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Abstract—We present a case study of a difficult real-world
pattern recognition problem: predicting hard drive failure
using attributes monitored internally by individual drives.
We compare the performance of support vector machines
(SVMs), unsupervised clustering, and non-parametric sta-
tistical tests (rank-sum and reverse arrangements). Some-
what surprisingly, the rank-sum method outperformed the
other methods, including SVMs. We also show the utility
of using non-parametric tests for feature set selection.
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I. Introduction

Since 1994, hard drive manufacturers have been devel-
oping self-monitoring technology in their products, in an
effort to predict failures early enough to allow users to
backup their data [1]. The Self-Monitoring and Report-
ing Technology (SMART) system uses attributes collected
during normal operation (and during off-line tests) to set
a failure prediction flag. The SMART flag is a one-bit
signal that can be read by operating systems and third-
party software, designed to warn users of impending drive
failure. Some of the attributes used to make the failure
prediction include counts of track seek retries, write faults,
reallocated sectors, head fly heights, and high temperature.
Most attributes are error count data, implying positive in-
teger data values, and a pattern of increasing attribute
values over time is indicative of impending failure. (Drives
internally detect and correct many of these errors to ac-
cess user data properly). Each manufacturer develops and
uses their own set of attributes and their own algorithm for
failure prediction. Because every time a failure warning is
triggered, the drive could be returned to the factory for
warranty replacement, manufacturers are very concerned
with reducing the false alarm rate of the algorithm. Cur-
rently, all manufacturers use a threshold algorithm which
triggers a SMART flag when any attribute exceeds a prede-
fined value. The thresholds are set conservatively to avoid
false alarms at the expense of predictive accuracy, with an
acceptable false alarm rate on the order of 0.1%. For the
SMART algorithm currently implemented in drives, man-
ufacturers estimate the detection rate to be 3 − 10%. Our
previous work has shown that by using non-parametric sta-
tistical tests, the accuracy of correctly detected failures can
be improved over the manufacturer’s threshold rules while
maintaining low false alarm rates [1], [2].
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II. Data Description

The dataset consists of time series of SMART attributes
from one drive model from a single manufacturer (a dif-
ferent manufacturer and drive model than in [1]). Data
from 369 drives was collected, and each drive was labelled
good or failed. Drives labelled as good were from a reliabil-
ity demonstration test, run in a controlled environment by
the manufacturer. Drives labelled as failed were returned
to the manufacturer from users after a failure. It should
be noted that since the good drive data was collected in a
controlled uniform environment and the failed data comes
from drives that were operated by users, it is reasonable
to expect that there will be differences between the two
populations due to the different manner of operation. Al-
gorithms that attempt to learn the difference between the
good and failed populations may in fact be learning this
difference and not the desired difference between good and
nearly-failing drive samples. We highlight this point to em-
phasize the importance of understanding the populations in
the data and considering alternative reasons for differences
between classes.

Each SMART sample was taken at two hour intervals
in the operating drives, and the most recent 300 sam-
ples are saved on the disk. Each sample contains the
drive’s serial number, the total power-on-hours, and 60
other performance-monitoring attributes.

III. Feature Selection

As will be demonstrated below, some attributes are not
strongly correlated with future drive failure and including
these attributes can have a negative impact on the classifier
performance. Because it is computationally expensive to
try all combinations of attribute values, we use a fast non-
parametric test to identify potentially useful attributes.

A. Reverse arrangements test

The reverse arrangements test is a non-parametric test
for trend, which is applied to each variable in the dataset
[3], [4]. Suppose we have a ordered sequence of observations
of a random variable, xi, i = 1...N . The test statistic A
is the sum of all reverse arrangements, where a reverse
arrangement is defined as an occurrence of xi > xj when
i < j. To find A we use the intermediate sums Ai and the
indicator hij ,

A =
N−1∑
i=1

Ai , (1)
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where,

Ai =
N∑

j=i+1

hij (2)

hij =
{

1 if xi > xj

0 otherwise (3)

An example of calculating A is given in Bendat [4], pg 107.
For sample size N and significance level α, Appendix Table
A.6 of [4] gives the acceptance regions,

AN ;1−α/2 < A ≤ AN ;α/2 , (4)

for the null hypothesis of no trend in the sequence xi (i.e.
that xi are independent observations of the same underly-
ing random variable).

The test is formulated assuming that the values are
drawn from a continuous distribution. SMART error count
data values are discrete and allow the possibility of ties. It
is conventional in rank-based methods to add random noise
to break the ties, or to use the midrank method described
in Section IV-C.

B. Application to SMART data

To apply the reverse arrangements test to the SMART
data for the purpose of feature extraction, the test is per-
formed on a set of 100 samples taken at the end of the time
series available. To break ties, uniform random noise within
the range [−0.1, 0.1] is added to each value (which are ini-
tially non-negative integers). The percentage of drives for
which the null hypothesis of no trend is rejected is calcu-
lated for good and failed drives. Table I lists attributes
and the percent of drives that have significant trends for
the good and failed populations. The null hypothesis (no
trend) was accepted for 1968 ≤ A ≤ 2981, for a significance
level higher than 99%. We are interested in attributes that
have both a high percentage of failed drives with significant
trends and a low percentage of good drives with trends, in
the belief that an attribute that increases over time in failed
drives while remaining constant in good drives is likely to
be informative in predicting impending failure. From Table
I we can see that attributes such as BadSamp, MaxVisi-
bleReadErr and MaxSeekErr could be useful predictors.

IV. Failure detection algorithms

We describe how the pattern recognition algorithms and
statistical tests are applied to the SMART dataset for fail-
ure prediction.

A. Support vector machines

Support vector machines (SVM) are popular modern
pattern recognition and regression algorithms. First devel-
oped by Vapnik [5], the principle of the SVM classifier is to
project the data into a higher dimensional space where the
classes are separated by a linear hyperplane which is de-
fined by a small set of support vectors. We use the widely-
available MySVM package developed by Ruping [6].

To apply the SVM to the SMART dataset, drives are
randomly assigned into training and test sets. The training

TABLE I

Percent of drives with significant trends by the reverse

arrangements test for selected attributes.

Attribute % Good % Failed
MinimumTemp 34.8% 42.9%
MaximumTemp 8.4% 58.9%
FHSigmaOD 15.7% 21.4%
FHSigmaID 0.6% 10.7%
GListEntries 0.6% 10.7%
SListEntries 0.6% 3.6%
BadID 0.0% 0.0%
BadSamp 0.6% 30.4%
NoTMD 0.6% 0.0%
Spinups 97.2% 92.9%
ThirdSeek 53.9% 46.4%
OneTrackSeek 1.7% 25.0%
SectorsRead 1.1% 37.5%
SectorsWritten 0.6% 32.1%
L1ReadErr 0.0% 0.0%
L2ReadErr 0.6% 5.4%
MaxWriteFaults 1.1% 0.0%
MaxVisibleReadErr 0.0% 41.1%
MaxHiddenReadErr 0.0% 0.0%
MaxTAErrors 0.0% 0.0%
MaxGListEntries 0.0% 0.0%
MaxSListEntries 0.0% 8.9%
MaxSeeks 0.6% 5.4%
MaxSeekErr 1.7% 39.3%

set consists of 25% of good drives and 10% of failed drives.
For validation, means and standard deviations of detection
and false alarm rates are found over 10 trials with different
training and test sets.

Two types of preprocessing must be done before pre-
senting the data to the SVM classifier. A vector x of five
consecutive samples of each attribute is used to make the
classification, and every five consecutive samples in the his-
tory of the drive is used. (Sample lengths of between 2
and 15 were tried, with 5 providing the best performance).
The length of x is (5×# of attributes). If any x is classi-
fied as failed, then the drive is predicted to fail. Since the
classifier is applied repeatedly to different vectors of sam-
ples from the same drive, each test must be very resistant
to false alarms. The first type of preprocessing is mag-
nitude sorting; the vector x is sorted in descending value
for each attribute, with the largest samples placed in lower
numbered indices of x. Because the range of values the
different attributes may take can differ widely (for drive
technology reasons), the attribute values are binned into
quartiles, with a special category for zero values. Thus, the
range that each attribute can take is restricted to [0, 1].

Parameters for the MySVM program are set as follows
(see [6] for details): epsilon = 10−2, max iterations =
10000, convergence epsilon = 10−3, no scale. The pa-
rameters C, L+ and L− were varied to adjust the tradeoff
between detection and false alarms.



B. Clustering (Autoclass)

Unsupervised clustering algorithms can be used for
anomaly detection. Here, we use the Autoclass package
[7] to learn a probabilistic model of the training data from
only good drives. Any sample that is an anomaly (out-
lier) from the learned statistical model of good drives is
used as a failure prediction. The expectation maximization
(EM) algorithm is used to find the highest-likelihood mix-
ture model that fits the data. A number of forms of the
probability density function (pdf) are available, including
Gaussian, Poisson (for integer count data) and nomial (un-
ordered discrete, either independent or covariant). For the
hard drive problem, they are all set to independent nomial
to avoid assuming a parametric form for any attribute’s dis-
tribution. This choice results in an algorithm very closely
related to the naive Bayes EM algorithm [2], which was
found to perform well on earlier SMART data.

Before being presented to Autoclass the attribute values
are discretized into equal-sized bins, where the bin range
is determined by the maximum range of the attribute in
the training set (of only good drives). Four bins were used,
with an extra bin for zero-valued attributes. The training
procedure attempts to find the most likely mixture model
to account for the good drive data. The number of clus-
ters can also be determined by Autoclass, but here we have
restricted it to a small fixed number. During testing, the
estimated probability that a sample belongs to each cluster
is calculated, and the sample is assigned to the most likely
one. A failure prediction warning is triggered for a drive if
the probability of any of its samples is below a threshold.
To increase robustness, the input vector consists of two con-
secutive samples of each attribute (as described above for
the SVM). The Autoclass threshold parameter was varied
to adjust tradeoff between detection and false alarm.

C. Rank-sum test

The Wilcoxon-Mann-Whitney rank-sum test is used to
determine if the two random data sets arise from the same
probability distribution [8] (pg. 5). One set T comes from
the drive under test and the other R is a reference set
composed of samples from good drives. The use of this
test requires some assumptions to be made about the dis-
tributions underlying the attribute values and the process
of failure. Each attribute has a good distribution G and
an about-to-fail distribution F. For most of the life of the
drive, each attribute value is chosen from the G, and then
at some time before failure, the values begin to be chosen
from F . This model posits an abrupt change from G to
F , however, the test should still work if the distribution
changes gradually over time, and only give a warning when
it has changed significantly from the reference set.

The test statistic WS is calculated by ranking the ele-
ments of R (of size n) and T (of size m) such that each
element of R and T has a rank S ∈ [1, n + m] with the
smallest element assigned S = 1. The rank-sum WS is the
sum of the ranks S of the test set.

The rank-sum test is often presented assuming continu-
ous data. The attributes in the SMART data are discrete

which creates the possibility of ties. Tied values are ranked
by assigning identical values to their midrank [8] (pg. 18),
which is the average rank that the values would have if they
were not tied. For example, if there were three elements
tied at the smallest value, they would each be assigned the
midrank 1+2+3

3 = 2.
If the sample sizes are large enough (usually, if the

smaller sample m > 10 or n+m > 20), the rank-sum statis-
tic WS is normally distributed under the null hypothesis
(T and R are from the same population) due to the central
limit theorem, with mean and variance:

E(WS) =
1
2
n(n + m + 1) (5)

V ar(WS) =
nm(n + m + 1)

12
− CT (6)

where CT is the ties correction, defined as,

CT =
mn

e∑
i=1

(d3
i
− di)

12(m + n)(m + n − 1)
(7)

where e is the number of distinct values in R and T , and
di is the number of tied elements at each value. The prob-
ability of a particular WS can be found using the standard
normal distribution, and a critical value α can be set at
which to reject the null hypothesis. In cases of smaller
samples where the central limit theorem does not apply,
an exact method of calculating the probability of the test
statistic can be used (see [1] and [9] for details).

For application to the SMART data, the reference set R
for each attribute (size n = 50) is chosen at random from
the samples of good drives. The test set T (size m = 5) is
chosen from consecutive samples of the drive under test. If
the test set for any attribute over the history of the drive
is found to be significantly different from the reference set
R the drive is predicted to fail. The significance level α
is adjusted in the range [10−7, 10−1] to vary the tradeoff
between false alarms and detections. We use the one-sided
test of T coming from a larger distribution than R, against
the hypothesis of identical distributions.

D. Reverse arrangements tests

The reverse arrangements test described above for fea-
ture selection can also be used for failure prediction. No
training set is required, as the test is used to determine
if there is a significant trend in the time series of an at-
tribute. For use with the SMART data, 100 samples are
used in each test, and every consecutive sequence of sam-
ples is used. For each drive, if any test of any attribute
shows a significant trend, then the drive is predicted to fail.
As with the rank-sum, the significance level α controls the
detection/false alarm tradeoff.

V. Results

Figure 1 shows the failure prediction results using the
SVM and Autoclass classifiers with 25 attributes that were
selected because of promising reverse arrangements test or



z-score values. Although both classifiers appear to have
learned some aspects of the problem, the SVM was clearly
superior, yet even with the modest 17.5% detection, the
2.3% false alarm is much higher than desirable (compared
to the low actual failure rates of hard drives).

Using the reverse arrangements test (Table I) we postu-
late that using an individual attribute could improve the
performance over that shown in Figure 1. The MaxVis-
ibleReadErr attribute appears promising (with 41.1% of
failed drives showing significant trends). Figure 2 shows the
failure prediction results using the only MaxVisibleRead-
Err attribute. The rank-sum test provided the best per-
formance, with 24.3% detection with false alarms too low
to measure, and 33.2% detection and 0.5% false alarms.
While Autoclass performed better than the reverse ar-
rangements test, the false alarm rate with Autoclass could
not be adjusted lower than 1.0% (as could be done with the
other two tests). The SVM was unable to detect failures
using this attribute.

Using combinations of attributes in the rank-sum test
can lead to improved results over single-attribute classi-
fiers. With MaxVisibleReadErr and MaxHiddenReadErr
attributes, 43.1% of failures are detected with 0.6% false
alarms. If even lower false alarm rates are needed, this
combination of attributes can detect 25.0% of failures with
no measured false alarms.
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Fig. 1. Failure prediction performance of SVM and Autoclass using
25 attributes. Error bars are ±1 standard error.

VI. Conclusions

We have shown that the non-parametric rank-sum test
can be used for pattern recognition, and that it can have
higher performance than SVMs or unsupervised clustering
on the hard drive failure prediction problem. The best per-
formance occurred when using a small set of attributes (or
a single attribute). Adding additional features increased
the rate of false alarms. Attributes useful for failure pre-
diction were selected by using the reverse arrangements test
for increasing trend.

Improving the performance of hard drive failure predic-
tion will have many practical benefits. Increased accuracy
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Fig. 2. Failure prediction performance of classifiers using MaxVisi-
bleReadErr attribute. Error bars are ±1 standard error. For rank-
sum and reverse arrangements, error bars are smaller than line mark-
ers.

of detection will benefit users by giving them an opportu-
nity to backup their data. Very low false alarms (in the
range of 0.1%) will reduce the number of returned good
drives, thus lowering costs to manufacturers of implement-
ing improved SMART algorithms. While we believe the
algorithms presented here are of high enough quality to be
implemented in drives, it is still important to test them
on larger number of drives (on the order of thousands) to
measure accuracy to the desired precision of 0.1%.
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