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Abstract

Finding the sparsest, or minimum̀0-norm, representation of a signal
given an overcomplete dictionary of basis vectors is an important prob-
lem in many application domains. Unfortunately, the required optimiza-
tion problem is often intractable because there is a combinatorial increase
in the number of local minima as the number of candidate basis vectors
increases. This deficiency has prompted most researchers to instead min-
imize surrogate measures, such as the`1-norm, that lead to more tractable
computational methods. The downside of this procedure is that we have
now introduced a mismatch between our ultimate goal and our objective
function. In this paper, we demonstrate a sparse Bayesian learning-based
method of minimizing thè 0-norm while reducing the number of trou-
blesome local minima. Moreover, we derive necessary conditions for
local minima to occur via this approach and empirically demonstrate that
there are typically many fewer for general problems of interest.

1 Introduction

Sparse signal representations from overcomplete dictionaries find increasing relevance in
many application domains [1, 2]. The canonical form of this problem is given by,

min
w
‖w‖0, s.t. t = Φw, (1)

whereΦ ∈ <N×M is a matrix whose columns represent an overcomplete basis (i.e.,
rank(Φ) = N andM > N ), w is the vector of weights to be learned, andt is the sig-
nal vector. The actual cost function being minimized represents the`0-norm ofw (i.e., a
count of the nonzero elements inw). In this vein, we seek to find weight vectors whose
entries are predominantly zero that nonetheless allow us to accurately representt.

While our objective function is not differentiable, several algorithms have nonetheless been
derived that (i), converge almost surely to a solution that locally minimizes (1) and more
importantly (ii), when initialized sufficiently close, converge to a maximally sparse solution
that also globally optimizes an alternate objective function. For convenience, we will refer
these approaches aslocal sparsity maximization(LSM) algorithms. For example, proce-
dures that minimizèp-norm-like diversity measures1 have been developed such that, ifp is
chosen sufficiently small, we obtain a LSM algorithm [2, 3]. Likewise, a Gaussian entropy-
based LSM algorithm called FOCUSS has been developed and successfully employed to
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1Minimizing a diversity measure is often equivalent to maximizing sparsity.



solve Neuromagnetic imaging problems [4]. A similar algorithm was later discovered in
[5] from the novel perspective of a Jeffrey’s noninformative prior. While all of these meth-
ods are potentially very useful candidates for solving (1), they suffer from one significant
drawback: as we have discussed in [6], every local minima of (1) is also a local minima to
the LSM algorithms.

Unfortunately, there are many local minima to (1). In fact, every basic feasible solutionw∗
to t = Φw is such a local minimum.2 To see this, we note that the value of‖w∗‖0 at such a
solution is less than or equal toN . Any other feasible solution can be written asw∗+αw′,
wherew′ ∈ Null(Φ). For simplicity, if we assume that every subset ofN columns ofΦ are
linearly independent, the unique representation property (URP), thenw′ must necessarily
have nonzero elements in locations that differ fromw∗. Consequently, any solution in the
neighborhood ofw∗ will satisfy ‖w∗‖0 < ‖w∗ + αw′‖0. This ensures that all suchw∗
represent local minima to (1).

The number of basic feasible solutions is bounded between
(
M−1

N

)
+ 1 and

(
M
N

)
; the exact

number depends ont andΦ [4]. Regardless, whenM À N , we have an large number
of local minima and not surprisingly, we often converge to one of them using currently
available LSM algorithms. One potential remedy is to employ a convex surrogate measure
in place of the`0-norm that leads to a more tractable optimization problem. The most
common choice is to use the alternate norm‖w‖1, which creates a unimodal optimization
problem that can be solved via linear programming or interior point methods. The consid-
erable price we must pay, however, is that the global minimum of this objective function
need not coincide with the sparsest solutions to (1).3 As such, we may fail to recover the
maximally sparse solution regardless of the initialization we use (unlike a LSM procedure).

In this paper, we will demonstrate an alternative algorithm for solving (1) using a sparse
Bayesian learning (SBL) framework. Our objective is twofold. First, we will prove that,
unlike minimum`1-norm methods, the global minimum of the SBL cost function is only
achieved at the minimum̀0-norm solution tot = Φw. Later, we will show that this
method is only locally minimized at a subset of basic feasible solutions and therefore, has
fewer local minima than current LSM algorithms.

2 Sparse Bayesian Learning
Sparse Bayesian learning was initially developed as a means of performing robust regres-
sion using a hierarchal prior that, empirically, has been observed to encourage sparsity [8].
The most basic formulation proceeds as follows. We begin with an assumed likelihood
model of our signalt given fixed weightsw,

p(t|w) = (2πσ2)−N/2 exp
(
− 1

2σ2
‖t− Φw‖2

)
. (2)

To provide a regularizing mechanism, we assume the parameterized weight prior,

p(w; γ) =
M∏

i=1

(2πγi)
−1/2 exp

(
−w2

i

2γi

)
, (3)

whereγ = [γ1, . . . , γM ]T is a vector ofM hyperparameters controlling the prior variance
of each weight. These hyperparameters (along with the error varianceσ2 if necessary) can
be estimated from the data by marginalizing over the weights and then performing ML
optimization. The marginalized pdf is given by

p(t;γ) =
∫

p(t|w)p(w; γ)dw = (2π)−N/2 |Σt|−1/2 exp
[
−1

2
tT Σ−1

t t

]
, (4)

2A basic feasible solution is a solution with at mostN nonzero entries.
3In very restrictive settings, it has been shown that the minimum`1-norm solution can equal the

minimum`0-norm solution [7]. But in practical situations, this result often does not apply.



whereΣt , σ2I + ΦΓΦT and we have introduced the notationΓ , diag(γ).4 This pro-
cedure is referred to as evidence maximization or type-II maximum likelihood [8]. Equiv-
alently, and more conveniently, we may insteadminimizethe cost function

L(γ; σ2) = − log p(t; γ) ∝ log |Σt|+ tT Σ−1
t t (5)

using the EM algorithm-based update rule for the(k + 1)-th iteration given by

ŵ(k+1) = E
[
w|t; γ(k)

]
=

(
ΦT Φ + σ2Γ−1

(k)

)−1

ΦT t (6)

γ(k+1) = E
[
diag(wwT )|t; γ(k)

]
= diag

[
ŵ(k)ŵ

T
(k) +

(
σ−2ΦT Φ + Γ−1

(k)

)−1
]

.(7)

Upon convergence to someγML, we compute weight estimates aŝw = E[w|t; γML],
allowing us to generatêt = Φŵ ≈ t. We now quantify the relationship between this
procedure and̀0-norm minimization.

3 `0-norm minimization via SBL

Although SBL was initially developed in a regression context, it can nonetheless be easily
adapted to handle (1) by fixingσ2 to someε and allowingε → 0. To accomplish this we
must reexpress the SBL iterations to handle the low noise limit. Applying standard matrix
identities and the general result

lim
ε→0

UT
(
εI + UUT

)−1
= U†, (8)

we arrive at the modified update rules

ŵ(k) = Γ1/2
(k)

(
ΦΓ1/2

(k)

)†
t (9)

γ(k+1) = diag

(
ŵ(k)ŵ

T
(k) +

[
I − Γ1/2

(k)

(
ΦΓ1/2

(k)

)†
Φ

]
Γ(k)

)
, (10)

where(·)† denotes the Moore-Penrose pseudo-inverse. We observe that allŵ(k) are feasi-
ble, i.e.,t = Φŵ(k) for all γ(k).5 Also, upon convergence we can easily show that ifγML

is sparse,ŵ will also be sparse while maintaining feasibility. Thus, we have potentially
found an alternative way of solving (1) that is readily computable via the modified itera-
tions above. Perhaps surprisingly, these update rules are equivalent to the Gaussian entropy-
based LSM iterations derived in [2, 5], with the exception of the[I −Γ1/2

(k) (ΦΓ1/2
(k) )†Φ]Γ(k)

term.

A firm connection with`0-norm minimization is realized when we consider the global
minimum ofL(γ; σ2 = ε) in the limit asε approaches zero. We will now quantify this
relationship via the following theorem, which extends results from [6].

Theorem 1. Let W0 denote the set of weight vectors that globally minimize (1) withΦ
satisfying the URP. Furthermore, letW(ε) be defined as the set of weight vectors

{
w∗∗ : w∗∗ =

(
ΦT Φ + εΓ−1

∗∗
)−1

ΦT t, γ∗∗ = arg min
γ
L(γ; σ2 = ε)

}
. (11)

Then in the limit asε → 0, if w ∈ W(ε), thenw ∈ W0.

4We will sometimes useΓ andγ interchangeably when appropriate.
5This assumes thatt is in the span of the columns ofΦ associated with nonzero elements inγ,

which will always be the case ift is in the span ofΦ and allγ are initialized to nonzero values.



A full proof of this result is available at [9]; however, we provide a brief sketch here. First,
we know from [6] that every local minimum ofL(γ; σ2 = ε) is achieved at a basic feasible
solutionγ∗ (i.e., a solution withN or fewer nonzero entries), regardless ofε. Therefore,
in our search for the global minimum, we only need examine the space of basic feasible
solutions. As we allowε to become sufficiently small, we show that

L(γ∗; σ2 = ε) = (N − ‖γ∗‖0) log(ε) + O(1) (12)

at any such solution. This result is minimized when‖γ∗‖0 is as small as possible. A max-
imally sparse basic feasible solution, which we denoteγ∗∗, can only occur with nonzero
elements aligned with the nonzero elements of somew ∈ W0. In the limit asε → 0, w∗∗
becomes feasible while maintaining the same sparsity profile asγ∗∗, leading to the stated
result.

This result demonstrates that the SBL framework can provide an effective proxy to direct
`0-norm minimization. More importantly, we will now show that the limiting SBL cost
function, which we will henceforth denote

L(γ) , lim
ε→0

L(γ; σ2 = ε) = log
∣∣ΦΓΦT

∣∣ + tT
(
ΦΓΦT

)−1
t, (13)

need not have the same problematic local minima profile as other methods.

4 Analysis of Local Minima

Thus far, we have demonstrated that there is a close affiliation between the limiting SBL
framework and the the minimization problem posed by (1). We have not, however, provided
any concrete reason why SBL should be preferred over current LSM methods of finding
sparse solutions. In fact, this preference is not established until we carefully consider the
problem of convergence to local minima.

As already mentioned, the problem with current methods of minimizing‖w‖0 is that ev-
ery basic feasible solution unavoidably becomes a local minimum. However, what if we
could somehow eliminate all or most of these extrema. For example, consider the alternate
objective functionf(w) , min(‖w‖0, N), leading to the optimization problem

min
w

f(w), s.t. t = Φw. (14)

While the global minimum remains unchanged, we observe that all local minima occur-
ring at non-degenerate basic feasible solutions have been effectively removed.6 In other
words, at any solutionw∗ with N nonzero entries, we can always add a small component
αw′ ∈ Null(Φ) without increasingf(w), sincef(w) can never be greater thanN . There-
fore, we are free to move from basic feasible solution to basic feasible solution without
increasingf(w). Also, the rare degenerate basic solutions that do remain, even if subop-
timal, are sparser by definition. Therefore, locally minimizing our new problem (14) is
clearly superior to locally minimizing (1). But how can we implement such a minimization
procedure, even approximately, in practice?

Although we cannot remove all non-degenerate local minima and still retain computational
feasibility, it is possible to remove many of them, providing some measure of approxima-
tion to (14). This is effectively what is accomplished using SBL as will be demonstrated
below. Specifically, we will derive necessary conditions required for a non-degenerate ba-
sic feasible solution to represent a local minimum toL(γ). We will then show that these
conditions are frequentlynot satisfied, implying that there are potentially many fewer local
minima. Thus, locally minimizingL(γ) comes closer to (locally) minimizing (14) than
current LSM methods, which in turn, is closer to globally minimizing‖w‖0.

6A degeneratebasic feasible solution has strictly less thanN nonzero entries; however, the vast
majority of local minima are non-degenerate, containing exactlyN nonzero entries.



4.1 Necessary Conditions for Local Minima

As previously stated, all local minima toL(γ) must occur at basic feasible solutionsγ∗.
Now suppose that we have found a (non-degenerate)γ∗ with associatedw∗ computed
via (9) and we would like to assess whether or not it is a local minimum to our SBL
cost function. For convenience, let̃w denote theN nonzero elements ofw∗ and Φ̃ the
associated columns ofΦ (therefore,t = Φ̃w̃ andw̃ = Φ̃−1t). Intuitively, it would seem
likely that if we are not at a true local minimum, then there must exist at least one additional
column ofΦ not inΦ̃, e.g., somex, that is somehow aligned with or in some respect similar
to t. Moreover, the significance of this potential alignment must be assessed relative toΦ̃.
But how do we quantify this relationship for the purposes of analyzing local minima?

As it turns out, a useful metric for comparison is realized when we decomposex with
respect toΦ̃, which forms a basis in<N under the URP assumption. For example, we
may form the decompositionx = Φ̃ṽ, whereṽ is a vector of weights analogous tõw. As
will be shown below, the similarity required betweenx andt (needed for establishing the
existence of a local minimum) may then be realized by comparing the respective weights
ṽ andw̃. In more familiar terms, this is analogous to suggesting that similar signals have
similar Fourier expansions. Loosely, we may expect that ifṽ is ‘close enough’ tow̃, then
x is sufficiently close tot (relative to all other columns iñΦ) such that we are not at a local
minimum. We formalize this idea via the following theorem:

Theorem 2. Let Φ satisfy the URP and letγ∗ represent a vector of hyperparameters with
N and onlyN nonzero entries and associated basic feasible solutionw̃ = Φ̃−1t. Let X
denote the set ofM −N columns ofΦ not included inΦ̃ andV the set of weights given by{
ṽ : ṽ = Φ̃−1x, x ∈ X

}
. Thenγ∗ is a local minimum ofL(γ) only if

∑

i 6=j

ṽiṽj

w̃iw̃j
≤ 0 ∀ṽ ∈ V. (15)

Proof: If γ∗ truly represents a local minimum of our cost function, then the following
condition must hold for allx ∈ X :

∂L(γ∗)
∂γx

≥ 0, (16)

whereγx denotes the hyperparameter corresponding to the basis vectorx. In words, we
cannot reduceL(γ∗) along a positive gradient because this would pushγx below zero.
Using the matrix inversion lemma, the determinant identity, and some algebraic manipula-
tions, we arrive at the expression

∂L(γ∗)
∂γx

=
xT Bx

1 + γxxT Bx
−

(
tT Bx

1 + γxxT Bx

)2

, (17)

whereB , (Φ̃Γ̃Φ̃T )−1. Since we have assumed that we are at a local minimum, it is
straightforward to show that̃Γ = diag(w̃)2 leading to the expression

B = Φ̃−T diag(w̃)−2Φ̃−1. (18)

Substituting this expression into (17) and evaluating at the pointγx = 0, the above gradient
reduces to

∂L(γ∗)
∂γx

= ṽT
(
diag(w̃−1w̃−T )− w̃−1w̃−T

)
ṽ, (19)

wherew̃−1 , [w̃−1
1 , . . . , w̃−1

N ]T . This leads directly to the stated theorem. ¥



This theorem provides a useful picture of what is required for local minima to exist and
more importantly, why many basic feasible solutions are not local minimum. Moreover,
there are several convenient ways in which we can interpret this result to accommodate a
more intuitive perspective.

4.2 A Simple Geometric Interpretation

In general terms, if the signs of each of the elements in a givenṽ match up withw̃, then the
specified condition will be violated and we cannot be at a local minimum. We can illustrate
this geometrically as follows.

To begin, we note that our cost functionL(γ) is invariant with respect to reflections of
any basis vectors about the origin, i.e., we can multiply any column ofΦ by −1 and the
cost function does not change. Returning to a candidate local minimum with associated
Φ̃, we may therefore assume, without loss of generality, thatΦ̃ ≡ Φ̃diag(sgn(w)), giving
us the decompositiont = Φ̃w, w > 0. Under this assumption, we see thatt is located
in the convex cone formed by the columns ofΦ̃. We can infer that if anyx ∈ X (i.e.,
any column ofΦ not in Φ̃) lies in this convex cone, then the associated coefficientsṽ must
all be positive by definition (likewise, by a similar argument, anyx in the convex cone of
−Φ̃ leads to the same result). Consequently, Theorem 2 ensures that we are not at a local
minimum. The simple 2D example shown in Figure 1 helps to illustrate this point.
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Figure 1: 2D example with a2 × 3 dictionaryΦ (i.e., N = 2 andM = 3) and a basic
feasible solution using the columns̃Φ = [φ1 φ2]. Left: In this case,x = φ3 does not
penetrate the convex cone containingt, and we do not satisfy the conditions of Theorem 2.
This configuration does represent a minimizing basic feasible solution.Right: Now x is in
the cone and therefore, we know that we are not at a local minimum; but this configuration
doesrepresent a local minimum to current LSM methods.

Alternatively, we can cast this geometric perspective in terms of relative cone sizes. For
example, letCΦ̃ represent the convex cone (and its reflection) formed byΦ̃. Then we are
not at a local minimum toL(γ) if there exists a second convex coneC formed from a
subset of columns ofΦ such thatt ∈ C ⊂ CΦ̃, i.e., C is a tighter cone containingt. In
Figure 1(right), we obtain a tighter cone by swappingx for φ2.

While certainly useful, we must emphasize that in higher dimensions, these geometric
conditions aremuchweaker than (15), e.g., if allx arenot in the convex cone of̃Φ, we
still may not be at a local minimum. In fact, to guarantee a local minimum, allx must
be reasonably far from this cone as quantified by (15). Of course the ultimate reduction
in local minima from the

(
M−1

N

)
+ 1 to

(
M
N

)
bounds is dependent on the distribution of



M/N 1.3 1.6 2.0 2.4 3.0

SBL Local Minimum % 4.9% 4.0% 3.2% 2.3% 1.6%

Table 1: Given 1000 trials where FOCUSS has converged to a suboptimal local minimum,
we tabulate the percentage of times the local minimum is also a local minimum to SBL.
M/N refers to the overcompleteness ratio of the dictionary used, withN fixed at 20. Re-
sults using other algorithms are similar.

basis vectors int-space. In general, it is difficult to quantify this reduction except in a few
special cases.7 However, we will now proceed to empirically demonstrate that the overall
reduction in local minima is substantial when the basis vectors are randomly distributed.

5 Empirical Comparisons

To show that the potential reduction in local minima derived above translates into concrete
results, we conducted a simulation study using randomized basis vectors distributed isomet-
rically in t-space. Randomized dictionaries are of interest in signal processing and other
disciplines [2, 7] and represent a viable benchmark for testing basis selection methods.
Moreover, we have performed analogous experiments with other dictionary types (such as
pairs of orthobases) leading to similar results (see [9] for some examples).

Our goal was to demonstrate that current LSM algorithms often converge to local minima
that do not exist in the SBL cost function. To accomplish this, we repeated the following
procedure for dictionaries of various sizes. First, we generate a randomN ×M Φ whose
columns are each drawn uniformly from a unit sphere. Sparse weight vectorsw0 are ran-
domly generated with‖w0‖0 = 7 (and uniformly distributed amplitudes on the nonzero
components). The vector of target values is then computed ast = Φw0. The LSM algo-
rithm is then presented witht andΦ and attempts to learn the minimum̀0-norm solutions.
The experiment is repeated a sufficient number of times such that we collect 1000 examples
where the LSM algorithm converges to a local minimum. In all these cases, we check if the
condition stipulated by Theorem 2 applies, allowing us to determine if the given solution is
a local minimum to the SBL algorithm or not. The results are contained in Table 1 for the
FOCUSS LSM algorithm. We note that, the larger the overcompleteness ratioM/N , the
larger the total number of LSM local minima (via the bounds presented earlier). However,
there also appears to be a greater probability that SBL can avoid any given one.

In many cases where we found that SBL was not locally minimized, we initialized the
SBL algorithm in this location and observed whether or not it converged to the optimal
solution. In roughly 50% of these cases,it escaped to find the maximally sparse solution.
The remaining times, it did escape in accordance with theory; however, it converged to
another local minimum. In contrast, when we initialize other LSM algorithms at an SBL
local minima, we always remain trapped as expected.

6 Discussion

In practice, we have consistently observed that SBL outperforms current LSM algorithms
in finding maximally sparse solutions (e.g., see [9]). The results of this paper provide a
very plausible explanation for this improved performance: conventional LSM procedures
are very likely to converge to local minima that do not exist in the SBL landscape. However,

7For example, in the special case wheret is proportional to a single column ofΦ, we can show
that the number of local minima reduces from

(
M−1

N

)
+1 to 1, i.e., we are left with a single minimum.



it may still be unclear exactly why this happens. In conclusion, we give a brief explanation
that provides insight into this issue.

Consider the canonical FOCUSS LSM algorithm or the Figueiredo algorithm from [5]
(with σ2 fixed to zero, the Figueiredo algorithm is actually equivalent to the FOCUSS
algorithm). These methods essentially solve the problem

min
w

M∑

i=1

log |wi|, s.t. t = Φw, (20)

where the objective function is proportional to the Gaussian entropy measure. In contrast,
we can show that, up to a scale factor, any minimum ofL(γ) must also be a minimum of

min
γ

N∑

i=1

log λi(γ), s.t.γ ∈ Ωγ , (21)

where λi(γ) is the i-th eigenvalue ofΦΓΦT and Ωγ is the convex set{γ :
tT

(
ΦΓΦT

)−1
t ≤ 1, γ ≥ 0}.

In both instances, we are minimizing a Gaussian entropy measure over a convex constraint
set. The crucial difference resides in the particular parameterization applied to this mea-
sure. In (20), we see that ifany subset of|wi|’s becomes significantly small (e.g., as we
approach a basic feasible solution), we enter the basin of a local minimum because the asso-
ciatedlog |wi| terms becomes enormously negative; hence the one-to-one correspondence
between basic feasible solutions and local minima of the LSM algorithms.

In contrast, when working with (21), many of theγi’s may approach zero without becoming
trapped, as long asΦΓΦT remains reasonably well-conditioned. In other words, sinceΦ
is overcomplete, up toM − N of the γi’s can be zero while still maintaining a full set
of nonzero eigenvalues toΦΓΦT , so no term in the summation is driven towards minus
infinity as occurred above. Thus, we can switch from one basic feasible solution to another
in many instances while still reducing our objective function. It is in this respect that SBL
approximates the minimization of the alternative objective posed by (14).
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