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Abstract

Given a redundant dictionary of basis vectors (or atoms)goal is to
find maximally sparse representations of signals. Preljipuse have
argued that a sparse Bayesian learning (SBL) frameworkrigcpkarly
well-suited for this task, showing that it has far fewer lazénima than
other Bayesian-inspired strategies. In this paper, weigedurther evi-
dence for this claim by proving a restricted equivalenced@gn, based
on the distribution of the nonzero generating model weighkereby the
SBL solution will equal the maximally sparse representatidVe also
prove that if these nonzero weights are drawn from an apprate Jef-
freys prior, then with probability approaching one, our igglence con-
dition is satisfied. Finally, we motivate the worst-casense® for SBL
and demonstrate that it is still better than the most widegdsparse rep-
resentation algorithms. These include Basis Pursuit (BRigh is based
on a convex relaxation of th& (quasi)-norm, and Orthogonal Match-
ing Pursuit (OMP), a simple greedy strategy that iteragigellects basis
vectors most aligned with the current residual.

1 Introduction

In recent years, there has been considerable interest indisgarse signal representations
from redundant dictionaries [1, 2, 3, 4, 5]. The canonicaifof this problem is given by,

min ||wl|lo,  S.t.t = dw, @)

where® € RV*M js a matrix whose columns represent an overcomplete or czohin
basis (i.e., rankd) = N andM > N), w € RM is the vector of weights to be learned,
andt is the signal vector. The cost function being minimized espnts thé, (quasi)-norm
of w (i.e., a count of the nonzero elementu.

Unfortunately, an exhaustive search for the optimal remresion requires the solution of
up to (]]V\f) linear systems of siz&/ x N, a prohibitively expensive procedure for even
modest values o/ and N. Consequently, in practical situations there is a needfer a
proximate procedures that efficiently solve (1) with highkmbility. To date, the two most
widely used choices are Basis Pursuit (BP) [1] and Ortholgbtadching Pursuit (OMP)
[5]. BP is based on a convex relaxation of thenorm, i.e., replacindlw||o with ||w||1,
which leads to an attractive, unimodal optimization prabkhat can be readily solved via
linear programming. In contrast, OMP is a greedy strategyitbratively selects the basis
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vector most aligned with the current signal residual. Athesiep, a new approximant is
formed by projecting onto the range of all the selected dictionary atoms.

Previously [9], we have demonstrated an alternative algorfor solving (1) using a sparse
Bayesian learning (SBL) framework [6] that maintains sal/significant advantages over
other, Bayesian-inspired strategies for finding sparsetisols [7, 8]. The most basic for-
mulation begins with an assumed likelihood model of the @liggiven weightsw,

1
plthe) = (2n0%) 2 exp (~ e~ w3 ) @
To provide a regularizing mechanism, SBL uses the paraimeteweight prior
M w2
p(wiy) =[] @)~ exp (—Q—L) , ®3)
i=1 ¢
wherey = [y1,...,v:]7 is a vector ofM hyperparameters controlling the prior variance

of each weight. These hyperparameters can be estimatedlieata by marginalizing
over the weights and then performing ML optimization. Thetdanction for this task is

L(v) = —log / p(t}w)p(w; 7)dw o log S| + £7E; 1, @)

wherey; £ 02 + ®I'd” and we have introduced the notatibn= diag(~). This pro-
cedure, which can be implemented via the EM algorithm (oresather technique), is
referred to as evidence maximization or type-Il maximurelitkood [6]. Oncey has been
estimated, a closed-form expression for the posterior te@lgtribution is available.

Although SBL was initially developed in a regression contéxcan be easily adapted to
handle (1) in the limit ag> — 0. To accomplish this we must reexpress the SBL iterations
to handle the low noise limit. Applying various matrix idéiets to the EM algorithm-based
update rules for each iteration, we arrive at the modifiecatg{B]

t
N . N ~T 1/2 1/2
Yrew = diag <w(old)w(old) + {I - F(old) (q)r(om)) CI)} F(O'd))
T
. )2 1/2
Winew) = 1—‘(new) ((PF(new)) t, (5)

where(-)" denotes the Moore-Penrose pseudo-inverse. Givertthatangé®) and as-
sumingy is initialized with all nonzero elements, then feasibilgyenforced at every itera-
tion, i.e.,t = dw. We will henceforth refer tavSEt as the solution of this algorithm when
initialized atT" = I, andw = ®'¢.! In [9] (which extends work in [10]), we have argued
why wSB should be considered a viable candidate for solving (1).

In comparing BP, OMP, and SBL, we would ultimately like to kn what situations a
particular algorithm is likely to find the maximally spars#idion. A variety of results stip-
ulate rigorous conditions whereby BP and OMP are guararitesedive (1) [1, 4, 5]. All
of these conditions depend explicitly on the number of nomeéements contained in the
optimal solution. Essentially, if this number is less thams ®-dependent constanrt the
BP/OMP solution is proven to be equivalent to the minim¢gsmorm solution. Unfortu-
nately howevers turns out to be restrictively small and, for a fixed redungamatio M /N,
grows very slowly agV becomes large [3]. But in practice, both approaches stifope
well even when these equivalence conditions have beenlgnastated. To address this
issue, a much looser bound has recently been produced fatepEndent only od//N.
This bound holds for “most” dictionaries in the limit A&sbecomes large [3], where “most”

'Based on EM convergence properties, the algorithm will converge tanitally to a fixed point.



is with respect to dictionaries composed of columns drawfotmly from the surface of

an N-dimensional unit hypersphere. For example, Wit N = 2, it is argued that BP is
capable of resolving sparse solutions with roughB/N nonzero elements with probability
approaching one a§¥ — oo.

Turning to SBL, we have neither a convenient convex costtfangas with BP) nor a
simple, transparent update rule (as with OMP); however,amenonetheless come up with
an alternative type of equivalence result that is neithequivocally stronger nor weaker
than those existing results for BP and OMP. This conditiodépendent on the relative
magnitudes of the nonzero elements embedded in optimai@muto (1). Additionally,
we can leverage these ideas to motivate which sparse s@tie the most difficult to find.
Later, we provide empirical evidence that SBL, even in thisst-case scenario, can still
outperform both BP and OMP.

2 Equivalence Conditionsfor SBL

In this section, we establish conditions wheraby®- will minimize (1). To state these
results, we require some notation. First, we formally dedidéctionary® = [¢1, ..., o)
as a set of\/ unit /3-norm vectors (atoms) iR”Y, with M/ > N and rank®) = N. We
say that a dictionary satisfies the unique representatiopepty (URP) if every subset of
N atoms forms a basis iRY. We definew;) as thei-th largest weight magnitude ano
as the||w||o-dimensional vector containing all the nonzero weight nitagies ofw. The
set of optimal solutions to (1) 8/* with cardinality|WW*|. Thediversity(or anti-sparsity)

of eachw* € W* is defined aD* 2 [|w*|o.

Result 1. For a fixed dictionaryp that satisfies the URP, there exists a setof 1 scaling
constants; € (0, 1] (i.e., strictly greater than zero) such that, for @ny ®w’ generated
with

Wiy < VW i=1,...,M—1, (6)

SBL will produce a solution that satisfigsS®"||; = min(N, [|[w’[|o) andwe- € W*.

Do to space limitations, the proof has been deferred to [ITHe basic idea is that, as
the magnitude differences between weights increase, agi@ey scale, the covariance
3 embedded in the SBL cost function is dominated by a singlgotiary atom such that
problematic local minimum are removed. The unique, globaimum in turn achieves the
stated resulf. The most interesting case occurs wijes || < IV, leading to the following:

Corollary 1. Given the additional restrictioffw’||, < N, thenw® = w’ € W* and
[W*| =1, i.e., SBL will find the unique, maximally sparse represgateof the signat.

See [11] for the proof. These results are restrictive in émse that the dictionary dependent
constants; significantly confine the class of signalshat we may represent. Moreover,
we have not provided any convenient means of computing wieadlifferent scaling con-
stants might be. But we have nonetheless solidified the métiat SBL is most capable of
recovering weights of different scales (and it must stiliifall D* nonzero weights no mat-
ter how small some of them may be). Additionally, we have gjgetconditions whereby
we will find the uniquew* even when the diversity is as large/@$ = N — 1. The tighter
BP/OMP bound from [1, 4, 5] scales &s(N~!/?), although this latter bound is much
more general in that it is independent of the magnitudesehtinzero weights.

In contrast, neither BP or OMP satisfy a comparable resnlthdth cases, simple 3D
counter examples suffice to illustrate this pdintVe begin with OMP. Assume the fol-

2Because we have effectively shown that the SBL cost function mustibeodal, etc., any proven
descent method could likely be applied in place of (5) to achieve the samlé re

3While these examples might seem slightly nuanced, the situations being illdstateoccur
frequently in practice and the requisite column normalization introducees somplexity.
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where ® satisfies the URP and has columps of unit ¢, norm. Given any € (0,1),
we will now show that OMP will necessarily fail to find*. Providede < 1, at the first
iteration OMP will selectp;, which solvesnax; [t7 ¢;|, leaving the residual vector

r=I—-¢i¢1)t=[¢/v2 0 0]". (®)

Next, ¢4 will be chosen since it has the largest value in the top mositthus solving
max; |r{ ¢;|. The residual is then updated to become

ro=IT—[¢1 ds][ 1 s ])t=

€
101v2

From the remaining two columns; is most highly correlated witlp3. Oncegs is se-
lected, we obtain zero residual error, yet we did not fisdd which involves onlyg, and
¢2. Soforalle € (0, 1), the algorithm fails. As such, there can be no fixed constant)
such that ifw&) =e<vw, =v,weare guaranteed to obtais* (unlike with SBL).

[1 —10 0] 9)

We now give an analogous example for BP, where we presentsiblessolution with
smaller?; norm than the maximally sparse solution. Given

1 0 1 0.1 0.1
€ _10.012 \/01.102 €
0 10 #As 7w
it is clear that|w*|ly, = 1 + e. However, for alle € (0,0.1), if we form a

feasible solution using onlyb,, ¢3, and ¢4, we obtain the alternate solutiow =

[(1-106) 0 5VI.02¢ 5yI.02¢ ] with |[w||; ~ 1 +0.1¢. Since this has a smaller
¢1 norm for alle in the specified range, BP will necessarily fail and so agai cannot
reproduce the result for a similar reason as before.

At this point, it remains unclear what probability distritmns are likely to produce weights
that satisfy the conditions of Result 1. It turns out that fd&dfreys prior, given by

p(z) < 1/x, is appropriate for this task. This distribution has thequei property that

the probability mass assigned to any given scaling is edWiate explicitly, for anys > 1,

P (x € [si, si“]) x log(s) VieZ. (12)

For example, the probability thatis betweenl and 10 equals the probability that it lies
between10 and 100 or betweer).01 and0.1. Because this is an improper density, we
define an approximate Jeffreys prior with range parameter(0, 1]. Specifically, we say
thatx ~ J(a) if

p(fl’) = m fOI‘x S [(l, 1/04} (12)
With this definition in mind, we present the following result

Result 2. For a fixed® that satisfies the URP, I¢tbe generated by = dw’, wherew’
has magnitudes drawn iid frooi(a). Then asu approaches zero, the probability that we
obtain aw’ such that the conditions of Result 1 are satisfied approaatigs

Again, for space considerations, we refer the reader to. [Hdwever, on a conceptual
level this result can be understood by considering theildigton of order statistics. For



example, givenM samples from a uniform distribution between zero and sémeith
probability approaching one, the distance betweerkitieand(k + 1)-th order statistic can
be made arbitrarily large @moves towards infinity. Likewise, with thé&(a) distribution,
the relative scaling between order statistics can be isectavithout bound as decreases
towards zero, leading to the stated result.

Corollary 2. Assume thatD’ < N randomly selected elements of are set to zero.
Then asa approaches zero, the probability that we satisfy the canditof Corollary 1
approaches unity.

In conclusion, we have shown that a simple, (approximate)nformative Jeffreys prior
leads to sparse inverse problems that are optimally solise&BL with high probability.
Interestingly, it is this same Jeffreys prior that forms itllicit weight prior of SBL (see
[6], Section 5.1). However, it is worth mentioning that atldeffreys prior-based tech-
niques, e.g., direct minimization efw) = [], ﬁ subject tot = ®w, do not provide
any SBL-like guarantees. Although several algorithms detekat can perform such a
minimization task (e.qg., [7, 8]), they perform poorly withspect to (1) because of conver-
gence to local minimum as shown in [9, 10]. This is especiallg if the weights are highly

scaled, and no nontrivial equivalence results are knownist r these procedures.

3 Worst-Case Scenario

If the best-case scenario occurs when the nonzero weightllasf very different scales,
it seems reasonable that the most difficult sparse inverd@gm may involve weights of
the same or even identical scale, ew;,= w5 = ... w}.. This notion can be formalized
somewhat by considering the* distribution that is furthest from the Jeffreys prior. Ejrs
we note that both the SBL cost function and update rules atepiendent of the overall
scaling of the generating weights, meaning* is functionally equivalent tav* provided
« is nonzero. This invariance must be taken into account inaoaitysis. Therefore, we
assume the weights are rescaled such}hato? = 1. Given this restriction, we will find
the distribution of weight magnitudes that is most différieam the Jeffreys prior.

Using the standard procedure for changing the parametierizaf a probability density,
the joint density of the constrained variables can be coetpsimply as

D
1
p(wi,. .., wh.) o< —p—  for Y @i =1, wj >0,Vi. (13)
[z w; i=1
From this expression, it is easily shown thaéit = w; = ... = w},. achieves the global

minimum. Consequently, equal weights are the absdesst likely to occur from the
Jeffreys prior. Hence, we may argue that the distributiat #ssignso? = 1/D* with
probability one is furthest from the constrained Jeffresiom

Nevertheless, because of the complexity of the SBL framlewbis difficult to prove ax-
iomatically thatw™* ~ 1 is overall the most problematic distribution with respecsparse
recovery. We can however provide additional motivationidty we should expect it to
be unwieldy. As proven in [9], the global minimum of the SBLstdunction is guaran-
teed to produce soma* € W*. This minimum is achieved with the hyperparameters
i = (w})?, Vi. We can think of this solution as forming a collapsed, or degate co-
varianceX; = ®I'*®7 that occupies a propdp*-dimensional subspace of-dimensional
signal space. Moreover, this subspace must necessarilginodhe signal vectot. Essen-
tially, X7 proscribes infinite density t leading to the globally minimizing solution.

Now consider an alternative covariangg that, although still full rank, is nonetheless ill-
conditioned (flattened), containirtgwithin its high density region. Furthermore, assume
that X7 is not well aligned with the subspace formed By. The mixture of two flat-
tened, yet misaligned covariances naturally leads to a mateminous (less dense) form



as measured by the determindmE; + 8X7|. Thus, as we transition froE{ to X}, we
necessarily reduce the densitytathereby increasing the cost functidriy). So if SBL
converges ta; it has fallen into a local minimum.

So the question remains, what valuesuf are likely to create the most situations where
this type of local minima occurs? The issue is resolved wheragain consider th®*-
dimensional subspace determinedXjy. The volume of the covarianceithin this sub-
space is given bj/<I>F*<I>*T\, where®* andI'™ are the basis vectors and hyperparameters
associated witho*. The larger this volume, the higher the probability thatotbasis vec-
tors will be suitably positioned so as to both (i), contawithin the high density portion

and (i), maintain a sufficient component that is misalignéih the optimal covariance.

The maximum volume of®*I'*®*7'| under the constrainfs, w; = 1 andy; = (w*)?
occurs withy; = 1/(D*)?, i.e., all thew; are equal. Consequently, geometric considera-
tions support the notion that deviance from the Jeffreysrpeiads to difficulty recovering
w*. Moreover, empirical analysis (not shown) of the relatlupsbetween volume and
local minimum avoidance provide further corroborationto$thypothesis.

4 Empirical Comparisons

The central purpose of this section is to present empiridgdieace that supports our theo-
retical analysis and illustrates the improved performaaféerded by SBL. As previously
mentioned, others have established deterministic eaurieal conditions, dependent Hif,
whereby BP and OMP are guaranteed to find the unigtie Unfortunately, the relevant
theorems are of little value in assessing practical diffees between algorithms. This is
because, in the cases we have tested where BP/OMP equizégmovably known to hold
(e.g., viaresultsin [1, 4, 5]), SBL always convergestdas well.

As such, we will focuss our attention on the insights proslibg Sections 2 and 3 as well
as probabilistic comparisons with [3]. Given a fixed disitibn for the nonzero elements
of w*, we will assess which algorithm is best (at least empingdtr most dictionaries
relative to a uniform measure on the unit sphere as discussed

To this effect, a number of monte-carlo simulations weredemted, each consisting of the
following: First, a random, overcomplet®¥ x M dictionary ® is created whose entries
are each drawn uniformly from the surface of/drdimensional hypersphere. Next, sparse
weight vectoraw* are randomly generated with* nonzero entries. Nonzero amplitudes
w* are drawn iid from an experiment-dependent distributiorsgdnse values are then
computed ag = dw*. Each algorithm is presented witrand® and attempts to estimate
w*. In all cases, we ran 1000 independent trials and compagediutmber of times each
algorithm failed to recovetv*. Under the specified conditions for the generatiorbof
andt, all other feasible solutions almost surely have a diversity greater than, so
our synthetically generated* must be maximally sparse. Moreovérwill almost surely
satisfy the URP.

With regard to particulars, there are essentially fouralalgs with which to experiment: (i)
the distribution ofw*, (ii) the diversity D*, (iii) N, and (iv) M. In Figure 1, we display
results from an array of testing conditions. In eao of the figure,w; is drawn iid from

a fixed distribution for alf; the first row usew; = 1, the second hag; ~ J(a = 0.001),

and the third use&; ~ N(0,1), i.e., a unit Gaussian. In all cases, the signs of the nonzero
weights are irrelevant due to the randomness inherent ihakis vectors.

Thecolumnsof Figure 1 are organized as follows: The first column is basethe values
N = 50, D* = 16, while M is varied fromN to 5N, testing the effects of an increasing
level of dictionary redundancy//N. The second fixed' = 50 and M = 100 while D*

is varied from10 to 30, exploring the ability of each algorithm to resolve an irasiag
number of nonzero weights. Finally, the third column fixdgN = 2 andD*/N = 0.3



while N, M, and D* are increased proportionally. This demonstrates how pedace

scales with larger problem sizes.
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Figure 1: Empirical results comparing the probability t@afiP, BP, and SBL fail to find
w* under various testing conditions. Each data point is bagetD00 independent trials.
The distribution of the nonzero weight amplitudes is labeda the far left for each row,
while the values fotV, M, and D* are included on the top of each column. Independent
variables are labeled along the bottom of the figure.

The first row of plots essentially represents the worst-casmario for SBL per our pre-
vious analysis, and yet performance is still consistendligds than both BP and OMP. In
contrast, the second row of plots approximates the bestpagormance for SBL, where
we see that SBL is almost infallible. The handful of failuueets that do occur are because
a is not sufficiently small and thereford(a) was not sufficiently close to a true Jeffreys
prior to achieve perfect equivalence (see center plothaigh OMP also does well here,
the parametesi can generally never be adjusted such that OMP always suecEetlly,
the last row of plots, based on Gaussian distributed weigiglitudes, reflects a balance
between these two extremes. Nonetheless, SBL still holdbstantial advantage.

In general, we observe that SBL is capable of handling matargant dictionaries (col-
umn one) and resolving a larger number of nonzero weightsifoo two). Also, column
three illustrates that both BP and SBL are able to resolvengbeu of weights that grows
linearly in the signal dimension{ 0.3 V'), consistent with the analysis in [3] (which applies
only to BP). In contrast, OMP performance begins to degrad®ime cases (see the upper
right plot), a potential limitation of this approach. Of eea additional study is necessary
to fully compare the relative performance of these methodsauige-scale problems.

Finally, by comparing row one, two and three, we observe ttiafperformance of BP is
roughly independent of the weight distribution, with penfance slightly below the worst-



case SBL performance. Like SBL, OMP results are highly ddpeton the distribution;
however, as the weight distribution approaches unity,ggerénce is unsatisfactory. In
summary, while the relative proficiency between OMP and Bf®igingent on experimen-
tal particulars, SBL is uniformly superior in the cases weehtested (including examples
not shown, e.g., results with other dictionary types).

5 Conclusions

In this paper, we have related the ability to find maximallgrse solutions to the partic-
ular distribution of amplitudes that compose the nonzeemelnts. At first glance, it may
seem reasonable that the most difficult sparse inversegmsbbccur when some of the
nonzero weights are extremely small, making them difficukes$timate. Perhaps surpris-
ingly then, we have shown that the exact opposite is true 88h: The more diverse the
weight magnitudes, the better the chances we have of leptha optimal solution. In
contrast, unit weights offer the most challenging task fBL. SNonetheless, even in this
worst-case scenario, we have shown that SBL outperformsuitient state-of-the-art; the
overall assumption here being that, if worst-case perfageas superior, then it is likely
to perform better in a variety of situations.

For afixeddictionary and diversityD*, successful recovery of unit weights does not ab-
solutely guarantee that any alternative weighting scheifien@cessarily be recovered as
well. However, a weaker result does appear to be feasible fiked values ofN, M,
and D*, if the success rate recovering unity weights approachesfanmost dictionar-
ies, where most is defined as in Section 1, then the successeraivering weights of any
other distribution (assuming they are distributed indeleertly of the dictionary) will also
approach one. While a formal proof of this conjecture is beythe scope of this paper,
it seems to be a very reasonable result that is certainly tnatrby experimental evidence,
geometric considerations, and the arguments presentegttio 3. Nonetheless, this re-
mains a fruitful area for further inquiry.
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