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Abstract. Images can be coded accurately using a sparse set of vec-
tors from an overcomplete dictionary, with potential applications
in image compression and feature selection for pattern recogni-
tion. We discuss algorithms that perform sparse coding and make
three contributions. First, we compare our overcomplete dictio-
nary learning algorithm (FOCUSS-CNDL) with overcomplete In-
dependent Component Analysis (ICA). Second, noting that once
a dictionary has been learned in a given domain the problem be-
comes one of choosing the vectors to form an accurate, sparse rep-
resentation, we compare a recently developed algorithm (Sparse
Bayesian Learning with Adjustable Variance Gaussians) to well
known methods of subset selection: Matching Pursuit and FO-
CUSS. Third, noting that in some cases it may be necessary to
find a non-negative sparse coding, we present a modified version of
the FOCUSS algorithm that can find such non-negative codings.

INTRODUCTION

We discuss the problem of representing images with a highly sparse set of
vectors drawn from a learned overcomplete dictionary. The problem has
received considerable attention since the work of Olshausen and Field [8], who
suggest that this is the strategy used by the visual cortex for representing
images. The implication is that a sparse, overcomplete representation is
especially suitable for visual tasks such as object detection and recognition
that occur in higher regions of the cortex. A key result of this line of work is
that images (and other data) can be coded more efficiently using a learned
basis than with a non-adapted basis (e.g. wavelet and Gabor dictionaries)
[5]. Our earlier work has shown that overcomplete codes can be more efficient
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than complete codes in terms of entropy (bits/pixel), even though there are
many more coefficients than image pixels in an overcomplete code [4].

Non-learned dictionaries (often composed of Gabor functions) are used
to generate the features in many pattern recognition systems [12], and we
believe that their performance could be improved using learned dictionaries
that are adapted to the image statistics of the inputs.

Another natural application of sparse image coding is image compression.
Standard compression methods such as JPEG use a fixed, complete basis
(e.g. discrete cosines). Compression systems (based on methods closely re-
lated to those presented here) have shown that using learned overcomplete
dictionaries can provide improved compression over such standard techniques
[2]. Other applications of sparse coding include high-resolution spectral es-
timation, direction-of-arrival estimation, speech coding, biomedical imaging
and function approximation [10].

In some problems, we may desire (or the physics of the problem may
dictate) non-negative sparse codings. A multiplicative algorithm for non-
negative coding was developed and applied to images [3]. A non-negative In-
dependent Component Analysis (ICA) algorithm was presented in [9] (which
also discusses other applications). In [3, 9] only the complete case was con-
sidered. Here, we present an algorithm that can learn non-negative sources
from an overcomplete dictionary, which leads naturally to a learning method
that adapts the dictionary for such sources.

SPARSE CODING AND VECTOR SELECTION

The problem of sparse coding is that of representing some data y ∈ R
m (e.g.

a patch of an image) using a small number of non-zero components in a source
vector x ∈ R

n under the linear model

y = Ax + ν , (1)

where the dictionary A ∈ R
m×n may be overcomplete (n ≥ m), and the

additive noise ν is assumed to be Gaussian, pν = N (0, σ2
ν). By assuming

a prior pX(x) on the sources, we can formulate the problem in a Bayesian
framework and find the maximum a posteriori solution for x,

x̂ = arg max
x

p(x|A, y)

= arg max
x

[log p(y|A, x) + log pX(x)] . (2)

By making an appropriate choice for the prior pX(x), we can find solutions
with high sparsity (i.e. few non-zero components). We define sparsity as the
number of elements of x that are zero, and the related quantity diversity as
the number of non-zero elements, so that diversity = (n−sparsity). Assuming
the prior distribution of the sources x is a generalized exponential of the form,

pX(x) = cxe−γp dp(x) , (3)



where the parameter p determines the shape of distribution and cx is a nor-
malizing constant to ensure pX(x) is a density function. A common choice
for the prior on x is for the function dp(x) to be the p-norm-like measure,

dp(x) = ‖x‖pp =
n∑

i=1

|x[i]|p , 0 ≤ p ≤ 1 , (4)

where x[i] are the elements of the vector x. When p = 0, dp(x) is a count of
the number of non-zero elements of x (diversity), and so dp(x) is referred to
as a diversity measure [4].

With these choices for dp(x) and pν , we find that,

x̂ = arg max
x

[log p(y|A, x) + log pX(x)]

= arg min
x
‖y −Ax‖2 + λ‖x‖pp . (5)

When p → 0 we obtain an optimization problem that directly minimizes
the reconstruction error and the diversity of x. When p = 1 the problem
no longer directly minimizes diversity, but the right-hand-side of (5) has the
desirable property of being globally convex and so has no local minima. The
p = 1 cost function is used by the Basis Pursuit algorithm [13].

FOCUSS and Non-negative FOCUSS

For a given, known dictionary A, the Focal Underdetermined System Solver
(FOCUSS) was developed to solve (5) for p ≤ 1 [10]. The algorithm is an
iterative re-weighted factored-gradient approach, and has consistently shown
better performance than greedy vector-selection algorithms such as Basis
Pursuit and Matching Pursuit, although at a cost of increased computation
[10]. Previous versions of FOCUSS have assumed that x is unrestricted on
R

n. In some cases however, we may require that the sources be non-negative,
x[i] ≥ 0. This amounts to a change of prior on x from symmetric to one-sided,
but this results in nearly the same optimization problem as (5). To create a
non-negative FOCUSS algorithm, we need to ensure that the x[i] are initial-
ized to non-negative values, and that each iteration keeps the sources in the
feasible region. To do so, we propose the non-negative FOCUSS algorithm,

Π−1(x̂k) = diag(|x̂k[i]|2−p)

λk = λmax

(
1− ‖yk −Ax̂‖

‖yk‖
)

, λk > 0

x̂k ← Π−1(x̂k)AT
(
λkI + AΠ−1(x̂k)AT

)−1
yk

x̂k[i] ←
{

0 x̂k[i] < 0

x̂k[i] x̂k[i] ≥ 0
, (6)

where λk is a heuristically-adapted regularization term, limited by λmax which
controls the tradeoff between sparsity and reconstruction error (higher values



of λ lead to more sparse solutions, at the cost of increased error). We denote
this algorithm FOCUSS+, to distinguish from the FOCUSS algorithm [4]
which omits the last line of (6). The estimate of x is refined over iterations
of (6) and usually 10 to 50 iterations are needed for convergence (defined as
the change in x being smaller than some threshold from one iteration to the
next).

Sparse Bayesian Learning with Adjustable Variance Gaussian Pri-
ors (SBL-AVG)

Recently, a new class of Bayesian model characterized by Gaussian prior
sources with adjustable variances has been developed [11]. These models use
the linear generating model (1) for the data y but instead of using a non-
Gaussian sparsity inducing prior on the sources x (as FOCUSS does), they
use a flexibly-parameterized Gaussian prior,

pX(x) = p(x|α) =
n∏

i=0

N (x[i]|0, α−1
i ) , (7)

where the variance hyperparameter α−1
i can be adjusted for each compo-

nent x[i]. When α−1
i approaches zero, the density of x[i] becomes sharply

peaked making it very likely that the source will be zero, increasing the spar-
sity of the code. The algorithm for estimating the sources has been termed
Sparse Bayesian Learning (SBL), but we find this term to be too general,
as other algorithms (including the older FOCUSS algorithm) also estimate
sparse components in a Bayesian framework. We use the term SBL-AVG
(Adjustable Variance Gaussian) to be more specific.

To insure that the prior probability p(x|α) is sparsity-inducing, an ap-
propriate prior on the hyperparameter α must be chosen. In general, a
Gamma(αi|a, b) distribution can be used for the prior of αi, and in par-
ticular with a = b = 0, the prior on αi becomes uniform. This leads to
p(x[i]) having a Student’s t-distribution which qualitatively resembles the
�p-like distributions (with 0 < p ≤ 1) used to enforce sparsity in FOCUSS
and other algorithms.

SBL-AVG has been used successfully for pattern recognition, with perfor-
mance comparable to Support Vector Machines (SVMs) [11]. In these appli-
cations the known dictionary A is a kernel matrix created from the training
examples in the pattern recognition problem just as with SVMs. The perfor-
mance of SBL-AVG was similar to SVM in terms of error rates, while using
far fewer support vectors (non-zero xi) resulting in simpler models. Theo-
retical properties of SBL-AVG for subset selection have been elucidated [13],
and simulations on synthetic data show superior performance over FOCUSS
and other basis selection methods. To our knowledge, results have not been
previously reported for SBL-AVG on image coding.



Modified Matching Pursuit (MMP): Greedy vector selection

Many variations on the idea of matching pursuit, or greedy subset selec-
tion, have been developed. Here, we use Modified Matching Pursuit (MMP)
[1] which selects each vector (in series) to minimize the residual representa-
tion error. The simpler Matching Pursuit (MP) algorithm is more compu-
tationally efficient, but provides less accurate reconstruction. More details
and comparisons can be found in [1]. For the case of non-negative sources,
matching pursuit can be suitably adapted, and we call this algorithm MP+.

DICTIONARY LEARNING ALGORITHMS

In the previous section we discussed algorithms that accurately and sparsely
represent a signal using a known, predefined dictionary A. Intuitively, we
would expect that if A were adapted to the statistics of a particular problem
that better and sparser representations could be found. This is the motiva-
tion that led to the development of the FOCUSS-CNDL dictionary learning
algorithm. Dictionary learning is closely related to the problem of ICA which
usually deals with complete A but can be extended to overcomplete A [6].

FOCUSS-CNDL

The FOCUSS-CNDL algorithm solves the problem (1) when both the sources
x and the dictionary A are assumed to be unknown random variables [4]. The
algorithm contains two major parts, a sparse vector selection step and a dic-
tionary learning step which are derived in a jointly Bayesian framework. The
sparse vector selection is done by FOCUSS (or FOCUSS+ if non-negative xi

are needed), and the dictionary learning A-update step uses gradient descent.
With a set of training data Y = (y1, . . . , yN ) we find the maximum a

posteriori estimates Â and X̂ = (x̂1, . . . , x̂N ) such that

(Â, X̂) = arg min
A,X

N∑
k=1

‖yk −Axk‖2 + λdp(xk) , (8)

where dp(x) = ‖xk‖pp is the diversity measure (4) that measures the number
of non-zero elements of a source vector xk (see above).

The optimization problem (8) attempts to minimize the squared error
of the reconstruction of yk while minimizing dp and hence the number of
non-zero elements in x̂k. The problem formulation is similar to ICA in that
both model the input Y as being linearly generated by unknowns A and X,
but ICA attempts to learn a new matrix W which by Wyk = x̂k linearly
produces estimates x̂k in which the components x̂i,k are as statistically inde-
pendent as possible. ICA in general does not result in as sparse solutions as
FOCUSS-CNDL which specifically uses a sparsity-inducing non-linear itera-
tive FOCUSS algorithm to find x̂k.



We now summarize the FOCUSS-CNDL algorithm which was fully de-
rived in [4]. For each of the N data vectors yk in Y , we update the sparse
source vectors x̂k using one iteration of the FOCUSS or FOCUSS+ algorithm
(6). After updating x̂k for k = 1...N the dictionary Â is re-estimated,

Σyx̂ =
1
N

N∑
k=1

ykx̂T
k , Σx̂x̂ =

1
N

N∑
k=1

x̂kx̂T
k , δÂ = ÂΣx̂x̂ − Σyx̂

Â ← Â− γ
(
δÂ− tr (ÂT δÂ)Â

)
, γ > 0 , (9)

where γ is the learning rate parameter. Each iteration of FOCUSS-CNDL
consists of updating all xk, k = 1...N with one FOCUSS iteration (6), followed
by a dictionary update (9) (which uses Σ calculated from the updated x̂l

estimates). After each update of Â, the columns are adjusted to have equal
norm ‖ai‖ = ‖aj‖, in such a way that Â has unit Frobenius norm, ‖Â‖F = 1.

Overcomplete Independent Component Analysis (ICA)

Another method for learning an overcomplete dictionary based on ICA was
developed by Lewicki and Sejnowski [5, 6]. In the overcomplete case, the
sources must be estimated as opposed to in standard ICA (complete A),
where the sources are found by multiplying by the learned matrix W , x̂ =
Wy. In [5] the sources are estimated using a modified conjugate gradient
optimization of a cost function closely related to (5) that uses the 1-norm
(derived using a Laplacian prior on x). The dictionary is updated by gradient
ascent on the likelihood using a Gaussian approximations (cf. [5] eq. 20).

MEASURING PERFORMANCE

To compare the performance of image coding algorithms we need to measure
two quantities: distortion and compression. As a measure of distortion we use
a normalized root-mean-square-error (RMSE) calculated over all N patches
in the image,

RMSE =
1
σ

[
1
K

N∑
k=1

(yk −Ax̂k)2
] 1

2

, (10)

where σ is the variance of the elements in all the yk. Note that this is
calculated over the image patches, leading to a slightly different calculation
than the mean-square error over the entire image.

To measure how much a given transform algorithm compresses an image,
we need a coding algorithm that maps which coefficients were used and their
amplitudes into an efficient binary code. The design of such encoders is
generally a complex undertaking, and is outside the scope of our work here.
However, information theory states that we can estimate a lower bound on
the coding efficiency if we know the entropy of the input signal. Following



the method of Lewicki and Sejnowski (cf. [6] eq. 13) we estimate the entropy
of the coding using histograms of the quantized coefficients. Each coefficient
x̂k is quantized to 8 bits (or 256 histogram bins). The number of coefficients
in each bin is ci. The limit on the number of bits needed to encode each
input vector is,

#bits ≥ bitslim ≡ −
256∑
i=1

ci

N
log2 f [i] , (11)

where f [i] is the estimated probability distribution at each bin. We use
f [i] = ci/(Nn), while in [6] a Laplacian kernel is used to estimate the density.
The entropy estimate in bits/pixel is given by,

entropy =
bitslim

m
, (12)

where m is the size of each image patch (the vector yk). It is important to
note that this estimate of entropy takes into account the extra bits needed to
encode an overcomplete (n > m) dictionary, i.e. we are considering the bits
used to encode each image pixel, not each coefficient.

EXPERIMENTS

Previous work has shown that learned complete bases can provide more ef-
ficient image coding (fewer bits/pixel at the same error rate) when com-
pared with unadapted bases such as Gabor, Fourier, Haar and Daubechies
wavelets [5]. In our earlier work [4] we showed that overcomplete dictionaries
A can give more efficient codes than complete bases. Here, our goal is to
compare methods for learning overcomplete A (FOCUSS-CNDL and over-
complete ICA), and methods for coding images once A has been learned,
including the case when the sources must be non-negative.

Comparison of dictionary learning methods

To provide a comparison between FOCUSS-CNDL and overcomplete ICA [6],
both algorithms were used to train a 64× 128 dictionary A on a set of 8× 8
pixel patches drawn from images of man-made objects. For FOCUSS-CNDL,
training of A proceeded as described in [4]. Once A was learned, FOCUSS
was used to compare image coding performance, with parameters p = 0.5,
iterations = 50, and the regularization parameter λmax was adjusted over the
range [0.005, 0.5] to achieve different levels of compression. A separate test
set was composed of 15 images of objects from the COIL database [7].

Figure 1 shows the image coding performance of dictionaries learned using
FOCUSS-CNDL (which gave better performance) and overcomplete ICA.
FOCUSS was used to code the test images, which may give an advantage
to the FOCUSS-CNDL dictionary as it was able to adapt its dictionary to
sources generated with FOCUSS (while overcomplete ICA uses a conjugate
gradient method to find sources).



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Comparing dictionary learning methods

Entropy (bits/pixel)

R
M

S
E

Focuss−CNDL
Overcomplete ICA

Figure 1: Image coding with 64x128 overcomplete dictionaries learned with
FOCUSS-CNDL and overcomplete ICA.

Comparing image coding with MMP, SBL-AVG and FOCUSS

In this experiment we compare the coding performance of the MMP, SBL-
AVG and FOCUSS vector selection algorithms using an overcomplete dictio-
nary on a set of man-made images. The dictionary learned with FOCUSS-
CNDL from the previous experiment was used, along with the same 15 test
images. For FOCUSS, parameters were set as follows: p = 0.5, λmax ∈
[0.005, 0.5]. For SBL-AVG, parameters were: iterations = 1000 and the fixed
noise parameter σ2 was varied over [0.005, 2.0]. For MMP, the number of
vectors selected varied from 1 to 13.

Figure 2b-f shows examples of an image code with the algorithms. FO-
CUSS was used in Figure 2b for low compression and Figure 2c for high
compression. SBL-AVG was similarly used in Figure 2d and 2e. In both
cases, SBL-AVG was more accurate and provided higher compression, e.g.
MSE of 0.0021 vs. 0.0026 at entropy 0.54 vs 0.78 bits/pixel. In terms of
sparsity, Figure 2e requires only 154 nonzero coefficients (of 8192, or about
2%) to represent the image.

Figure 3a shows the tradeoff between accurate reconstruction (low RMSE)
and compression (bits/pixel) as approximated by the entropy estimate (12).
The lower right of the curves represents the higher accuracy/lower compres-
sion regime, and in this range the SBL performs best, with lower RMSE error
at the same level of compression. At the most sparse representation (upper
left of the curves) where only 1 or 2 dictionary vectors are used to represent
each image patch, the MMP algorithm performed best. This is expected in
the case of 1 vector per patch, where the MMP finds the optimal single vector
to match the input. Coding times per image on a 1.7 GHz AMD processor
are: FOCUSS 15.64 sec, SBL-AVG 17.96 sec, MMP 0.21 sec.

Image coding with non-negative sources

Next, we investigate the performance tradeoff associated with using non-
negative sources x. Using the same set of images as in the previous section,



(a)  Original (b)  FOCUSS (c)  FOCUSS (d)  SBL-AVG

(e) SBL-AVG (f)  MMP (g)  MP+ (h)  FOCUSS+

Figure 2: Images coded using an overcomplete dictionary. (a) Original image (b)
FOCUSS 0.78 bpp (bits/pixel) (c) FOCUSS 0.56 bpp (d) SBL-AVG 0.68 bpp, 214
nonzero sources (out of 8192) (e) SBL-AVG 0.54 bpp, 154 nonzero sources (f) MMP
0.65 bpp (g) MP+ 0.76 bpp (h) FOCUSS+ 0.77 bpp, 236 nonzero sources. In (b)-(f)
the dictionary was learned using FOCUSS-CNDL. In (g)-(h), non-negative codes
were generated and the dictionary was learned with FOCUSS-CNDL+.

we learn a new A ∈ R
64×128 using the non-negative FOCUSS+ algorithm (6)

in the FOCUSS-CNDL dictionary learning algorithm (9). The image gray-
scale pixel values are scaled to yi ∈ [0, 1] and the sources are also restricted
to xi ≥ 0 but elements of the dictionary are not further restricted and may
be negative. Once the dictionary has been learned, the same set of 15 images
as above were coded using FOCUSS+. Figure 2g and 2h show an image
coded using MP+ and FOCUSS+. FOCUSS+ is visually superior and pro-
vides higher quality reconstruction (MSE 0.0016 vs. 0.0027) at comparable
compression rates (0.77 vs. 0.76 bits/pixel). Figure 3b shows the compres-
sion/error tradeoff when using non-negative sources to code the same set of
test images as above. As expected, there is a reduction in performance when
compared with methods that use positive and negative sources especially at
lower compression levels.

CONCLUSION

We have discussed methods for learning sparse representations of images us-
ing overcomplete dictionaries, and methods for adapting those dictionaries
to the problem domain. Images can be represented accurately with a very
sparse code, with on the order of 2% of the coefficients being nonzero. When
the sources are unrestricted, x ∈ R

n, the SBL-AVG algorithm provides the
best performance, encoding images with fewer bits/pixel at the same error
when compared FOCUSS and Matching Pursuit. When the sources are re-
quired to be non-negative, x[i] ≥ 0, the FOCUSS+ and associated dictionary
learning algorithm presented here provide the best performance.
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Figure 3: (a) Comparison of sparse image coding. (b) Image coding using non-
negative sources x, with the FOCUSS curve from (a) included for reference. Both
experiments use a 64x128 overcomplete dictionary.
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