
1

Iterative Reweighted `1 and `2 Methods for

Finding Sparse Solutions
David Wipf and Srikantan Nagarajan

Abstract

A variety of practical methods have recently been introduced for finding maximally sparse represen-

tations from overcomplete dictionaries, a central computational task in compressive sensing applications

as well as numerous others. Many of the underlying algorithms rely on iterative reweighting schemes

that produce more focal estimates as optimization progresses. Two such variants are iterative reweighted

`1 and `2 minimization; however, some properties related to convergence and sparse estimation, as well

as possible generalizations, are still not clearly understood or fully exploited. In this paper, we make

the distinction between separable and non-separable iterative reweighting algorithms. The vast majority

of existing methods are separable, meaning the weighting of a given coefficient at each iteration is

only a function of that individual coefficient from the previous iteration (as opposed to dependency on

all coefficients). We examine two such separable reweighting schemes: an `2 method from Chartrand

and Yin (2008) and an `1 approach from Candès et al. (2008), elaborating on convergence results and

explicit connections between them. We then explore an interesting non-separable alternative that can be

implemented via either `2 or `1 reweighting and maintains several desirable properties relevant to sparse

recovery despite a highly non-convex underlying cost function. For example, in the context of canonical

sparse estimation problems, we prove uniform superiority of this method over the minimum `1 solution

in that, (i) it can never do worse when implemented with reweighted `1, and (ii) for any dictionary and

sparsity profile, there will always exist cases where it does better. These results challenge the prevailing

reliance on strictly convex (and separable) penalty functions for finding sparse solutions. We then derive

a new non-separable variant with similar properties that exhibits further performance improvements in
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empirical tests. Finally, we address natural extensions to the group sparsity problems and non-negative

sparse coding.

Index Terms

sparse representations, underdetermined inverse problems, iterative reweighting algorithms, compres-

sive sensing.

I. INTRODUCTION

With the advent of compressive sensing and other related applications, there has been growing interest

in finding sparse signal representations from redundant dictionaries [7], [8], [12], [13], [24]. The canonical

form of this problem is given by,

min
x

‖x‖0, s.t. y = Φx, (1)

where Φ ∈ R
n×m is a matrix whose columns φi represent an overcomplete or redundant basis (i.e.,

rank(Φ) = n and m > n), x ∈ R
m is a vector of unknown coefficients to be learned, and y is the signal

vector. The cost function being minimized represents the `0 norm of x, which is a count of the nonzero

elements in x.1 If measurement noise or modelling errors are present, we instead solve the alternative

problem

min
x

‖y − Φx‖2
2 + λ‖x‖0, λ > 0, (2)

noting that in the limit as λ → 0, the two problems are equivalent (the limit must be taken outside of

the minimization).

Unfortunately, an exhaustive search for the optimal representation requires the solution of up to
(
m
n

)

linear systems of size n × n, a prohibitively expensive procedure for even modest values of m and n.

Consequently, in practical situations there is a need for approximate methods that efficiently solve (1) or

(2) in most cases. Many recent sparse approximation algorithms rely on iterative reweighting schemes

that produce more focal estimates as optimization progresses [3], [4], [5], [11], [17], [18]. Two such

variants are iterative reweighted `2 and `1 minimization. For the former, at the (k + 1)-th iteration we

must compute

x(k+1) → arg min
x

‖y − Φx‖2
2 + λ

∑

i

w
(k)
i x2

i

= W̃ (k)ΦT
(
λI + ΦW̃ (k)ΦT

)−1
y, (3)

1Note that ‖x‖0, because it does not satisfy the required axioms, is not technically a norm.
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where W̃ (k) is a diagonal weighting matrix from the k-th iteration with i-th diagonal element 1/w
(k)
i

that is potentially a function of all x(1), . . . ,x(k). Similarly, the `1 reweighting variant solves

x(k+1) → arg min
x

‖y − Φx‖2
2 + λ

∑

i

w
(k)
i |xi|, (4)

although no analytic solution exists in this case and so a numerical program (e.g., interior point method)

must be adopted. While this is typically an expensive computation, the number of iterations of (4) required

is generally much less than (3) and, unlike (3), even a single iteration produces a sparse solution. A

second advantage of (4) is that it is often much easier to incorporate additional constraints, e.g., bounded

activation or non-negativity of x [2]. This is because few iterations are needed and the per-iteration

computational complexity need not change significantly with the inclusion of many useful constraints. In

contrast, with (3) we lose the advantage of closed-form updates on x when such constraints are imposed.

While we could still easily solve (3) numerically as we do with (4), the large number of iterations required

renders this approach much less attractive. In general, it is possible to perform iterative reweighting with

an arbitrary convex function of the coefficients f(x). However, `1 and `2 norms are typically selected

since the former is the sparsest convex penalty (which means it results in the tightest convex bound to

potentially non-convex underlying penalty functions), while the latter gives closed form solutions unlike

virtually any other useful function.

In both `2 and `1 reweighting schemes, different methods are distinguished by the choice of w(k) ,

[w
(k)
1 , . . . , w

(k)
m ]T , which ultimately determines the surrogate cost function for promoting sparsity that

is being minimized (although not all choices lead to convergence or sparsity). In this paper we will

analyze several different weighting selections, examining convergence issues, analytic properties related

to sparsity, and connections between various algorithms. In particular, we will discuss a central dichotomy

between what we will refer to as separable and non-separable choices for w(k). By far the more common,

separable reweighting implies that each w
(k)
i is only a function of x

(k)
i . This scenario is addressed in

Section II where we analyze the `2 method from Chartrand and Yin (2008) [4] and an `1 approach from

Candès et al. (2008) [3], elaborating on convergence results and explicit connections between them.

In contrast, the non-separable case means that each w
(k)
i is a function of all x(1), . . . ,x(k), i.e., it is

potentially dependent on all coefficients from all past iterations. Section III explores an interesting non-

separable alternative, based on a dual-form interpretation of sparse Bayesian learning (SBL) [23], [28],

that can be implemented via either `2 or `1 reweighting, with the former leading to a direct connection

with Chartrand and Yin’s algorithm. Overall, it maintains several desirable properties relevant to sparse
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recovery despite a highly non-convex underlying cost function. For example, in the context of (1), we

prove uniform superiority of this method over the minimum `1 solution, which represents the best convex

approximation, in that (i) it can never do worse when implemented with reweighted `1, and (ii) for any Φ

and sparsity profile, there will always exist cases where it does better. To a large extent, this removes the

stigma commonly associated with using non-convex sparsity penalties. Later in Section III-C, we derive

a second promising non-separable variant by starting with a plausible `1 reweighting scheme and then

working backwards to determine the form and properties of the underlying cost function.

Section IV then explores extensions of iterative reweighting algorithms to areas such as the simultaneous

sparse approximation problem [19], [25], which is a special case of covariance component estimation

[28]. In this scenario we are presented with multiple signals y1,y2, . . . that we assume were produced by

coefficient vectors x1,x2, . . . characterized by the same sparsity profile or support. All of the algorithms

discussed herein can naturally be expanded to this domain by applying an appropriate penalty to the

aligned elements of each coefficient vector. Finally, simulations involving all of these methods are

contained in Section V, with brief concluding remarks in Section VI. Portions of this work were presented

at the Workshop on Signal Processing with Adaptive Sparse/Structured Representations in Saint-Malo,

France, 2009.

II. SEPARABLE REWEIGHTING SCHEMES

Separable reweighting methods have been applied to sparse recovery problems both in the context of

the `2 norm [4], [10], [17], [18], and more recently the `1 norm [3], [11]. All of these methods (at least

locally) attempt to solve

min
x

∑

i

g(xi), s.t. y = Φx, (5)

or

min
x

‖y − Φx‖2
2 + λ

∑

i

g(xi), (6)

where g(xi) is a non-decreasing function of |xi|. In general, if g(xi) is concave in x2
i , it can be handled

using reweighted `2 [17], while any g(xi) that is concave in |xi| can be used with reweighted `1 [9].

Many of these methods have been analyzed extensively in the past; consequently we will briefly address

outstanding issues pertaining to two new approaches with substantial promise.

A. `2 Reweighting Method of Chartrand and Yin (2008) [4]

In [4] the `2 reweighting
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w
(k+1)
i →

[(
x

(k+1)
i

)2
+ ε(k+1)

]−1

(7)

is proposed (among others that are shown empirically to be less successful as discussed below), where

ε(k+1) ≥ 0 is a regularization factor that is reduced to zero as k becomes large. This procedure leads to

state-of-the-art performance recovering sparse solutions in a series of empirical tests using a heuristic for

updating ε(k+1) and assuming λ → 0 (noiseless case); however, no formal convergence proof is provided.

Here we sketch a proof that this method will converge, for arbitrary sequences ε(k+1) → 0, to a local

minimum of a close surrogate cost function to (1) (similar ideas apply to the more general case where

λ is nonzero).

To begin, we note that there is a one-to-one correspondence between minima of (1) and minima of

min
x

∑

i

log |xi|, s.t. y = Φx, (8)

which follows since ‖x‖0 ≡ limp→0
∑

i |xi|p and limp→0
1
p

∑
i (|xi|p − 1) =

∑
i log |xi|. This log-based

penalty function is frequently used for finding sparse solutions in signal and image processing using

iterative locally minimizing procedures (e.g., see [10], [18]).2

The penalty function in (8) can be upper-bounded using

log |xi| ≤ 1

2
log |x2

i + ε| ≤ x2
i + ε

2γi
+

1

2
log γi −

1

2
, (9)

where ε, γi ≥ 0 are arbitrary. The second inequality, which follows directly from the concavity of the

log function with respect to x2
i , becomes an equality iff γi = x2

i + ε. Now consider solving

min
x,γ,ε

∑

i

(
x2

i + ε

γi
+ log γi

)
, s.t. y = Φx, ε ≥ 0, γi ≥ 0,∀i, (10)

where γ , [γ1, . . . , γm]T . Again, there is a one-to-one correspondence between local minima of the origi-

nal problem (1) and local minima of (10). For fixed ε and γ, the optimal x satisfies x = Γ1/2
(
ΦΓ1/2

)†
y,

with Γ , diag[γ] and (·)† denoting the Moore-Penrose pseudo-inverse. From above, the minimizing γ

for fixed x and ε is γi = x2
i + ε, ∀i. Consequently, coordinate descent over x, γ, and ε is guaranteed to

reduce or leave unchanged (10) (the exact strategy for reducing ε is not crucial).

2To be precise regarding well-defined local minima, we could add a small ε regularizer within the logarithm of (8) and then

take the limit (outside of the minimization) as this ε goes to zero. But the analysis which follows (and the associated reweighted

`2 updates for minimization) is all essentially the same.
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It can be shown that these updates, which are equivalent to Chartrand and Yin’s `2 reweighting algorithm

with w
(k)
i = γ−1

i , are guaranteed to converge monotonically to a local minimum (or saddle point) of (10)

by satisfying the conditions of the Global Convergence Theorem (see for example [32]). At any such

solution, ε = 0 and we will also be at a local minimum (or saddle point) of (8). In the unlikely event

that a saddle point is reached (such solutions to (8) are very rare [20]), a small perturbation leads to a

local minimum.

Of course obviously we could set ε → 0 in the very first iteration, which reproduces the FOCUSS

algorithm and its attendant quadratic rate of convergence near a minimum [20]; however, compelling

evidence from [4] suggests that slow reduction of ε is far more effective in avoiding suboptimal local

minima troubles.

The weight update (7) is part of a wider class given by

w
(k+1)
i →

[(
x

(k+1)
i

)2
+ ε(k+1)

] p

2
−1

(11)

where 0 ≤ p ≤ 2 is a user-defined parameter. With p = 0, we recover (7) and also obtain the best

empirical performance solving (1) according to experiments in [4]; other values for p lead to alternative

implicit cost functions and convergence properties. Additionally, for a carefully chosen ε(k+1) update,

interesting and detailed convergence results are possible using (11), particularly for the special case where

p = 1, which produces a robust means of finding a minimum `1 norm solution using reweighted `2 [6].

However, the selection for ε(k+1) used to obtain these results may be suboptimal in certain situations

relative to other prescriptions for choosing p and ε (see Section V-A below).3 Regardless, the underlying

analysis from [6] provides useful insights into reweighted `2 algorithms.

B. `1 Reweighting Method of Candès et al. (2008) [3]

An interesting example of separable iterative `1 reweighting is presented in [3] where the selection

w
(k+1)
i →

[∣∣∣x(k+1)
i

∣∣∣+ ε
]−1

(12)

is suggested. Here ε is generally chosen as a fixed, application-dependent constant. In the noiseless case,

it is demonstrated based on [9] that this amounts to iteratively solving

3Note that the convergence analysis we discuss above applies for any sequence of ε(k) → 0 and can be extended to other

values of p ∈ [0, 1).
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min
x

∑

i

log (|xi| + ε) , s.t. y = Φx, (13)

and convergence to a local minimum or saddle point is guaranteed. The FOCUSS algorithm [20] can

also be viewed as an iterative reweighted `2 method for locally solving (13) for the special case when

ε = 0; however, Candès et al. point out that just a few iterations of their method is far more effective

in finding sparse solutions than FOCUSS. This occurs because, with ε = 0, the cost function (13) has

on the order of
(
m
n

)
deep local minima and so convergence to a suboptimal one is highly likely. Here

we present reweighted `2 updates for minimizing (13) for arbitrary ε, which allows direct comparisons

between reweighted `1 and `2 on the same underlying cost function (which is not done in [3]). Using

results from [17], it is relatively straightforward to show that

log (|xi| + ε) ≤ x2
i

γi
+ log

[(
ε2 + 2γi

) 1

2 + ε

2

]
−

[(
ε2 + 2γi

) 1

2 − ε
]2

4γi
(14)

for all ε, γi ≥ 0, with equality iff γi = x2
i +ε|xi|. Note that this is a very different surrogate cost function

than (9) and utilizes the concavity of log (|xi| + ε), as opposed to log(x2
i + ε), with respect to x2

i . Using

coordinate descent as before with w
(k)
i = γ−1

i leads to the reweighted `2 iteration

w
(k+1)
i →

[(
x

(k+1)
i

)2
+ ε
∣∣∣x(k+1)

i

∣∣∣
]−1

, (15)

which will reduce (or leave unchanged) (13) for arbitrary ε ≥ 0. In preliminary empirical tests, this method

is superior to regular FOCUSS and could be used as an alternative to reweighted `1 if computational

resources for computing `1 solutions are limited. Additionally, as stated above the most direct comparison

between reweighted `1 and `2 in this context would involve empirical tests using (15) versus the method

from Candès et al., which we explore in Section V-C. It would also be worthwhile to compare (15) using

a decreasing ε update with (7) since both are derived from different implicit bounds on log |xi|.

III. NON-SEPARABLE REWEIGHTING SCHEMES

Non-separable selections for w(k) allow us to minimize cost functions based on general, non-separable

sparsity penalties, meaning penalties that cannot be expressed as a summation over functions of the

individual coefficients as in (6). Such penalties potentially have a number of desirable properties [29]. In

this section we analyze three non-separable reweighting strategies. The first two are based on a dual-space

sparse Bayesian learning (SBL); the third is derived based on simple intuitions gained from working with

non-separable algorithms.
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A. `2 Reweighting Applied to a Dual-Space SBL Penalty

A particularly useful non-separable penalty emerges from a dual-space view [28] of SBL [23], which

is based on the notion of automatic relevance determination (ARD) [16]. SBL assumes a Gaussian

likelihood function p(y|x) = N (y; Φx, λI), consistent with the data fit term from (2). The basic ARD

prior incorporated by SBL is p(x;γ) = N (x; 0, diag[γ]), where γ ∈ R
m
+ is a vector of m non-negative

hyperparameters governing the prior variance of each unknown coefficient. These hyperparameters are

estimated from the data by first marginalizing over the coefficients x and then performing what is com-

monly referred to as evidence maximization or type-II maximum likelihood [16], [23]. Mathematically,

this is equivalent to minimizing

L(γ) , − log

∫
p(y|x)p(x;γ)dx = − log p(y;γ) ≡ log |Σy| + yT Σ−1

y y, (16)

where Σy , λI + ΦΓΦT and Γ , diag[γ]. Once some γ∗ = arg minγ L(γ) is computed, an estimate of

the unknown coefficients can be obtained by setting xSBL to the posterior mean computed using γ∗:

xSBL = E[x|y;γ∗] = Γ∗Φ
TΣ−1

y∗ y. (17)

Note that if any γ∗,i = 0, as often occurs during the learning process, then xSBL,i = 0 and the corresponding

dictionary column is effectively pruned from the model. The resulting xSBL is therefore sparse, with

nonzero elements corresponding with the ‘relevant’ basis vectors.

It is not immediately apparent how the SBL procedure, which requires optimizing a cost function in

γ-space and is based on a separable prior p(x;γ), relates to solving/approximating (1) and/or (2) via a

non-separable penalty in x-space. However, it has been shown in [28] that xSBL satisfies

xSBL = arg min
x

‖y − Φx‖2
2 + λgSBL(x), (18)

where

gSBL(x) , min
γ≥0

xT Γ−1x + log |αI + ΦΓΦT |, (19)

assuming α = λ. While not discussed in [28], gSBL(x) is a general penalty function that only need have

α = λ to obtain equivalence with SBL; other selections may lead to better performance.

The analysis in [28] reveals that replacing ‖x‖0 with gSBL(x) and α → 0 leaves the globally minimizing

solution to (1) unchanged but drastically reduces the number of local minima (more so than any possible

separable penalty function). While details are beyond the scope of this paper, these ideas can be extended

significantly to form conditions, which again are only satisfiable by a non-separable penalty, whereby

all local minima are smoothed away [29]. Note that while basic `1-norm minimization also has no
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local minima, the global minimum need not always correspond with the global solution to (1), unlike

when using gSBL(x). As shown in the Appendix, gSBL(x) is a non-decreasing concave function of |x| ,

[|x1|, . . . , |xm|]T , and therefore also x2 , [x2
1, . . . , x

2
m]T , so (perhaps not surprisingly) minimization can

be accomplished using either iterative reweighted `2 or `1. In this Section we consider the former; the

sequel addresses the latter.

There exist multiple ways to handle `2 reweighting in terms of the non-separable penalty function (19)

for the purpose of solving

min
x

‖y − Φx‖2
2 + λgSBL(x). (20)

Ideally, we would form a quadratic upper bound as follows. Since gSBL(x) is concave and non-decreasing

with respect to x2, it can be expressed as

gSBL(x) = min
z≥0

zT x2 − h∗(z), (21)

where h∗(z) denotes the concave conjugate of h(u) , gSBL(
√

u), with u = x2 ≥ 0 and
√

u ,

[
√

u1, . . . ,
√

um]T . The non-negativity of z follows from the non-decreasing property of gSBL(x) with

respect to x2. The concave conjugate is a function that arises from convex analysis and duality theory

[1]; in this instance it is expressed via

h∗(z) = min
u≥0

zT u − h(u) = min
x

zT x2 − gSBL(x). (22)

If we drop the minimization from (21), we obtain a rigorous quadratic upper bound on gSBL(x). We can

then iteratively solve

min
x;z≥0

‖y − Φx‖2
2 + λ

[
∑

i

zix
2
i − h∗(z)

]
. (23)

over x and z. The x update becomes (3), while the optimal z is given by the gradient of gSBL(x) with

respect to x2, or equivalently, the gradient of h(u) with respect to u [1]. This gives the weights

w
(k+1)
i → zi =

∂h(u)

∂ui

∣∣∣∣
u=(x(k+1))2

=
∂gSBL(x)

∂x2
i

∣∣∣∣
x=x(k+1)

. (24)

However, this quantity is unfortunately not available in closed form (as far as we know). Alternatively,

the use of different sets of upper-bounding auxiliary functions (which are tight in different regions of x

space) lead to different choices for w(k+1) with different properties.

One useful variant that reveals a close connection with Chartrand and Yin’s method and produces

simple, tractable reweighted `2 updates can be derived as follows. Using the definition of gSBL(x) and

standard determinant identities we get
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gSBL(x) ≤ xT Γ−1x + log |αI + ΦΓΦT |

= xT Γ−1x + log |Γ| + log |α−1ΦTΦ + Γ−1| + n log α

≤ xT Γ−1x + log |Γ| + zT γ−1 − h∗(z) + n log α

= n log α − h∗(z) +
∑

i

(
x2

i + zi

γi
+ log γi

)
, (25)

where h∗(z) now denotes the concave conjugate of h(a) , log |α−1ΦT Φ + A|, with a = diag[A] =

[a1, . . . , am]T and A = Γ−1. This conjugate function is computed via

h∗(z) = min
a≥0

zT a − log |α−1ΦTΦ + A|. (26)

The bound (25) holds for all non-negative vectors z and γ. We can then perform coodinate descent over

min
x;z,γ≥0

‖y − Φx‖2
2 + λ

[
−h∗(z) +

∑

i

(
x2

i + zi

γi
+ log γi

)]
. (27)

where irrelevant terms have been dropped. As before, the x update becomes (3). The optimal z is given

by

zi =
∂ log |α−1ΦT Φ + A|

∂ai

=
[(

α−1ΦT Φ + Γ−1
)−1
]
ii

= γi − γ2
i φT

i

(
αI + ΦΓΦT

)−1
φi, ∀i, (28)

which can be stably computed even with α → 0 using the Moore-Penrose pseudo-inverse. Finally, since

the optimal γi for fixed z and x satisfies γi = x2
i + zi,∀i, the new weight update becomes

w
(k+1)
i → γ−1

i =

[(
x

(k+1)
i

)2
+
(
w

(k)
i

)−1
−
(
w

(k)
i

)−2
φT

i

(
αI + ΦW̃ (k)ΦT

)−1
φi

]−1

, (29)

which can be computed in O(n2m), the same expense as each solution to (3). These updates are

guaranteed to reduce or leave unchanged (20) at each iteration.4 Note that since each weight update

is dependent on previous weight updates, it is implicitly dependent on previous values of x, unlike in

the separable cases above.

4They do not however satisfy all of the technical conditions required to ensure global convergence to a local minima (for

the same reason that reweighted `2 is not globally convergent for minimizing the `1 norm), although in practice we have not

observed any problem.
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The form of (29) is very similar to the one used by Chartrand and Yin. Basically, if we allow for a

separate εi for each coefficient xi, then the update (7) is equivalent to the selection

ε
(k+1)
i →

(
w

(k)
i

)−1
−
(
w

(k)
i

)−2
φT

i

(
αI + ΦW̃ (k)ΦT

)−1
φi. (30)

Moreover, the implicit auxiliary function from (9) being minimized by Chartrand and Yin’s method has

the exact same form as (25); with the latter, coefficients that are interrelated by a non-separable penalty

term are effectively decoupled when conditioned on the auxiliary variables z and γ. And recall that one

outstanding issue with Chartrand and Yin’s approach is the optimal schedule for adjusting ε(k), which

could be application-dependent and potentially sensitive.5 So in this regard, (30) can be viewed as a

principled way of selecting ε so as to avoid, where possible, convergence to local minima. In preliminary

experiments, this method performs as well or better than the heuristic ε-selection strategy from [4] (see

Sections V-A and V-C).

B. `1 Reweighting Applied to gSBL(x)

As mentioned previously, gSBL(x) is a non-decreasing, concave function of |x| (see Appendix for

details), a desirable property of sparsity-promoting penalties. Importantly, as a direct consequence of this

concavity, (20) can potentially be optimized using a reweighted `1 algorithm (in an analogous fashion to

the reweighted `2 case) using

w
(k+1)
i → ∂gSBL(x)

∂|xi|

∣∣∣∣
x=x(k+1)

. (31)

Like the `2 case, this quantity is not available in closed form (except for the special case where α → 0).

However, as shown in the Appendix it can be iteratively computed by executing:

1) Initialization: set w(k+1) → w(k), the k-th vector of weights,

2) Repeat until convergence:6

w
(k+1)
i →

[
φT

i

(
αI + ΦW̃ (k+1)X̃(k+1)ΦT

)−1
φi

] 1

2

, (32)

5Note that with α → 0 (which seems from empirical results to be the optimal choice), computing ε
(k+1)
i via (30) is guaranteed

to satisfy ε
(k+1)
i → 0 at any stationary point. For other values of α, the ε

(k+1)
i associated with nonzero coefficients many

potentially remain nonzero, although this poses no problem with respect to sparsity or convergence issues, etc.
6Just to clarify, the index k specifies the outer-loop iteration number from (4); for simplicity we have omitted a second index

to specify the inner-loop iterations considered here for updating w(k+1).
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where W̃ (k+1) , diag[w(k+1)]−1 as before and X̃(k+1) , diag[|x(k+1)|]. Note that cost function descent

is guaranteed with only a single iteration, so we need not execute (32) until convergence. In fact, it can be

shown that a more rudimentary form of reweighted `1 applied to this model in [28] amounts to performing

exactly one such iteration, and satisfies all the conditions required for guaranteed convergence (by virtue

of the Global Convergence Theorem) to a stationary point of (20) (see [28, Theorem 1]). Note however

that repeated execution of (32) is very cheap computationally since it scales as O
(
nm‖x(k+1)‖0

)
, and

is substantially less intensive than the subsequent `1 step given by (4).7

From a theoretical standpoint, `1 reweighting applied to gSBL(x) is guaranteed to aid performance in

the sense described by the following two results, which apply in the case where λ → 0, α → 0. Before

proceeding, we define spark(Φ) as the smallest number of linearly dependent columns in Φ [8]. It follows

then that 2 ≤ spark(Φ) ≤ n + 1.

Theorem 1: When applying iterative reweighted `1 using (32) and w
(1)
i < ∞,∀i, the solution sparsity

satisfies ‖x(k+1)‖0 ≤ ‖x(k)‖0 (i.e., continued iteration can never do worse).

Theorem 2: Assume that spark(Φ) = n+1 and consider any instance where standard `1 minimization

fails to find some x∗ drawn from support set S with cardinality |S| < (n+1)
2 . Then there exists a set of

signals y (with non-zero measure) generated from S such that non-separable reweighted `1, with w(k+1)

updated using (32), always succeeds but standard `1 always fails.

Note that Theorem 2 does not in any way indicate what is the best non-separable reweighting scheme

in practice (for example, in our limited experience with empirical simulations, the selection α → 0

is not necessarily always optimal). However, it does suggest that reweighting with non-convex, non-

separable penalties is potentially very effective, motivating other selections as discussed next. Taken

together, Theorem 1 and 2 challenge the prevailing reliance on strictly convex cost functions, since they

ensure that we can never do worse than the minimum `1-norm solution (which uses the tightest convex

approximation to the `0 norm), and that there will always be cases where improvement over this solution

is obtained.

7While a similar inner-loop iterative procedure could potentially be adopted to estimate (24), this is not practical for two

reasons. First, because sparse solutions are not obtained after each reweighted `2 iteration, the per-iteration cost of the inner-

loop would be more expensive. Secondly, because many more outer-loop reweighted `2 iterations are required (each of which

is relatively cheap on its own), the total cost of the inner-loops will be substantially higher.
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Before proceeding, it is worth relating Theorem 2 with Proposition 5 from Davies and Gribonval (2008)

[5], where it is shown that for any sparsity level, there will always exist cases (albeit of measure zero)

where, if standard `1 minimization fails, any admissible `1 reweighting strategy will also fail. In this

context a reweighting scheme is said to be admissible if: (i) w
(1)
i = 1 for all i and, (ii) there exists a

w(k)
max < ∞ such that for all k and i, w

(k)
i ≤ wmax(k) and if x

(k)
i = 0, then w

(k)
i = w(k)

max .

Interestingly, the non-separable reweighting from (32) does not satisfy this definition despite its ef-

fectiveness in practice (see Sections V-B and V-C below). It fails for two reasons: First, w(k)
max → ∞ as

α → 0, and second, the condition x
(k)
i = 0 does not ensure that w

(k)
i = w(k)

max . Yet it is this failure to

always assign the largest weight to zero-valued coefficients that helps non-separable methods avoid bad

local minima (see Section III-C for more details), and so we suggest modified versions of admissibility

that accommodate a wider class of useful non-separable algorithms.

One alternative definition, which is consistent with convergence considerations and the motivation

first used to inspire many iterative reweighting algorithms, is simply to require that an admissible `1

reweighting scheme is one such that g
(
x(k+1)

)
≤ g

(
x(k)

)
for all k, where g(·) is some non-decreasing,

concave function of |x|.8 Note that this function need not be available in closed form to satisfy this

definition; practical, admissible algorithms can nonetheless be obtained even when g(·) can only be

computed numerically. Section III-C gives one such example. Additionally, it can be shown via simple

counter-examples that Proposition 5 from [5] explicitly does not hold given this updated notion of

admissibility.

In summary, we would argue that a broader conception of reweighting strategies can potentially be

advantageous for avoiding local minima and finding maximally sparse solutions. Moreover, we stress

the contrasting nature of Davies and Gribonval’s result versus our Theorem 2. The former demonstrates

that on a set of measure zero in x space, a particular class of reweighting schemes will not improve

upon basic `1 minimization, while the latter specifies that on a different set of nonzero measure, some

non-separable reweighting will always do better.

C. Bottom-Up Construction of Non-Separable Penalty Using Reweighted `1

In the previous section, we described what amounts to a top-down formulation of a non-separable

penalty function that emerges from a particular hierarchical Bayesian model. Based on the insights gleaned

from this procedure (and its distinction from separable penalties), it is possible to stipulate alternative

8A analogous admissibility condition for the reweighted `2 case would require concavity with respect to x2.
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penalty functions from the bottom up by creating plausible, non-separable reweighting schemes. The

following is one such possibility.

Assume for simplicity that λ → 0. The Achilles heel of standard, separable penalties is that if we want

to retain a global minimum similar to that of (1), we require a highly concave penalty on each xi [29].

However, this implies that almost all basic feasible solutions (BFS) to y = Φx, defined as a solution

with ‖x‖0 ≤ n, will form local minima of the penalty function constrained to the feasible region. This

is a very undesirable property since there are on the order of
(m

n

)
BFS with ‖x‖0 = n, which is equal

to the signal dimension and not very sparse. We would really like to find degenerate BFS, where ‖x‖0

is strictly less than n. Such solutions are exceedingly rare and difficult to find. Consequently we would

like to utilize a non-separable, yet highly concave penalty that explicitly favors degenerate BFS. We can

accomplish this by constructing a reweighting scheme designed to avoid non-degenerate BFS whenever

possible.

Now consider the covariance-like quantity αI + Φ(X̃(k+1))2ΦT , where α may be small, and then

construct weights using the projection of each basis vector φi as defined via

w
(k+1)
i → φT

i

(
αI + Φ(X̃(k+1))2ΦT

)−1
φi. (33)

Ideally, if at iteration k +1 we are at a bad or non-degenerate BFS, we do not want the newly computed

w
(k+1)
i to favor the present position at the next iteration of (4) by assigning overly large weights to the

zero-valued xi. In such a situation, the factor Φ(X̃(k+1))2ΦT in (33) will be full rank and so all weights

will be relatively modest sized. In contrast, if a rare, degenerate BFS is found, then Φ(X̃(k+1))2ΦT will

no longer be full rank, and the weights associated with zero-valued coefficients will be set to large values,

meaning this solution will be favored in the next iteration.

In some sense, the distinction between (33) and its separable counterparts, such as the method of

Candès et al. which uses (12), can be summarized as follows: the separable methods assign the largest

weight whenever the associated coefficient goes to zero; with (33) the largest weight is only assigned

when the associated coefficient goes to zero and ‖x(k+1)‖0 < n, which differs significantly from Davies

and Gribonval’s notion of an admissible weighting scheme.

The reweighting option (33), which bears some resemblance to (32), also has some very desirable

properties beyond the intuitive justification given above. First, since we are utilizing (33) in the context of

reweighted `1 minimization, it would be productive to know what cost function, if any, we are minimizing

when we compute each iteration. Using the fundamental theorem of calculus for line integrals (or the
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gradient theorem), it follows that the bottom-up (BU) penalty function associated with (33) is
gBU(x) ,

∫ 1

0
trace

[
X̃ΦT

(
αI + Φ(νX̃)2ΦT

)−1
Φ

]
dν. (34)

Moreover, because each weight wi is a non-increasing function of each xj,∀j, from Kachurovskii’s

theorem [21] it directly follows that (34) is concave and non-decreasing in |x|, and thus naturally

promotes sparsity. Additionally, for α sufficiently small, it can be shown that the global minimum of

(34) on the constraint y = Φx must occur at a degenerate BFS (Theorem 1 from above also holds when

using (33); Theorem 2 may as well, although we have not formally shown this). And finally, regarding

implementational issues and interpretability, (33) avoids any recursive weight assignments or inner-loop

optimization as when using (32). Empirical experiments using this method are presented in Sections V-B

and V-C.

IV. EXTENSIONS

One of the motivating factors for using iterative reweighted optimization, especially the `1 variant, is

that it is often very easy to incorporate alternative data-fit terms, constraints, and sparsity penalties. This

section addresses two useful examples.

Non-Negative Sparse Coding: Numerous applications require sparse solutions where all coefficients

xi are constrained to be non-negative [2]. By adding the contraint x ≥ 0 to (4) at each iteration, we

can easily compute such solutions using gSBL(x), gBU(x), or any other appropriate penalty function. Note

that in the original SBL formulation, this is not a possibility since the integrals required to compute the

associated cost function and update rules no longer have closed-form expressions.

Group Feature Selection: Another common generalization is to seek sparsity at the level of groups

of features, e.g., the group Lasso [31]. The simultaneous sparse approximation problem [19], [25] is a

particularly useful adaptation of this idea relevant to compressive sensing [26], manifold learning [22],

and neuroimaging [30]. In this situation, we are presented with r signals Y , [y·1,y·2, . . . ,y·r] that we

assume were produced by coefficient vectors X , [x·1,x·2, . . . ,x·r] characterized by the same sparsity

profile or support, meaning that the coefficient matrix X is row sparse. Note that to facilitate later analysis,

we adopt the notation that x·j represents the j-th column of X while xi· represents the i-th row of X .

As an extension of the `0 norm to the simultaneous approximation problem, we define

d(X) ,

m∑

i=1

I [‖xi·‖ > 0] , (35)

where I [‖x‖ > 0] = 1 if ‖x‖ > 0 and zero otherwise, and ‖x‖ is an arbitrary vector norm. d(X)

penalizes the number of rows in X that are not equal to zero; for nonzero rows there is no additional
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penalty for large magnitudes. Also, for the column vector x, it is immediately apparent that d(x) = ‖x‖0.

Given this definition, the sparse recovery problems (1) and (2) become

min
X

d(X), s.t. Y = ΦX, (36)

and

min
X

‖Y − ΦX‖2
F + λd(X), λ > 0. (37)

As before, the combinatorial nature of each optimization problem renders them intractable and so

approximate procedures are required. All of the algorithms discussed herein can naturally be expanded to

this domain essentially by substituting the scalar coefficient magnitudes from a given iteration
∣∣∣x(k)

i

∣∣∣ with

some row-vector penalty, such as a norm. For the iterative reweighted `2 methods to work seamlessly, we

require the use of ‖xi·‖2 and everything proceeds exactly as before. In contrast, the iterative reweighted

`1 situation is both more flexible and somewhat more complex. If we utilize ‖xi·‖2, then the coefficient

matrix update analogous to (4) requires the solution of the more complicated weighted second-order cone

(SOC) program

X(k+1) → arg min
X

‖Y − ΦX‖2
F + λ

∑

i

w
(k)
i ‖xi·‖2. (38)

Other selections such as the `∞ norm are possible as well, providing added generality to this approach.

Both separable and non-separable methods lend themselves equally well to the simultaneous sparse ap-

proximation problem. Preliminary results in Section V-C however, indicate that non-separable algorithms

can significantly widen their performance advantage over their separable counterparts in this domain.

V. EMPIRICAL RESULTS

This section contains a few brief experiments involving the various reweighting schemes discussed

previously. First we include a comparison of `2 approaches followed by an `1 example involving non-

negative sparse coding. We then conclude with simulations involving the simultaneous sparse approx-

imation problem (group sparsity), where we compare `1 and `2 algorithms head-to-head. In all cases,

we use dashed lines to denote the performance of separable algorithms, while solid lines represent the

non-separable ones.

A. Iterative Reweighted `2 Examples

Monte-Carlo simulations were conducted similar to those performed in [4], [6] allowing us to compare

the separable method of Chartrand and Yin with the non-separable SBL update (29) using α → 0. As
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discussed above, these methods differ only in the effective choice of the ε parameter. We also include

results from the related method in Daubechies et al. (2009) [6] using p = 1, which gives us the basis

pursuit or Lasso (minimum `1 norm) solution, and p = 0.6 which works well in conjunction with the

proscribed ε update based on the simulations from [6]. Note that the optimal value of p and ε for sparse

recovery purposes can be interdependent and [6] reports poor results with p much smaller than 0.6 when

using their ε update. Additionally, there is an additional parameter K associated with Daubechies et al.’s

ε update that must be set; we used the heuristic taken from the authors’ Matlab code.9

The experimental particulars are as follows: First, a random, overcomplete 50 × 250 dictionary Φ is

created with iid unit Gaussian elements and `2 normalized columns. Next, sparse coefficient vectors x∗

are randomly generated with the number of nonzero entries varied to create different test conditions.

Nonzero amplitudes are drawn iid from one of two experiment-dependent distributions. Signals are then

computed as y = Φx∗. Each algorithm is presented with y and Φ and attempts to estimate x∗ using an

initial weighting of w
(1)
i = 1,∀i. In all cases, we ran 1000 independent trials and compared the number

of times each algorithm failed to recover x∗. Under the specified conditions for the generation of Φ and

y, all other feasible solutions x are almost surely less sparse than x∗, so our synthetically generated

coefficients will almost surely be maximally sparse.

Figure 1 displays results where the nonzero elements in x∗ were drawn with unit magnitudes. The

performance of four algorithms is shown: the three separable methods discussed above and the non-

separable update given by (29) and referred to as SBL-`2. For algorithms with non-convex underlying

sparsity penalties, unit magnitude coefficients can be much more troublesome than other distributions

because local minima may become more pronounced or numerous [29]. In contrast, the performance will

be independent of the nonzero coefficient magnitudes when minimizing the `1 norm (i.e., the p = 1 case)

[15], so we expect this situation to be most advantageous to the `1-norm solution relative to the others.

Nevertheless, from the figure we observe that the non-separable reweighting still performs best; out of

the remaining separable examples, the p = 1 case is only slightly superior.

Regarding computational complexity, the individual updates associated with the various reweighted

`2 algorithms have roughly the same expense. Consequently, it is the number of iterations that can

potentially distinguish the effective complexity of the different methods. Table I compares the number of

iterations required by each algorithm when ‖x∗‖0 = 12 such that the maximum change of any estimated

coefficient was less than 10−6. We also capped the maximum number of iterations at 1000. Results are

9http://www.ricam.oeaw.ac.at/people/page/fornasier/menu3.html
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Fig. 1. Iterative reweighted `2 example using unit magnitude nonzero coefficients. Probability of success recovering sparse

coefficients for different sparsity values, i.e., ‖x∗‖0.

partitioned into cases where the algorithms were successful, meaning the correct x∗ was obtained, versus

failure cases where a suboptimal solution was obtained. This distinction was made because generally

convergence is much faster when the correct solution has been found, so results could be heavily biased

by the success rate of the algorithm.

Table I reveals that in the successful cases, the separable update from [6], with p = 0.6 is the most

efficient, but this is largely because this algorithm uses knowledge of the true sparsity to shrink ε quickly,

an advantage not given to the other methods. It is also much faster than the p = 1.0 version because the

convergence rate (once ε becomes small enough), is roughly proportional to 2 − p, as shown in [20]. In

the unsuccessful cases, the separable updates from [6] cannot ever capitalize on the known sparsity level

and they do not fully converge even after 1000 iterations.

Figure 2 reproduces the same experiment with nonzero elements in x∗ now drawn from a unit Gaussian

distribution. The performance of the p = 1 separable algorithm is unchanged as expected; however, the

others all improve significantly, especially the non-separable update and Chartrand and Yin’s method. Note

however that only the non-separable method is parameter-free, in the sense that ε is set automatically, and

we assume α → 0 (the effectiveness of this value holds up in a wide range of simulations (not shown)

where dictionary type and dimensions, as well as signal distributions, are all varied). Regardless, we
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TABLE I

AVERAGE NUMBER OF ITERATIONS USED BY EACH ALGORITHM FOR THE ‖x∗‖0 = 12 CASE IN FIGURE 1. EACH METHOD

WAS TERMINATED WHEN THE MAXIMUM CHANGE OF ANY COEFFICIENT WAS LESS THAN 10−6 OR THE MAXIMUM NUMBER

OF ITERATIONS, SET TO 1000, WAS REACHED.

Separable, Separable, Separable, Non-Separable,

Algorithm ε update from [6], ε update from [6], ε update from [4], SBL-`2

p = 1.0 p = 0.6 p = 0.0

Average Iterations

(Successful Cases) 253.2 14.0 67.7 86.3

Average Iterations

(Failure Cases) 1000 1000 355.4 515.7

did find that adding an additional decaying regularization term to (29), updated using a simple heuristic

like Chartrand and Yin’s method, could improve performance still further. Of course presumably all of

these methods could potentially be enhanced through additional modifications and tuning (e.g., a simple

hybrid scheme is suggested in [6] that involves reducing p after a ‘burn-in’ period that improves recovery

probabilities marginally); however, we save thorough evaluation of such extensions to future exploration.

We also compared the average number of iterations required for the case where ‖x∗‖0 = 16. Results,

which are similar to those from Table I with respect to relative efficiency, are shown in Table II.

TABLE II

AVERAGE NUMBER OF ITERATIONS USED BY EACH ALGORITHM FOR THE ‖x∗‖0 = 16 CASE IN FIGURE 2. EACH METHOD

WAS TERMINATED WHEN THE MAXIMUM CHANGE OF ANY COEFFICIENT WAS LESS THAN 10−6 OR THE MAXIMUM NUMBER

OF ITERATIONS, SET TO 1000, WAS REACHED.

Separable, Separable, Separable, Non-Separable,

Algorithm ε update from [6], ε update from [6], ε update from [4], SBL-`2

p = 1.0 p = 0.6 p = 0.0

Average Iterations

(Successful Cases) 400.5 49.2 97.8 107.6

Average Iterations

(Failure Cases) 1000 1000 361.3 495.8
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Fig. 2. Iterative reweighted `2 example using Gaussian distributed nonzero coefficients. Probability of success recovering

sparse coefficients for different sparsity values, i.e., ‖x∗‖0.

B. Non-Negative Sparse Coding Example via Reweighted `1 Minimization

To test reweighted `1 minimization applied to various sparsity penalties, we performed simulations

similar to those in [3]. Each trial consisted of generating a 100 × 256 dictionary Φ with iid Gaussian

entries and a sparse vector x∗ with 60 nonzero, non-negative (truncated Gaussian) coefficients. The signal

is computed using y = Φx∗ as before. We then attempted to recover x∗ by applying non-negative `1

reweighting strategies with three different penalty functions: (i) gSBL(x) implemented using (32), referred

to as SBL-`1, (ii) gBU(x), and (iii) g(x) =
∑

i log(|xi|+ ε), the separable method of Candès et al., which

represents the current state-of-the-art in reweighted `1 algorithms. In each case, the algorithm’s tuning

parameter (either α or ε) was chosen via coarse cross-validation (see below). Additionally, since we are

working with a noise-free signal, we assume λ → 0 and so the requisite coefficient update (4) with

xi ≥ 0 reduces to the standard linear program:

x(k+1) → arg min
x

∑

i

w
(k)
i xi, s.t. y = Φx, xi ≥ 0,∀i. (39)

Given w
(1)
i = 1,∀i for each algorithm, the first iteration amounts to the non-negative minimum `1-norm

solution. Average results from 1000 random trials are displayed in Figure 3, which plots the empirical

probability of success in recovering x∗ versus the iteration number. We observe that standard non-
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negative `1 never succeeds (see first iteration results); however, with only a few reweighted iterations

drastic improvement is possible, especially for the non-separable algorithms. None of the algorithms

improved appeciably after 10 iterations (not shown). These results show both the efficacy of non-separable

reweighting and the ability to handle constraints on x.
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Fig. 3. Non-negative sparse coding example. Probability of success recovering sparse, non-negative coefficients as the number

of reweighted `1 iterations is increased.

To roughly assess how performance varies with the tuning parameters, α for the non-separable methods,

ε for Candès et al., we repeated the above experiment using a 50 × 100 dictionary and ‖x∗‖0 = 30,

while α, ε were varied from 10−4 to 104. Empirical performance (after 10 reweighted `1 iterations) as

a function of α, ε is displayed in Figure 4 below. Two things are worth pointing out with respect to

these results. First, the performance overall of the non-separable approaches is superior to the method

of Candès et al. Secondly, as α, ε → ∞, the performance of all algorithms converges to that of the

standard (non-negative) minimum `1-norm solution (i.e., the non-negative Lasso) as expected by theory

(assuming the dictionary columns have unit `2 norm). So asymptotically to the right there is very little

distinction. In contrast, when α, ε → 0, the story is very different. The performance of Candès et al.’s

method again theoretically converges to the minimum `1-norm solution. This is because after one iteration

the resulting solution will necessarily be a local minima, so further iterations will offer no improvement.

However, with the non-separable algorithms this is not the case; multiple iterations retain the possibility
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of improvement, consistent with the analysis of Section III. Hence their performance with α → 0 is well

above the `1-norm solution.
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Fig. 4. Probability of success recovering sparse, non-negative coefficients as a function of α, ε using 10 reweighted `1 iterations.

The non-negative Lasso has no such parameter, so its performance is flat.

As mentioned previously, α → 0 seems to always be optimal for the reweighted `2 version of SBL

whereas this is clearly not the case in the reweighted `1 example in Figure 4. To provide one possible

explaination as to why this may be reasonable, it is helpful to consider how gSBL(x) is affected by α.

When α small, the penalty gSBL(x) is more highly concave (favoring sparsity) and the global minimum

will always match that of the minimum `0-norm solution. When using reweighted `2 this is desirable

since the algorithm takes relatively slow progressive steps, avoiding most local minima and converging

to the ideal global solution. In contrast, reweighted `1 converges much more quickly and may be more

prone to local minima when α is too small. When α is a bit larger, reweighted `1 performance improves

as local minima are smoothed; however, the convergence rate of reweighted `2 drops and the global

minima may no longer always be optimal.

C. Application of Reweighting Schemes to the Simultaneous Sparse Approximation Problem

For this experiment we used a randomly generated 50×100 dictionary for each trial with iid Gaussian

entries normalized as above, and created 5 coefficient vectors X ∗ = [x∗
·1, ...,x

∗
·5] with matching sparsity
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profile and iid Gaussian nonzero coefficients. We then generate the signal matrix Y = ΦX ∗ and attempt

to learn X∗ using various group-level reweighting schemes. In this experiment we varied the row sparsity

of X∗ from d(X∗) = 30 to d(X∗) = 40; in general, the more nonzero rows, the harder the recovery

problem becomes.

A total of seven algorithms modified to the simultaneous sparse approximation problem were tested

using an `2-norm penalty on each coefficient row. This requires that the reweighted `1 variants compute

the SOC program (38) as discussed in Section IV. The seven algorithms used were: (i) SBL-`2, (ii) SBL-

`1, (iii) the non-separable bottom up approach, (iv) Candès et al.’s method minimized with reweighted `2

via (15), (v) the original `1 Candès et al. method, (vi) Chartrand and Yin’s method, and finally (vii), the

standard group Lasso [31] (equivalent to a single iteration of any of the other reweighted `1 algorithms).

Note that for method (vi), unlike the others, there is no reweighted `1 analog because the underlying

penalty function is not concave with respect to each |xi| or ‖xi·‖2, it is only concave with respect to x2
i

or ‖xi·‖2
2. For methods (i) - (iii) we simply used α → 0 for direct comparison. For (iv) and (v) we chose

a fixed ε using cross-validation. Finally, for (vi) we used the heuristic described in [4]. Note that in all

cases, we actually used the weighted norm 1√
r
‖xi·‖2 to maintain some consistency with the r = 1 case

in setting tuning parameters.

Results are presented in Figure 5 below. The three non-separable algorithms display the best perfor-

mance, with the `2 version overwhelmingly so. We also observe that the `2 variant of Candès et al.’s

method that we derived significantly outperforms its `1 counterpart from [3]. Again though, we stress

that the `1 updates are generally much more flexible regarding additional constraints applied either to

the data fit term or the sparsity penalty and may benefit from efficient convex programming toolboxes.

We also note that the popular group Lasso is decidedly worse than all of the other algorithms, implying

that the requirement of a strictly convex cost function can be very detrimental to performance.

VI. CONCLUSION

In this paper we have briefly explored various iterative reweighting schemes for solving sparse linear

inverse problems, elaborating on a distinction between separable and non-separable weighting functions

and sparsity penalties. Although a large number of separable algorithms have been proposed in the

literature, the non-separable case is relatively uncommon and, on the surface, may appear much more

difficult to work with. However, iterative reweighted `1 and `2 approaches provide a convenient means of

decoupling coefficients via auxiliary variables leading to efficient updates that can potentially be related

to existing separable schemes. In general, a variety of different algorithms are possible by forming
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Fig. 5. Iterative reweighted results using 5 simultaneous signal vectors. Probability of success recovering sparse coefficients

for different row sparsity values, i.e., d(X∗).

different upper-bounding auxiliary functions. While the non-separable algorithms we have derived show

considerable promise, we envision that superior strategies and interesting extensions are very possible.

In practice, we have successfully applied this methodology to large neuroimaging data sets obtaining

significant improvements over existing convex approaches such as the group Lasso [30].

APPENDIX

Concavity of gSBL(x) and derivation of weight updates (32): Because log |αI + ΦΓΦT | is concave and

non-decreasing with respect to γ ≥ 0, we can express it as

log |αI + ΦΓΦT | = min
z≥0

zT γ − h∗(z), (40)

where h∗(z) is defined as the concave conjugate [1] of h(γ) , log |αI + ΦΓΦT | given by

h∗(z) = min
γ≥0

zT γ − log |αI + ΦΓΦT |. (41)
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We can then express gSBL(x) via

gSBL(x) = min
γ≥0

xT Γ−1x + log |αI + ΦΓΦT |

= min
γ,z≥0

xT Γ−1x + zT γ − h∗(z)

= min
γ,z≥0

∑

i

(
x2

i

γi
+ ziγi

)
− h∗(z). (42)

Minimizing over γ for fixed x and z, we get

γi = z
−1/2
i |xi|,∀i. (43)

Substituting this expression into (42) gives the representation

gSBL(x) = min
z≥0

∑

i

(
x2

i

z
−1/2
i |xi|

+ ziz
−1/2
i |xi|

)
− h∗(z)

= min
z≥0

∑

i

2z
1/2
i |xi| − h∗(z), (44)

which implies that gSBL(x) can be expressed as a minimum of upper-bounding hyperplanes with respect

to |x|, and thus must be concave and non-decreasing in |x| since z ≥ 0 [1]. We also observe that for

fixed z, solving (20) is a weighted `1 minimization problem.

To derive the weight update (32), we only need the optimal value of each zi, which from basic convex

analysis will satisfy

z
1/2
i =

∂gSBL(x)

2∂|xi|
. (45)

Since this quantity is not available in closed form, we can instead iteratively minimize (42) over γ and

z. We start by initializing z
1/2
i → w

(k)
i ,∀i and then minimize over γ using (43). We then compute the

optimal z for fixed γ, which can be done analytically using

z = Oγ log
∣∣αI + ΦΓΦT

∣∣ = diag
[
ΦT
(
αI + ΦΓΦT

)−1
Φ
]
. (46)

This result follows from basic principles of convex analysis. By substituting (43) into (46) and setting

w
(k+1)
i → z

1/2
i , we obtain the weight update (32).

We now demonstrate that this iterative process will converge monotonically to a solution which globally

minimizes the bound from (42) with respect to γ and z, and therefore gives a solution for z which

satisfies (45). Monotonic convergence to some local minimum (or saddle point) is guaranteed using the

same analysis from [28] referred to in Section III-B. It only remains to be shown that no suboptimal

local minima or saddle points exist.
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For this purpose, it is sufficient to show that ρ(γ) , xT Γ−1x + log |αI + ΦΓΦT | (i.e., we have

reinserted the optimal z as a function of γ into the bound) is unimodal with respect to γ with no

suboptimal local minima or saddle points. To accomplish this, we use

ρ(γ) ≡ xT Γ−1x + log |Γ| + log |α−1ΦT Φ + Γ−1|

=
∑

i

[
x2

i exp(−θi) + θi

]
+ log |α−1ΦT Φ + diag [exp (−θ)] |, (47)

where θi , log γi for all i, θ , [θ1, . . . , θm]T , and the exp[·] operator is understood to apply elementwise.

The first term above is obviously convex in θ. Taking the Hessian of the last term with respect to θ

reveals that it is positive semi-definite, and therefore convex in θ as well [27]. Consequently, the function

ρ(exp[θ]) is convex with respect to θ. Since exp[·] is a smooth monotonically increasing function, this

implies that ρ(γ) will be unimodal (although not necessarily convex) in γ. �

Proof of Theorem 1: Before we begin, we should point out that for α → 0, the weight update (32) is

still well-specified regardless of the value of the diagonal matrix W̃ (k+1)X̃(k+1). If φi is not in the span

of ΦW̃ (k+1)X̃(k+1)ΦT , then w
(k+1)
i → ∞ and the corresponding coefficient xi can be set to zero for all

future iterations. Otherwise w
(k+1)
i can be computed efficiently using the Moore-Penrose pseudoinverse

and will be strictly finite.

For simplicity we will now assume that spark(Φ) = n + 1, which is equivalent to requiring that each

subset of n columns of Φ forms a basis in R
n. The extension to the more general case is discussed

below. From basic linear programming [14], at any iteration the coefficients will satisfy ‖x(k)‖0 ≤ n

for arbitrary weights w(k−1). Given our simplifying assumptions, there exists only two possibilities. If

‖x(k)‖0 = n, then we will automatically satisfy ‖x(k+1)‖0 ≤ ‖x(k)‖0 at the next iteration regardless of

W̃ (k). In contrast, if ‖x(k)‖0 < n, then rank
[
W̃ (k)

]
≤ ‖x(k)‖0 for all evaluations of (32) with α → 0,

enforcing ‖x(k+1)‖0 ≤ ‖x(k)‖0.

If spark(Φ) < n + 1, then the globally minimizing weighted `1 solution may not be unique. In this

situation, there will still always be a global minimizer such that ‖x(k)‖0 ≤ n; however, there may be

others with ‖x(k)‖0 > n forming a convex solution set. To satisfy the theorem then, one would need to

use an `1 solver that always returns the sparsest element of this minimum `1-norm solution set. However,

we should point out that this is a very minor contingency in practice, in part because it has been well-

established that essentially all useful, random matrices will satisfy spark(Φ) = n+1 with overwhelming

probability. �
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Proof of Theorem 2: For a fixed dictionary Φ and coefficient vector x∗, we are assuming that ‖x∗‖0 <

(n+1)
2 . Now consider a second coefficient vector x′ with support and sign pattern equal to x∗ and define

x′
(i) as the i-th largest coefficient magnitude of x′. Then there exists a set of ‖x∗‖0 − 1 scaling constants

νi ∈ (0, 1] (i.e., strictly greater than zero) such that, for any signal y generated via y = Φx′ and

x′
(i+1) ≤ νix

′
(i), i = 1, . . . , ‖x∗‖0 − 1, the minimization problem

x̂ , arg min
x

gSBL(x), s.t. Φx′ = Φx, α → 0, (48)

is unimodal and has a unique minimizing stationary point which satisfies x̂ = x′. This result follows

from [29].

Note that (48) is equivalent to (20) with λ → 0, so the reweighted non-separable update (32) can be

applied. Furthermore, based on the global convergence of these updates discussed above, the sequence

of estimates are guaranteed to satisfy x(k) → x̂ = x′. So we will necessarily learn the generative x′.

Let x`1 , arg minx ‖x‖1, subject to Φx∗ = Φx. By assumption we know that x`1 6= x∗. Moreover, we

can conclude using [15, Theorem 6] that if x`1 fails for some x∗, it will fail for any other x with matching

support and sign pattern; it will therefore fail for any x′ as defined above.10 Finally, by construction,

the set of feasible x′ will have nonzero measure over the support S since each νi is strictly nonzero.

Note also that this result can likely be extended to the case where spark(Φ) < n + 1 and to any x∗

that satisfies ‖x∗‖0 < spark(Φ)− 1. The more specific case addressed above was only assumed to allow

direct application of [15, Theorem 6]. �
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