates for the parameter σ2 are given by,

σ2 ← 1
m
‖y −Aµ‖2 +

σ2

m

n∑
i=1

[
1− (γ−1

i (Σx)i,i

]
. (11)

The iterations for the variance σ2 and hyperparameters γi were derived in [23] using the ex-
pectation maximization (EM) algorithm and are assumed to be updated in parallel at each
iteration. As the iterations proceed, some values of γi will be driven to 0, which leads to those
components xi → 0, increasing the sparsity of the solution. For compression and coding appli-
cations, it is desirable to have a parameter that controls compression, and for SBL-AVG we use

5

a constant σ2 (instead of the update for σ2 in eq. 11). Higher values of σ2 admit more error
in the reconstruction, and so result in higher compression. Interestingly, the updates (10) are
quite similar in form and computational complexity to the FOCUSS iterations (6) even though
they are derived with different Bayesian priors, with the main difference being the update of the
weighting matrices (Π−1(x̂) for FOCUSS and Γ for SBL-AVG). Software called “SparseBayes”
that implements SBL-AVG can be found at http://www.research.microsoft.com/mlp/RVM/
default.htm, which was used in the experiments below. Note that the algorithm in (10) is func-
tionally equivalent to those presented in [11, 26] and that we have rewritten it to be consistent
with our notation and emphasize the computational similarity to FOCUSS. However, creating a
non-negative version of SBL-AVG proves much more difficult than for FOCUSS because of the
need to integrate a Gaussian distribution with non-diagonal covariance over the positive orthant
[27]. Naively adding a non-negative constraint to SBL-AVG (such as in the last line of eq. 6)
does not result in a working algorithm.

2.3 Modified Matching Pursuit (MMP): Greedy vector selection

Many variations on the idea of matching pursuit, or greedy subset selection, have been developed
[28, 29]. Here, we use modified matching pursuit (MMP) [12] which selects each vector (in series)
to minimize the residual representation error. The simpler matching pursuit (MP) algorithm
is more computationally efficient, but provides less accurate reconstruction. For the case of
non-negative sources, matching pursuit can be suitably adapted, and we call this algorithm
MP+.

In MMP, the maximum number of vectors to select, r, is prespecified. At each iteration
t = 1 . . . r, a vector is added to the set of selected vectors It = {k1 . . . kt},

kt = arg max
l
|aT

l bt−1| , l /∈ It−1 , (12)

where al are the columns of A and bt−1 is the residual at iteration t− 1. The selected vector at
iteration t is denoted akt . For the first iteration, we set b0 = y (the signal to be represented).
The residual is updated using,

bt = bt−1 − (qT
t bt−1)qt , (13)

where qt is found by iteratively constructing an â(t)
kt

as follows,

â(0)
kt

= akt , q0 = 0

â(i)
kt

= â(i−1)
kt

−
(
qT

i−1 â(i−1)
kt

)
qi−1 , i = 1 . . . t

qt =
â(t)

kt

‖â(t)
kt
‖

. (14)

The operation in (13) is a projection of the residual bt onto the range space of the orthogonal
complement of all the selected vectors. The simpler MP algorithm replaces the step (13) with
a projection of the residual onto the orthogonal complement of the only the selected vector akt .
The MP algorithm is more computationally efficient but provides less accurate reconstruction.
More details and comparisons can be found in [12, 29].

The algorithm can be stopped when either r vectors have been chosen or when the residual
is small enough, ‖bt‖ ≤ ε, where ε is a constant threshold that defines the maximum acceptable
residual error. To find the coefficients of the selected vectors, a new matrix is created with the
selected columns, As = [ak1 . . .akr]. The coefficient values corresponding to each vector are
found using the pseudoinverse of As,

xs = (AT
s As)−1AT

s y . (15)

6

To form the estimate x̂, the elements of xs are placed into the selected columns ki.

3 Dictionary Learning Algorithms

In the previous section we discussed algorithms that accurately and sparsely represent a signal
using a known, predefined dictionary A. Intuitively, we would expect that if A were adapted
to the statistics of a particular problem that better and sparser representations could be found.
This is the motivation that led to the development of the FOCUSS-CNDL dictionary learning
algorithm. Dictionary learning is closely related to the problem of ICA which usually deals with
a complete A but can be extended to an overcomplete A [6].

In this section we discuss the FOCUSS-CNDL [13] and overcomplete ICA algorithm of
Lewicki and Sejnowski [6]. We briefly mention other overcomplete dictionary learning algo-
rithms: Engan et al. [7, 30] developed the method of optimal directions (MOD) and applied it
in an image compression system; Girolami [31] developed a variational approach similar to that
of SBL-AVG; Palmer and Kreutz-Delgado [32] used the Bayesian maximum a posteriori (MAP)
framework and a new notion of relative convexity to ensure sparse solutions; and Aharon et al.
[33] developed an algorithm based on the singular value decomposition (K-SVD).

3.1 FOCUSS-CNDL

The FOCUSS-CNDL algorithm solves the problem (1) when both the sources x and the dictio-
nary A are assumed to be unknown random variables [5]. The algorithm contains two major
parts, a sparse vector selection step and a dictionary learning step which are derived in a jointly
Bayesian framework. The sparse vector selection is done by FOCUSS (or FOCUSS+ if non-
negative xi are needed), and the dictionary learning A-update step uses gradient descent.

With a set of training data Y = (y1, . . . ,yN) we find the maximum a posteriori estimates Â

and X̂ = (x̂1, . . . , x̂N) such that

(Â, X̂) = arg min
A,X

N∑
k=1

[‖yk −Axk‖2 + λdp(xk)
]

, (16)

where dp(x) = ‖xk‖pp is the diversity measure (4) that measures (or approximates) the number
of non-zero elements of a source vector xk (see Section 2).

The optimization problem (16) attempts to minimize the squared error of the reconstruction
of yk while minimizing dp and hence the number of non-zero elements in x̂k. The problem
formulation is similar to ICA in that both model the input Y as being linearly generated by un-
knowns A and X , but ICA attempts to learn a new matrix W which linearly produces estimates
x̂k (by Wyk = x̂k) where the components x̂i,k are as statistically independent as possible. ICA
in general does not result in as sparse solutions as FOCUSS-CNDL which specifically uses the
sparsity-inducing non-linear iterative FOCUSS algorithm to find x̂k.

We now summarize the FOCUSS-CNDL algorithm which was fully derived in [5]. For each
of the N data vectors yk in Y , we can update the sparse source vector x̂k using one iteration of
the FOCUSS or FOCUSS+ algorithm (6). After updating x̂k for a certain number of the data
vectors (the blocksize NB) the dictionary Â is re-estimated,

Σyx̂ =
1

NB

NB∑
k=1

ykx̂T
k , Σx̂x̂ =

1
NB

NB∑
k=1

x̂kx̂T
k ,

δÂ = ÂΣx̂x̂ − Σyx̂

Â← Â− η
(
δÂ− tr (ÂT δÂ)Â

)
, γ > 0 , (17)

7

where η is the learning rate parameter. Each iteration of FOCUSS-CNDL consists of updating
all x̂k, k = 1...N with one FOCUSS iteration (6), interspersed by dictionary updates (17) for
every NB vectors x̂k (which uses Σ calculated from the updated x̂k estimates). After each
update of Â, the columns are adjusted to have equal norm ‖ai‖ = ‖aj‖, in such a way that
Â has unit Frobenius norm, ‖Â‖F = 1. Matlab code for the FOCUSS, FOCUSS-CNDL and
non-negative variants can be found at http://dsp.ucsd.edu/∼jfmurray/software.htm.

3.2 Overcomplete Independent Component Analysis (ICA)

Another method for learning an overcomplete dictionary based on ICA was developed by Lewicki
and Sejnowski [14, 6]. In the overcomplete case, the sources must be estimated as opposed to
in standard ICA (which assumes a complete dictionary A), where the sources are found by
multiplying by a learned matrix W , yielding the estimates x̂ = Wy. In [14] the sources are
estimated using a modified conjugate gradient optimization of a cost function closely related to
(5) that uses the 1-norm (derived using a Laplacian prior on x). The dictionary is updated by
gradient ascent on the likelihood using a Gaussian approximation ([14], eq. 20).

Lewicki and Sejnowski treat the dictionary as a deterministic unknown and note that the
classical maximum likelihood estimate of A is determined from maximizing the marginalized
likelihood function,

p(Y |A) =
∫

p(Y, X |A)dX =
∫

p(Y |X, A)p(X)dX. (18)

where X = (x1, . . . ,xN) and Y = (y1, . . . ,yN), and xk and yk, k = 1, . . . , N , are related via
equation (1). Unfortunately, for supergaussian sparsity-inducing priors, such as the p-norm–like
density shown in equations (3) and (4), this integration is generally intractable. To circumvent
this problem Lewicki and Sejnowski approximate this integral by taking a Gaussian approxima-
tion to the prior evaluated at the MAP estimate of the source vectors X obtained from a current
estimate of A. This is specifically done for the Laplacian p = 1 prior by solving the �1 (i.e.,
p = 1 basis pursuit) optimization problem using a conjugate gradient �1 optimization algorithm
(see Section 3 of [14]).

After performing the marginalization integration, a dictionary update which “hill climbs”
the resulting approximate likelihood function p̂(X̂ |A) is given by,

δA ← Â
(〈

zkx̂T
k

〉
N

+ I
)

(19)

Â ← Â− η δA ,

where,
zk � ∇x ln p(x̂k) , (20)

and 〈·〉N denotes an N -sample average. The update rule (19) is valid for p = 1 as long as no
single component xk,i, k = 1, · · · , N , i = 1, · · ·n, is identically zero. Using λ as in (3) for p = 1,
the update rule (19) is equivalent to

δA ← Â (I − λΣπ
x̂x̂) (21)

Â ← (1− η)Â + ληÂΣπ
x̂x̂ , (22)

where,

Σπ
x̂x̂ =

〈
Π(x̂k) x̂kx̂T

k

〉
N

=
N∑

k=1

Π(x̂k) x̂kx̂T
k =

N∑
k=1

sign(x̂k)x̂T
k , (23)

with,
Π(x) = diag(|xi|−1) and sign(x) = [sign(x1), · · · , sign(xn)]T . (24)

Matlab software for overcomplete ICA can be found at http://www-2.cs.cmu.edu/∼lewicki/.

8

4 Measuring performance

To compare the performance of image coding algorithms we need to measure two quantities:
distortion and compression. As a measure of distortion we use a normalized root-mean-square-
error (RMSE) calculated over all N patches in the image,

RMSE =
1
σ

[
1

mN

N∑
k=1

‖yk −Ax̂k‖2
] 1

2

, (25)

where σ is the empirical estimate of the variance of the elements yi (for all the yk, assuming
i.i.d.), N is the number of image patches in the data set, and m is the size of each vector yk.
Note that this is calculated over the image patches, leading to a slightly different calculation
than the mean-square error over the entire image.

To measure how much a given transform algorithm compresses an image, we need a coding
algorithm that maps which coefficients were used and their amplitudes into an efficient binary
code. The design of such encoders is generally a complex undertaking, and is outside the scope
of our work here. However, information theory states that we can estimate a lower bound on the
coding efficiency if we know the entropy of the input signal. Following the method of Lewicki
and Sejnowski (cf. [6] eq. 13) we estimate the entropy of the coding using histograms of the
quantized coefficients. Each coefficient in x̂k is quantized to 8 bits (or 256 histogram bins). The
number of coefficients in each bin is ci. The limit on the number of bits needed to encode each
input vector is,

#bits ≥ bitslim ≡ −
256∑
i=1

ci

N
log2 fi , (26)

where fi is the estimated probability distribution at each bin. We use fi = ci/(Nn), while in [6]
a Laplacian kernel is used to estimate the density. The entropy estimate in bits/pixel is given
by,

entropy =
bitslim

m
, (27)

where m is the size of each image patch (the vector yk). It is important to note that this
estimate of entropy takes into account the extra bits needed to encode an overcomplete (n > m)
dictionary, i.e. we are considering the bits used to encode each image pixel, not each coefficient.

5 Experiments

Previous work has shown that learned complete bases can provide more efficient image coding
(fewer bits/pixel at the same error rate) when compared with unadapted bases such as Gabor,
Fourier, Haar and Daubechies wavelets [14]. In our earlier work [5] we showed that overcomplete
dictionaries A can give more efficient codes than complete bases. Here, our goal is to compare
methods for learning overcomplete A (FOCUSS-CNDL and overcomplete ICA), and methods
for coding images once A has been learned, including the case where the sources must be non-
negative.

5.1 Comparison of dictionary learning methods

To provide a comparison between FOCUSS-CNDL and overcomplete ICA [6], both algorithms
were used to train a 64×128 dictionary A on a set of 8×8 pixel patches drawn from images of man-
made objects. For FOCUSS-CNDL, training of A proceeded as described in [5], for 150 iterations
over N = 20000 image patches with the following parameters: learning rate η = 0.01, diversity

9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Comparing dictionary learning methods

Entropy (bits/pixel)

R
M

S
E

Focuss−CNDL
Overcomplete ICA

Figure 1: Image coding with 64x128 overcomplete dictionaries learned with FOCUSS-CNDL
and overcomplete ICA. Images were sparsely coded using the FOCUSS algorithm with p = 0.5
and the compression level (bit rate) was adjusted by varying λmax ∈ [0.005, 0.5], with higher
values giving more compression (lower bit/pixel), left side of plot. Results are averaged over 15
images.

measure p = 1.0, blocksize NB = 200, and regularization parameter λmax = 2 × 10−4. Training
overcomplete ICA for image coding was performed as described in [14]. Both overcomplete ICA
and FOCUSS-CNDL have many tunable parameters, and it is generally not possible to find
the optimal values in the large parameter space. However, both algorithms have been tested
extensively on image coding tasks. The parameters of overcomplete ICA used here were those
in the implementation found at http://www-2.cs.cmu.edu/∼lewicki/, which was shown by
[14] to provide improved coding efficiency over non-learned bases (such as DCT and wavelet) as
well as other learned bases (PCA and complete ICA). We believe that the parameters used have
been sufficiently optimized for the image coding task to provide a reasonably fair comparison.

Once an A was learned with each method, FOCUSS was used to compare image coding
performance, with parameters p = 0.5, iterations = 50, and the regularization parameter λmax

was adjusted over the range [0.005, 0.5] to achieve different levels of compression (bits/pixel),
with higher λmax giving higher compression (lower bits/pixel). A separate test set was composed
of 15 images of objects from the COIL database of rotated views of household objects [34].

Figure 1 shows the image coding performance of dictionaries learned using FOCUSS-CNDL
and overcomplete ICA. Using the FOCUSS-CNDL dictionary provided better performance, i.e.
at a given level of RMSE error images were encoded on average with fewer bits/pixel (bpp).
FOCUSS was used to code the test images, which may give an advantage to the FOCUSS-
CNDL dictionary as it was able to adapt its dictionary to sources generated with FOCUSS
(while overcomplete ICA uses a conjugate gradient method to find sources).

5.2 Comparing image coding with MMP, SBL-AVG and FOCUSS

In this experiment we compare the coding performance of the MMP, SBL-AVG and FOCUSS
vector selection algorithms using an overcomplete dictionary on a set of man-made images. The
dictionary learned with FOCUSS-CNDL from the previous experiment was used, along with the
same 15 test images. For FOCUSS, parameters were set as follows: p = 0.5, and compression
(bits/pixel) was adjusted with λmax ∈ [0.005, 0.5] as above. For SBL-AVG, we set the number

10

Original

MSE: 0.0011
BPP: 0.78
232 non-zero

MSE: 0.0026
BPP: 0.56
161 non-zero (of 8192)

MSE: 0.0011
BPP: 0.68
214 non-zero

MSE: 0.0021
BPP: 0.54
154 non-zero (of 8192)

Low compression High compression

FOCUSS

SBL-AVG

Figure 2: Images coded using an overcomplete dictionary (64x128) learned with FOCUSS-CNDL
algorithm. Below each coded image are shown the mean-square error (MSE), the estimated
entropy in bits/pixel (BPP) and the number of non-zero coefficients used to encode the entire
image.

of iterations to 1000 and the constant noise parameter σ2 was varied over [0.005, 2.0] to adjust
compression (with higher values of σ2 giving higher compression). For MMP, the number of
vectors selected r was varied from 1 to 13, with fewer vectors selected giving higher compression.

Figure 2 shows examples of an image coded with the FOCUSS and SBL-AVG algorithms.
Images of size 64x64 pixels were coded at high and low compression levels. In both cases, SBL-
AVG was more accurate and provided higher compression, e.g. MSE of 0.0021 vs. 0.0026 at
entropy 0.54 vs 0.78 bits/pixel for the high compression case. In terms of sparsity, the SBL-AVG
case in the bottom right of Figure 2 requires only 154 nonzero coefficients (of 8192, or about
2%) to represent the image.

Figure 3 shows the tradeoff between accurate reconstruction (low RMSE) and compression
(bits/pixel) as approximated by the entropy estimate (27). The lower right of the curves repre-
sents the higher accuracy/lower compression regime, and in this range the SBL-AVG algorithm
performs best, with lower RMSE error at the same level of compression. At the most sparse
representation (upper left of the curves) where only 1 or 2 dictionary vectors are used to repre-
sent each image patch, the MMP algorithm performed best. This is expected in the case of 1
vector per patch, where the MMP finds the optimal single vector to match the input. Coding
times per image on a 1.7 GHz AMD processor (Matlab implementation) are: FOCUSS 15.64
sec, SBL-AVG 17.96 sec, MMP 0.21 sec.

5.3 Image coding with non-negative sources

Next, we investigate the performance tradeoff associated with using non-negative sources x.
Using the same set of images as in the previous section, we learn a new A ∈ R

64×128 using
the non-negative FOCUSS+ algorithm (6) in the FOCUSS-CNDL dictionary learning algorithm
(17). The image gray-scale pixel values are scaled to yi ∈ [0, 1] and the sources are also restricted
to xi ≥ 0 but elements of the dictionary are not further restricted and may be negative. Once
the dictionary has been learned, the same set of 15 images as above were coded using FOCUSS+.

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Comparing vector selection

Entropy (bits/pixel)

R
M

S
E

FOCUSS
SBL−AVG
MMP

Figure 3: Comparison of sparse image coding algorithms with a 64x128 overcomplete dictionary.
Compression rates are adjusted by varying parameters for each algorithm: λmax for FOCUSS,
σ2 for SBL-AVG, and the number of vectors selected r for MMP. Results are averaged over 15
images.

 MMP MP+ FOCUSS+ Original

MSE: 0.0024
BPP: 0.65
182 non-zero

MSE: 0.0027
BPP: 0.76
187 non-zero

MSE: 0.0016
BPP: 0.77
236 non-zero
(of 8192)

Figure 4: Image coding using non-negative sources (weights) with a 64x128 overcomplete dic-
tionary learned with FOCUSS-CNDL+. Images were coded with MP+, FOCUSS+, and MMP
(which uses negative coefficients, shown for comparison).

Figure 4 shows an image coded using MP+, FOCUSS+ and MMP (which uses negative
coefficients). Restricting the coding to non-negative sources in MP+ shows relatively small
increases in MSE and number of coefficients used, and a decrease in image quality. FOCUSS+
is visually superior and provides higher quality reconstruction (MSE 0.0016 vs. 0.0027) at
comparable compression rates (0.77 vs. 0.76 bits/pixel). Figure 5 shows the compression/error
tradeoff when using non-negative sources to code the same set of test images as above. As
expected, there is a reduction in performance when compared with methods that use positive
and negative sources especially at lower compression levels.

6 Potential for VLSI Implementation

While we have focused on the differences between the sparse coding and dictionary learning
algorithms presented above, each may be suited to a particular class of application, which may
require the use of dedicated VLSI or DSP hardware to achieve the needed speed and power

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Image coding with positive sources

Entropy (bits/pixel)

R
M

S
E

FOCUSS
FOCUSS+
MP+

Figure 5: Image coding using non-negative sources x, with the FOCUSS curve from Figure 3
included for reference. Both experiments use a 64x128 overcomplete dictionary.

efficiency. From a VLSI implementation standpoint, all the algorithms share some desirable
traits: they rely on easily parallelizable matrix operations, have simple logic flows (mainly
repeated iterations), and have low memory requirements. For the sparse coding algorithms, the
most time consuming operation is the matrix inversion required at each iterations (for MMP
only one matrix inversion is required after the selected columns of A are chosen). Instead
of computing the matrix inverse and subsequent matrix multiply in FOCUSS or SBL-AVG,
the system of equations can be solved directly with Gaussian elimination [35]. Efficient parallel
algorithms and architectures for Gaussian elimination have been developed, such as the division-
free method of [36]. Progress continues to made in increasing the speed of the other required
matrix algebra tasks, such as matrix multiplication [37, 38]. Using the algorithms of [36] and
[37], we can find the number of multiplies and time-order required for each iteration of FOCUSS
and SBL-AVG (Table 1). (See [36, 37] for details on architecture and number of processing
elements required.)

For both the FOCUSS-CNDL and overcomplete ICA dictionary learning algorithms, the
most time consuming step is the averaging of the sources in (17) and (23), which could be made
more efficient with 2-D systolic arrays of processing elements [39]. For calculation of Σ

�x�x, an
n×n array of multiply-add processing elements can perform the vector multiply and summation
in one time step for each training sample k ∈ 1 . . .N , reducing the time complexity from O(Nn2)
for a serial implementation to O(N). In FOCUSS-CNDL, a similar array of m× n elements is
needed to find Σy�x.

7 Conclusion

We have discussed methods for finding sparse representations of images using overcomplete
dictionaries, and methods for learning those dictionaries to be adapted to the problem domain.
Images can be represented accurately with a very sparse code, with on the order of 2% of
the coefficients being nonzero. When the sources are unrestricted, x ∈ R

n, the SBL-AVG
algorithm provides the best performance, encoding images with fewer bits/pixel at the same
error when compared FOCUSS and matching pursuit. When the sources are required to be
non-negative, xi ≥ 0, the FOCUSS+ and associated dictionary learning algorithm presented

13

Table 1: Number of multiples required for certain steps of each iteration of the FOCUSS and
SBL-AVG algorithms, given that the systems of equations in the second steps are solved with
the Gaussian elimination algorithm of [36], and the matrix multiplies are performed using the
algorithm of [37]. Time-order for these parallel algorithms is given in the right column.

FOCUSS (eq. 6)

Step of iteration Multiplies Time (parallel)

λI + AΠ−1AT nm + nm2 m + 1�
λI + AΠ−1AT

�−1
y 3

4
(m3 + 2m2) + O(2m2 + m) 4m

Π−1AT
�
λI + AΠ−1AT

�−1
y nm2 m

Π−1 = diag(|�xi|2−p) O(n) 1

Totals: 3
4
m3 + 3

2
m2 + 2nm2 + nm + O(2m2 + m + n) 6m + 2

SBL-AVG (eq. 10)

Step of iteration Multiplies Time (parallel)

σ2I + AΓAT nm + nm2 m + 1

ΓAT
�
σ2I + AΓAT

�−1 3
4
(m3 + 2nm2) + O(2m2 + nm) 4m + n − 1

ΓAT
�
σ2I + AΓAT

�−1
y nm 1

(Σx)i,i = [Γ − ΓAT
�
σ2I + AΓAT

�−1
AΓ]i,i nm 1

Totals: 3
4
m3 + 5

2
nm2 + 3nm + O(2m2 + nm) 5m + n + 2

here provide the best performance. Based on the success of SBL-AVG, future work could include
the development of dictionary learning algorithms that incorporate SBL-AVG into the vector
selection step. While the increased performance of sparse overcomplete coding comes at the
price of increased computational complexity, efficient parallel implementations in VLSI could
make these algorithms more practical for many applications.

Acknowledgements

J.F. Murray gratefully acknowledges support from the Center for Magnetic Recording Research
(CMRR) at UCSD, the Sloan Foundation and the ARCS Foundation. We also thank David
Wipf for discussions regarding the SBL-AVG algorithm.

14

References

[1] R. C. Gonzales and R. E. Woods. Digital Image Processing. Addison-Wesley, Reading, MA,
1993.

[2] E. Oja. “A simplified neuron model as a principal component analyzer,” Journal of Math-
ematical Biology, 15:267–273, 1982.

[3] T. T. Pham and R. J. P. deFigueiredo. “Maximum Likelihood Estimation of a Class of
Non-Gaussian Densities with Application to �p Deconvolution,” IEEE Trans. Acoustics,
Speech and Signal Processing, 37(1):73–82, January 1989.

[4] C. Jutten and J. Hérault. “Blind separation of sources, part I: An adaptive algorithm based
on neuromimetic architecture,” Signal Processing, 24:1–10, 1991.

[5] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Sejnowski.
“Dictionary learning algorithms for sparse representation,” Neural Computation, 15(2):
349–396, February 2003.

[6] M. S. Lewicki and T. J. Sejnowski. “Learning overcomplete representations,” Neural Com-
putation, 12(2):337–365, February 2000.

[7] K. Engan, J. H. Husoy, and S. O. Aase. “Frame based representation and compression of
still images,” In Proc. ICIP 2001, pages 1–4, 2001.

[8] B. A. Olshausen and D. J. Field. “Sparse coding with an overcomplete basis set: A strategy
employed by V1?,” Vis. Res., 37:3311–3325, 1997.

[9] D. M. Weber and D. Casasent. “Quadratic Gabor filters for object detection,” IEEE Trans.
Image Processing, 10(2):218–230, February 2001.

[10] B. D. Rao and K. Kreutz-Delgado. “An affine scaling methodology for best basis selection,”
IEEE Trans. Sig. Proc., 47:187–200, 1999.

[11] M. E. Tipping. “Sparse Bayesian learning and the relevance vector machine,” Journal of
Machine Learning Research, 1:211–244, 2001.

[12] S. F. Cotter, J. Adler, B. D. Rao, and K. Kreutz-Delgado. “Forward sequential algorithms
for best basis selection,” IEE Proceedings Vision, Image and Signal Processing, 146(5):
235–244, October 1999.

[13] J. F. Murray and K. Kreutz-Delgado. “An improved FOCUSS-based learning algorithm
for solving sparse linear inverse problems,” In Conference Record of the 35th Asilomar
Conference on Signals, Systems and Computers, volume 1, pages 347–351, Pacific Grove,
CA, November 2001. IEEE.

[14] M. S. Lewicki and B. A. Olshausen. “A probabilistic framework for the adaptation and
comparison of image codes,” J. Opt. Soc. Am. A, 16(7):1587–1601, July 1999.

[15] K. Engan. Frame based signal representation and compression. PhD thesis, Stavanger
Universty College, Norway, 2000.

[16] P. Paatero and U. Tapper. “Positive matrix factorization: A nonnegative factor model with
optimal utilization of error estimates of data values,” Environmetrics, 5:111–126, 1994.

15

[17] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative matrix factor-
ization,” Nature, 401:788–791, October 1999.

[18] P. O. Hoyer. “Non-negative sparse coding,” In Proc. of the 12th IEEE Workshop on Neural
Networks for Sig. Proc., pages 557– 565, 2002.

[19] M. D. Plumbley. “Algorithms for nonnegative independent component analysis,” IEEE
Trans. Neural Net., 14(3):534–543, May 2003.

[20] S. Chen and D. Donoho. “Atomic decomposition by basis pursuit,” SIAM Journal on
Scientific Computing, 20(1):33–61, 1998.

[21] D. Donoho and M. Elad. “Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization,” Proceedings of the National Academy of Sciences, 100(5),
March 2003.

[22] D. P. Wipf and B. D. Rao. “Probabilistic analysis for basis selection via �p diversity
measures,” In Proc. of the Intl. Conf. on Acoustics, Speech, and Signal Processing, 2004
(ICASSP ’04), volume 2, May 2004.

[23] D. P. Wipf and B. D. Rao. “Sparse Bayesian learning for basis selection,” IEEE Transac-
tions on Signal Processing, 52(8):2153–2164, 2004.

[24] I. F. Gorodnitsky, J. S. George, and B. D. Rao. “Neuromagnetic source imaging with
FOCUSS: a recursive weighted minimum norm algorithm,” Electroencephalography and
Clinical Neurophysiology, 95(4):231–251, 1995.

[25] R. Vigário and E. Oja. “Independence: A new criterion for the analysis of the electromag-
netic fields in the global brain?,” Neural Networks, 13:891–907, 2000.

[26] C. M. Bishop and M. E. Tipping. Advances in Learning Theory: Methods, Models and
Applications, volume 190 of NATO Science Series III: Computer and Systems Sciences,
chapter Bayesian regression and classification, pages 267–285. IOS Press, 2003.

[27] R. J. Muirhead. Aspects of Multivariate Statistical Theory. Wiley-Interscience, 1982.

[28] S. G. Mallat and Z. Zhang. “Matching Pursuits with Time-Frequency Dictionaries,” IEEE
Trans. Sig. Proc., 41(12):3397–3415, 1993.

[29] S. F. Cotter. Subset selection algorithms with applications. PhD thesis, Univ. of California
at San Diego, 2001.

[30] K. Engan, K. Skretting, and J. H. Husoy. “A family of iterative LS-based dictionary learning
algorithms, ILS-DLA, for sparse signal represenation,” submitted, 2005.

[31] M. Girolami. “A variational method for learning sparse and overcomplete representations,”
Neural Computation, 13:2517–2532, 2001.

[32] J. A. Palmer and K. Kreutz-Delgado. “A general framework for component estimation,”
In Proc. 4th Intl. Symp. on ICA, 2003.

[33] M. Aharon, M. Elad, and A. Bruckstein. “K-SVD: an algorithm for designining of over-
complete dictionaries for sparse representation,” submitted, 2005.

[34] S. A. Nene, S. K. Nayar, and H. Murase. “Columbia object image library (COIL-100),”
Technical Report CUCS-006-96, Columbia University, 1996.

16

[35] G. H. Golub and C. F. V. Loan. Matrix Computations. John Hopkins University Press,
Baltimore, MD, 1983.

[36] S. Peng and S. Sedukhin. “Parallel algorithm and architectures for two-step division-
free Gaussian elimination,” In Algorithms and Architectures for Parallel Processing, 3rd
International Conference on (ICAPP 97), pages 489–502, 1997.

[37] J.-C. Tsay and P.-Y. Chang. “Design of efficient regular arrays for matrix multiplication
by two-step regularization,” IEEE Transactions on Parallel and Distributed Systems, 6(2):
215–222, February 1995.

[38] K. Muhammad and K. Roy. “Reduced computational redundancy implementation of DSP
algorithms using computation sharing vector scaling,” IEEE Transactions on VLSI Sys-
tems, 10(3):292–300, 2002.

[39] D. Zhang. Parallel VLSI Neural System Design. Springer-Verlag, Singapore, 1998.

17

