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Generalized Statistical Methods
for Mixed Exponential Families,

Part II: Applications
Cécile Levasseur, Uwe F. Mayer, and Kenneth Kreutz-Delgado

Abstract—This work considers the problem of both supervised and unsupervised classification for vector data of mixed types. An
important subclass of graphical modeling techniques called Generalized Linear Statistics (GLS) is used to capture the underlying
statistical structure of these complex data. The GLS methodology exploits the split between data space and natural parameter space
for exponential family distributions, which are assumed to describe the data components, and constrains latent variables to a lower
dimensional parameter subspace. It has the critical advantage of allowing one to transfer high-dimensional mixed-type data components
to low-dimensional common-type latent variables, which are then, in turn, used to perform effective classification in a much simpler
manner using well-known continuous-parameter classical linear techniques. We first demonstrate our ability to learn a GLS generative
model in a controlled environment using synthetic data of mixed types. We then illustrate the benefits of making decisions in parameter
space, with examples of categorical data (supervised and unsupervised) text categorization and mixed data-type classification and
clustering, involving synthetic data and real data sets from the University of California, Irvine (UCI) machine learning repository.

Index Terms—Generalized Linear Statistics (GLS), exponential family distributions, latent variables, dimensionality reduction, text
categorization.
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1 INTRODUCTION

THE complexity of data generally comes from the
possible existence of a large number of components

and from the fact that the components are often of
different data types, i.e., some components might be
continuous (with different underlying distributions) and
some components might be discrete (categorical, count
or Boolean). This is typically the case in drug discovery,
health care, or fraud detection.

Graphical models, also referred to as Bayesian Net-
works when their graph is directed, are a powerful tool
to encode and exploit the underlying statistical structure
of complex data sets [1]. The Generalized Linear Statis-
tics (GLS) framework represents a simple, yet useful,
subclass of graphical model techniques and includes as
special cases multivariate probabilistic approaches such
as Principal Component Analysis (PCA), Generalized
Linear Model (GLM) techniques and factor analysis [2],
[3]. The GLS model is equivalent to a computationally
tractable component-wise exponential families mixed
data-type hierarchical Bayes graphical model with latent
variables constrained to a low-dimensional parameter
subspace. The use of exponential family distributions
allows the data components to have different parametric
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forms and exploits the division between data space
and parameter space specific to exponential families. In
addition to giving a generative model that can be fitted
to the data, it offers the advantage that problems can
be attacked in a latent variable parameter subspace that
is a continuous, Euclidean space, even when the data
components are categorical or of varying exponential
family types.

Although a variety of techniques exist for performing
inference on graphical models, it is in general very diffi-
cult to learn the parameters which constitute the model,
even if it is assumed that the graph structure is known
[4], [5]. The main goal of this paper is to demonstrate
our ability to learn a useful generative GLS graphical
model that captures the statistical structure of vector
data with components of differing data types, to then use
this knowledge to gain insight into the problem domain,
and perform effective classification. Text categorization
and classification/clustering problems are presented as
examples illustrating the benefits of both the GLS frame-
work and making decisions in parameter space rather
than in data space as with more classical approaches.
Of course, Support Vector Machines (SVMs) also make
decisions in a non-data space. However, although often
promising the highest accuracy, the SVMs technique
does not result in the construction of a generative model
and will not generally provide any better understanding
of the data. An advantage of learning a generative model
of the data is that generating synthetic data for the
purposes of developing and training classifiers with the
same statistical structure as the original data becomes
possible. This is particularly useful in cases where data
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are very difficult or expensive to obtain, and when the
original data are proprietary and cannot be directly used
for publication purposes in open literature.

Building on a better understanding of previous work
that first introduced Generalized Linear Statistics (GLS)
and its applications [6], [2], [7], detailed classification
results on both synthetic and real data sets are presented
in this paper.

The paper is organized as follows. Section 2 presents
a review of Generalized Linear Statistics, emphasizing
how natural the GLS framework is for non-gaussian
vector data of mixed vector-component types. In Section
3, synthetic data examples with data of mixed vector-
component types, involving three different exponential
families, illustrate the ability to correctly learn a GLS
generative model. We introduce the angle between the
estimated low-dimensional parameter subspace and the
original low-dimensional parameter subspace used to
generate the synthetic data as a natural measure of the
quality of the estimated GLS model. Section 4 demon-
strates the utility of the GLS approach, first with ex-
periments on synthetic data, then with real-data exper-
iments, where classification in parameter space often
outperforms classification in data space. The synthetic
data examples are a mixed vector components data-type
unsupervised minority class detection problem and a
mixed vector components data-type clustering problem
involving the exponential family Principal Component
Analysis technique of [8], the Semi-Parametric exponen-
tial family Principal Component Analysis technique of
[9] and the Bregman soft clustering technique of [10].
These three techniques are special cases of GLS [3].
Finally, the GLS approach is applied to real data sets
from the University of California, Irvine machine learn-
ing repository [11], namely the Twenty Newsgroups, the
Reuters-21578 and the Abalone data sets, for the pur-
poses of categorical-data text categorization and mixed
vector components data-type classification.

2 GENERALIZED LINEAR STATISTICS (GLS)
The Generalized Linear Statistics (GLS) framework is
based on the hierarchical Bayes graphical model for
hidden or latent variables shown in Figure 1 [3].
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Fig. 1. Graphical model for the GLS framework.

The row vector x = [x1, . . . , xd] ∈ Rd consists of
observed features of mixed data-type instances in a d-
dimensional space. It is assumed that instances can be

drawn from populations having class-conditional prob-
ability density functions

p(x|θ) = p1(x1|θ1) · . . . · pd(xd|θd), (1)

where, when conditioned on the parameter vector θ =
[θ1, . . . , θd] ∈ Rd, the components of x are indepen-
dent. The subscript “i ” on pi(·|·) serves to indicate
that the marginal densities can all be different, allowing
for the possibility of x containing categorical, discrete,
and continuous valued components. Also, the marginal
densities are each assumed to be one-parameter expo-
nential family densities, and θi is taken to be the natural
parameter (or some simple bijective function of it) of the
exponential family density pi. Each component density
pi(xi|θi) in (1) for xi ∈ Xi, i = 1, . . . , d, is of the form

pi(xi|θi) = exp
(
θixi −Gi(θi)

)
,

where Gi(·) is the cumulant generating function defined
as

Gi(θi) = log
∫

Xi

exp
(
θixi

)
νi(dxi),

with νi(·) a σ-finite measure that generates the expo-
nential family. It can be shown, using Fubini’s theorem
[12], that the cumulant generating function of the mul-
tivariate exponential family distribution p(x|θ) in (1) is
G(θ) =

∑d
i=1 Gi(θi).

It is further assumed that θ can be written as

θ = aV +b (2)
with V∈ Rq×d and b∈Rd deterministic and unknown,
and the hidden or latent variable a = [a1, . . . , aq] ∈ Rq

unknown with q < d (and ideally q ¿ d). Note that
the matrix V identifies a lower dimensional subspace
in parameter space. The GLS framework both considers
a Bayesian approach for which a is treated as a random
vector and a classical approach where the vector a is de-
terministic. First, the vector a is assumed to be random.
Then, in some way, the latent variable a explains part (or
all) of the random behavior of the observed variables.

Since a (and hence θ) is treated as a random vector
(Bayesian approach), the (non-conditional) probability
density function p(x) requires a generally intractable
integration over the parameters,

p(x) =
∫

p(x|θ)π(θ)dθ =
∫ d∏

i=1

pi(xi|θi)π(θ)dθ, (3)

with π(θ) the probability density function of θ. The
maximum likelihood identification of this blind random
effect model is quite a difficult problem. It corresponds to
identifying π(θ), which, under the condition θ = aV+b,
corresponds to identifying the matrix V, the vector
b, and a density function on the random effect a via
a maximization of the likelihood function p(X) with
respect to V, b, and the random effect density function,
where

p(X) =
n∏

k=1

p
(
x[k]

)
=

n∏

k=1

∫
p
(
x[k]|θ)

π(θ)dθ, (4)
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and X is the (n× d) observation matrix

X =




x[1]
x[2]

...
x[n]


 =




x1[1] . . . xd[1]
x1[2] . . . xd[2]

...
. . .

...
x1[n] . . . xd[n]


 .

This difficulty can be avoided by Non-Parametric
Maximum Likelihood (NPML) estimation of the ran-
dom effect distribution, concurrently with the structural
model parameters. The NPML estimate is known to be
a discrete distribution on a finite number of support
points [13], [14]. The NPML approach yields unknown
point-mass support points

¯
a[l], point-mass probability

estimates πl, and the linear predictor
¯
θ[l] =

¯
a[l]V+b for

l = 1, . . . , m, with m ≤ n. The single-sample likelihood
(3) then becomes

p(x) =
m∑

l=1

p
(
x|̄θ[l]

)
πl =

m∑

l=1

p
(
x|

¯
a[l]V +b

)
πl

and the data likelihood (4) is equal to

p(X)=
n∏

k=1

m∑

l=1

p
(
x[k]|̄θ[l]

)
πl=

n∏

k=1

m∑

l=1

p
(
x[k]|

¯
a[l]V +b

)
πl.

The data likelihood is thus approximately the likeli-
hood of a finite mixture of exponential family densities
with unknown mixture proportions or point-mass prob-
ability estimates πl and unknown point-mass support
points

¯
a[l], with the linear predictor

¯
θ[l] in the lth mix-

ture component. The combined problem of maximum
likelihood estimation of the parameters V, b, the point-
mass support points

¯
a[l] and the point-mass probability

estimates πl, l = 1, . . . , m, can be attacked by using
the Expectation-Maximization (EM) algorithm [15], [13],
[14], [16], cf. in particular in the Semi-Parametric expo-
nential family Principal Component Analysis technique
[9].

However, a classical approach to the GLS estimation
problem can also be considered and the vector a (and
hence θ) is treated as a deterministic vector. Then, to each
data point x[k], k = 1, . . . , n, corresponds a (generally
different) parameter point, yielding a total of n points

¯
θ[k], k = 1, . . . , n, in parameter space (and hence n
points

¯
a[k], k = 1, . . . , n, in the parameter space low-

dimensional subspace) as presented in the exponential
family Principal Component Analysis technique [8]. The
data likelihood is simply equal to

p(X) =
n∏

k=1

p
(
x[k]|̄θ[k]

)
=

n∏

k=1

p
(
x[k]|

¯
a[k]V + b

)
. (5)

Contrary to the Bayesian approach, no point-mass prob-
abilities have to be estimated. For consistency of vocab-
ulary throughout this paper, the points

¯
a[k], k = 1, . . . , n,

in the parameter space low-dimensional subspace are
called latent variables for both Bayesian and classical
approaches. Similarly, the parameter points

¯
θ[k], k =

1, . . . , n, are called atoms in both approaches. The clas-
sical approach can also be seen as an extreme case of
the Bayesian approach for which the probability density
function π(θ) is a delta function (one per data point)
and the total number of atoms m equals the number of
data points n, i.e., m = n. Note that while the m < n
parameter points of the Bayesian approach are shared
by all the data points, the classical approach assigns one
parameter point to each data point (hence m = n). This
extreme case is the approach followed in Section 3 and
in part of Section 4.

3 FITTING A GLS GENERATIVE MODEL

We now demonstrate our ability to learn a GLS genera-
tive model in a controlled environment using synthetic
data of mixed types.

3.1 Angle between subspaces
Given a synthetic data set, the angle between the esti-
mated low-dimensional paramater subspace N and the
original low-dimensional parameter subspace M used to
generate the synthetic data is proposed as a measure to
assess the quality of the GLS model estimation. As stated
in [17], defining the angle between subspaces in Rd,
d À 1, is not as straightforward as the visual geometry
of R or R3 might suggest.

The minimal angle between nonzero subspaces M,N ⊆
Rd is defined to be the number 0 ≤ ωmin ≤ π/2 for which

cos ωmin = max
u∈M,v∈N
‖u‖2=‖v‖2=1

vT u. (6)

If PM and PN are the orthogonal projectors onto M and
N , respectively, then

cosωmin = ‖PNPM‖2.
If M and N are complementary subspaces (M⊕N = Rd)
and if PMN is the oblique projector onto M along N ,
then

sin ωmin =
1

‖PMN ‖2 .

M and N are complementary subspaces if and only if
PM −PN is invertible; in this case

sin ωmin =
1

‖(PM −PN )−1‖2 .

While the minimum angle works fine for complementary
subspaces, it may not convey much information about
the separation between non-complementary subspaces.
For example, ωmin = 0 whenever M and N have a
nontrivial intersection, but there might be a nontrivial
“gap” between M and N nevertheless.

The maximal angle between subspaces M,N ⊆ Rd is
defined to be the number 0 ≤ ωmax ≤ π/2 for which

sin ωmax = ‖PM −PN ‖2. (7)

The maximum angle is chosen for the assessment of
the lower dimensional subspace estimation performance.
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Since PM is the orthogonal projector onto the lower
dimensional subspace, and since the matrix V ∈ Rq×d

defines this subspace, then

PM = VT V+ = VT
(
VVT

)−1
V,

where the subscript + denotes a pseudo-inverse.

3.2 Mixed Binomial-Gaussian-Gamma data example
Figure 2 presents a mixture of two Binomial-Gaussian-
Gamma mixed distributions in data space. The data
are comprised of one Gamma attribute, one Gaussian
attribute and one Binomial attribute with parameter
N = 10 (the Binomial attribute counts the number of
successes in N independent Bernoulli experiments).
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Fig. 2. Data space: a mixture of two Binomial-Gaussian-
Gamma mixed distributions with parameters constrained
on a 1-dimensional subspace.

The classical approach corresponding to exponen-
tial family Principal Component Analysis (exponen-
tial PCA) is assumed for GLS in this example. The
sine of the angle between the original low-dimensional
parameter subspace and the low-dimensional parame-
ter subspace learned with GLS assuming a Binomial-
Gaussian-Gamma mixed exponential family distribu-
tion is sin(]GLS:BGG) = 0.0326. With a simple Gaus-
sian GLS assumption, the sine becomes sin(]GLS:G) =
0.93375 > sin(]GLS:BGG). Since both a Binomial ran-
dom variable and a Gamma random variable only take
on positive values, we could only consider two more
assumptions: a Binomial-Gaussian GLS assumption and
a Gaussian-Gamma GLS assumption. The sine of the
angle between the original subspace and the subspace
learned with a Binomial-Gaussian GLS assumption is
sin(]GLS:BG) = 0.93623 > sin(]GLS:BGG) and the sine
of the angle between the original subspace and the sub-
space learned with a Gaussian-Gamma GLS assumption
is sin(]GLS:GG) = 0.08310 > sin(]GLS:BGG). The re-
sults obtained with a Gaussian-Gamma GLS assumption
are similar to the results obtained with the Binomial-
Gaussian-Gamma GLS assumption. In this particular
example, assuming a Gamma distribution for the last

attribute seems to be essential for a good estimation
performance.

We performed a similar experiment with a mixture
of two Binomial-Gaussian-Gamma mixed distributions
and the Binomial parameter N equal to 5. The results
are similar to the ones obtained for the data with Bi-
nomial parameter N equal to 10 and are as follows:
sin(]GLS:G) = 0.86571 > sin(]GLS:BG) = 0.86359 >
sin(]GLS:GG) = 0.14198 > sin(]GLS:BGG) = 0.098467.

4 DATA-DRIVEN DECISION MAKING IN PARAM-
ETER SPACE

This section illustrates the benefits of making decisions
in parameter space, with examples involving both syn-
thetic and real data sets.

4.1 Unsupervised minority class detection on syn-
thetic data

Minority class detection considers a binary class situa-
tion where a “minority class” is discriminated from a
“majority class”. It aims to differentiate rare key events
belonging to the minority class from the remainder of
the data belonging to the majority class.

The problem of unsupervised data-driven minority
class (rare event) detection is one of relating property
descriptors of a large unlabeled database of “objects”
to measured properties of these objects, then using
these empirically determined relationships to infer the
properties of new objects. Here, the ultimate goal is to
correctly characterize the new objects as either belonging
to the minority class or not. This work assumes that
minority class and majority class objects constitute two
distinct, well-separated classes of objects in a latent
variable subspace of the parameter space as described
in Section 2. In the case of a rare occurrence of objects
to be detected, it is believed that modeling the total
unlabeled database allows one to discern the statistical
structure of the majority class of objects. This experiment
considers synthetic data sets of mixed types, involving
both continuous and discrete data components.

Unsupervised methods for feature extraction, such as
Principal Component Analysis (PCA), are commonly
used to process data before using discriminative classi-
fiers, such as Support Vector Machines (SVMs) or neural
networks. However, methods such as Independent Com-
ponent Analysis (ICA) and PCA assume the same form
of the distribution for all components of the data. In con-
trast, the Generalized Linear Statistics framework devel-
oped in Section 2 allows each component to have its own
parametric form. The minority class detection technique
proposed here is based on the GLS framework, enabling
the use of exponential family distributions to model the
various mixed types of data measurements (continuous
or discrete). A key aspect is that the parameters of the
exponential family distributions are constrained to a
lower dimensional latent variable subspace. The classical
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approach to GLS corresponding to exponential PCA is
considered here. The proposed minority class detection
technique is performed in parameter space rather than in
data space, as in more classical approaches, and exploits
the low-dimensional information provided by the latent
variables

¯
a[k], k = 1, . . . , n.
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Fig. 3. Data space: data samples of a 3-dimensional
mixed data set with Binomial, Exponential and Gaussian
components (blue circles for one class and red squares
for the other class).

Figure 3 shows an example of synthetic three-
dimensional mixed data (d = 3), with each data sam-
ple comprised of a Binomial component with values
between 0 and 5, an Exponential distribution component,
and a unit-variance Gaussian component. The data are
generated by two different classes, a minority one and
a majority one, and for each class the parameters are
assumed to be constrained to lie on a (different) one-
dimensional subspace of the parameter space (q = 1).
To assess the unsupervised minority class detection per-
formance, we consider a situation where the minority
class is a rare occurrence (1 percent of 10000 data sam-
ples), and the data are equally divided into a training
set and a test set. The unsupervised minority class
detection technique using the GLS information learned
in parameter space works as follows: first, given the
training set {x[k]}n

k=1, we learn the low-dimensional pa-
rameter subspace or direction of projection in parameter
space, namely the matrix V, by using the GLS modeling
approach, and compute the training set mean-image
on this low-dimensional parameter subspace, namely
(1/n)

∑n
k=1 ¯

a[k]. The training set mean-image is then
taken as an approximation to the training cluster mean
of the majority class in the lower dimensional subspace.
Then, to each test data sample corresponds a point in
parameter space that was determined during the GLS
model estimation. We compute its distance to the train-
ing set mean-image and compare the obtained distance
to a given threshold λ to make a decision. The test point
is declared to be part of the minority class if the distance
is higher than λ, otherwise it is declared to be part of
the majority class. This procedure is conducted for all

of the test set samples, and the detection performance is
assessed by plotting the ROC curve found from varying
the value of λ. The ROC curve shows the probability of
detection PD versus the probability of false alarm PFA as
λ varies. The proposed technique is compared to classical
PCA used in data space with a threshold test performed
on new test data projected along the first principal axis,
as well as to a supervised Bayes (minimum rate) detector
for the sake of an optimal benchmark.

Data for which classical PCA will fail to provide ac-
curate detection are easily created, using the knowledge
that classical PCA defines the direction of projection
as the direction of maximum variance in data space.
The classical PCA approach will therefore give poor
performance on data for which the direction of maxi-
mum variance is inappropriate for separating minority
from majority class data. The Exponential distribution
p(x; θ) = β exp(−βx), with θ = −β, is used as a
component of the data. Because the inverse of the link
function for this distribution is f(x) = −1/x, the direction
of maximum variance in data space is actually the direction
of minimum variance in feature space, and for this situation
classical PCA is expected to perform poorly, and indeed
it does.

Figure 4 shows a comparison between the supervised
Bayes detector, the minority class detector based on GLS
information and performed in parameter space, and the
minority class detector based on classical PCA infor-
mation and performed in data space. This illuminating
example shows that there are domains for which classical
PCA performs far from optimal.
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Fig. 4. Comparison of supervised Bayes optimal (top
blue with pentagrams), proposed GLS technique (middle
green with squares) and classical PCA (bottom red with
circles) ROC curves.

4.2 Clustering results on synthetic data

This application compares the relative performances of
exponential PCA, Semi-Parametric exponential family
Principal Component Analysis (SP-PCA) and Bregman
soft clustering in a mixed data set clustering problem
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TABLE 1
Clustering results for a Poisson-Gaussian mixed data set.

π1; π2
¯
a[1];

¯
a[2]

¯
θ[1];

¯
θ[2] sin

correct 0.4 3 [1.9404, 1.6148, 1.6210]
model values 0.6 −2 [−1.2936, −1.0765, −1.0806]

modified 0.4107 3.0009 [1.6235, 1.8648, 1.7007] 0.1368
exponential PCA 0.5893 −1.3725 [−0.7425, −0.8529, −0.7778]

modified 0.3724 3.2170 [2.1732, 1.5715, 1.7768] 0.058663
SP-PCA 0.6276 0.8355 [0.5644, 0.4081, 0.4614]

modified Bregman 0.4069 [1.9317, 1.7162, 1.5585]
soft clustering 0.5931 [−1.1061, −1.0802, −1.0304]

TABLE 2
Clustering results for a Binomial-Gaussian mixed data set.

π1; π2
¯
a[1];

¯
a[2]

¯
θ[1];

¯
θ[2] sin

correct 0.4 1 [0.8914, 0.1688, 0.4206]
model values 0.6 −2 [−1.7828, −0.3375, −0.8412]

modified 0.4475 0.8559 [0.7796, 0.1166, 0.3334] 0.049038
exponential PCA 0.5525 −1.9972 [−1.8193, −0.2721, −0.7779]

modified 0.3978 −0.9548 [−0.9046, −0.0989, −0.2890] 0.1455
SP-PCA 0.6022 −3.1821 [−3.0148, −0.3296, −0.9633]

modified Bregman 0.3973 [0.82252, 0.144, 0.41004]
soft clustering 0.6027 [−1.8072, −0.3089, −0.9816]
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Fig. 5. Non-parametric estimation of the point-mass prob-
abilities obtained with exponential PCA (dotted: correct
cluster centers).

with two data types and demonstrates how exponential
PCA with the addition of a non-parametric estimation
of the point-mass probabilities can exceed SP-PCA in
performance.

We first consider a synthetic d = 3-dimensional data
set with a lower dimensional subspace of dimension
q = 1. The first data feature is Poisson distributed, the
second and third features are Gaussian distributed. The
data has n = 500 points and is composed of two mixture
components with parameters

¯
θ[1] and

¯
θ[2] constrained to

the lower dimensional subspace.
We first use exponential PCA. However, exponential

PCA does not estimate point-mass probabilities. We use
a non-parametric density estimation technique based
on a kernel smoothing method to estimate the point-
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Fig. 6. Histogram of the estimated point-mass prob-
abilities obtained with SP-PCA (dotted: correct cluster
values).

mass probabilities using the support points values
¯
a[k],

k = 1, . . . , n, obtained by exponential PCA. Figure 5
shows that the non-parametric density estimation ex-
hibits a definite two-component shape. The dotted lines
represent the correct values

¯
a[1] and

¯
a[2]. We can then

estimate the values of
¯
a[1] and

¯
a[2] as well as their

mixing distributions π1 and π2 using a simple K-means
algorithm, with the π1 + π2 = 1 assumption.

Figure 6 presents the histogram of the estimated point-
mass probabilities obtained with SP-PCA, m = 2.

Table 1 shows detailed results for this synthetic data
setting (“modified” means the extension to mixed data
sets of the algorithm): the mixing distributions or point-
mass probabilities π1 and π2, the latent variable or
point of support values

¯
a[1] and

¯
a[2], the parameter
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values
¯
θ[1] and

¯
θ[2] as well as the sine of the angle

between the estimated lower dimensional subspace and
the correct subspace. Bregman soft clustering does not
have the lower dimensional subspace constraint, and
hence does not exhibit a sine or the latent variables
values in Table 1 or Table 2. The estimation quality of
the

¯
θ[1],

¯
θ[2] and π1, π2 values defines the clustering

performance. For this simple Poisson-Gaussian mixed
data setting, both exponential PCA and Bregman soft
clustering seem to perform better than SP-PCA: the SP-
PCA obtained parameter values for

¯
θ[2] are far from

the original values, contrary to exponential PCA and
Bregman soft clustering.

Results for a second experiment are shown in Table
2 for a Binomial-Gaussian mixed data set created in
a similar fashion as the Poisson-Gaussian mixed data
set (the parameter N is set to 10 for the Binomial
component). Again, exponential PCA exceeds SP-PCA
in clustering performance.

4.3 Text Categorization

The Twenty Newsgroups and the Reuters-21578 data sets
[11] are used for most of the published experimental
literature in text categorization, one example of informa-
tion retrieval tasks. Text categorization is the activity of
labeling natural language texts with thematic categories
from a predefined set [18].

It has been acknowledged by the text categorization
community that words seem to work well as features of
a document for many classification tasks. In addition, it
is usually assumed that the ordering of the words in
a document does not matter. Hence, a document can
simply be represented as a bag of words, i.e., as a vector
for which each distinct word is a feature [19]. There are
two ways to characterize the value of each feature that
are commonly used in the literature: Boolean and tf×idf
weighting schemes. In Boolean weighting, the weight of
a word is considered to be 1 if the word appears in the
document and 0 otherwise. We choose to characterize the
value of each feature by using the tf×idf (term frequency
× inverse document frequency) scheme as recently more
commonly used for document representation [20], [18].
This scheme argues that terms (or words) appearing in
documents should be weighted proportional to the term
frequency and inversely proportional to the document
frequency. The tf×idf weight is a statistical measure
used to evaluate how important a word (or term) is
to a corpus. The importance increases proportionally
to the number of times a word appears in the doc-
ument but is offset by the frequency of the word in
the corpus. This weighting scheme and the combination
of document length normalization have been shown to
yield generally better retrieval results [20], [21], [22], [18];
interestingly, in practice, the Boolean approach does not
always perform worse than the tf×idf approach [23]. The
term frequency tf is the number of times a specific word
occurs in a specific document. The document frequency df

is the number of documents in which the specific word
occurs at least once. The inverse document frequency idf is
calculated from the document frequency, as follows:

idf = log
(

total # of documents
df

)
,

yielding the tf×idf weight wi for each feature i:

wi = tfi · idfi = tfi · log
(

total # of documents
dfi

)
.

Hence, the tf×idf weighting with length normalization
is for all i:

wi =
tfi · log

( total # of documents
dfi

)
√∑|T |

j=1

[
tfj · log

( total # of documents
dfj

)]2
,

where |T | is the length of the document, i.e., the number
of distinct words in the document (after stopword re-
moval and stemming is performed as explained below).
Length normalization ensures that each document vector
is of unit length, removing the advantage that long
documents have over short documents with respect to
information retrieval [18]. However, if a document is
long, but has quite often a term that represents key
information for a specific text categorization task, nor-
malization would reduce the importance of the term as
compared to a short document, where the term appears
equally often in absolute term. Hence we decide to
discard the length normalization step.

We choose to bin the weights and work with integer
valued weights (5 bins are selected), i.e., categorical
features.

4.3.1 Twenty Newsgroups data set
The Twenty Newsgroups data set consists of Usenet ar-
ticles collected from twenty different newsgroups. Each
newsgroup contains 1000 articles. We consider the three
following newsgroups: sci.med, comp.sys.mac.hardware
and comp.sys.ibm.pc.hardware. We decide on a text
categorization problem with two distinct classes, the
first class consisting of the newsgroup sci.med and the
second class consisting of the two other newsgroups.

Following the text document representation prepro-
cessing steps described in Figure 7, we first choose to
discard all header fields such as Cc, Bcc, Message-ID, as
well as the Subject field (this step is called parsing). Case-
folding, which stands for converting all the characters
in a document into the same case, is performed by
converting all the characters into lower-case. We use a
stop list, i.e., a list of words that will not be taken into ac-
count. Indeed, there are words such as pronouns, prepo-
sitions and conjunctions which are encountered very
frequently but carry no useful information about the
content of the document. We used the common stop list
ftp://ftp.cs.cornell.edu/pub/smart/english.stop, made
of 571 stop-words and commonly used in the literature.
Then, some simple stemming is performed, such as
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text
document

- parsing - case-folding - removing
stopwords

- stemming - term
weighing

- dictionary
learning

- encoded
vector

Fig. 7. Preprocessing and document representation for text categorization.

removing the third person and plural “s”. In addition
to removing very frequent words with the stop list, we
remove rare words, i.e., words appearing less than 10
times in the corpus. It yields a drastic reduction in the
number of features. The tf×idf weighting scheme is then
used and we choose to bin the weights and work with
integer valued weights (5 bins are selected), i.e., categor-
ical features. At this point, each document is a vector in
a 4383-dimensional space, i.e., 4383 distinct words were
identified to represent the newsgroups documents.

Modified dictionary learning. We now construct a
dictionary, and hence reduce the dimensionality of the
feature space. There are various methods commonly
applied for dimensionality reduction in document cat-
egorization [19]. We choose a conditional mutual infor-
mation based approach to select a dictionary of d = 150
words. We modify the binary feature selection with
conditional mutual information algorithm proposed in
[24] to fit a categorical feature. The feature selection
algorithm proposed in [24] is based on the Conditional
Mutual Information Maximization (CMIM) criterion and
selects features that maximize both the information
about the class and the independence between features.
The modification from binary to categorical is simple:
following the definition of entropy and mutual informa-
tion shown in [24], the summations are changed from
summing over two values to summing over the total
number of bins values.

We use this data set leaving out a randomly selected
40% of the instances of each class to use as a test set.
The training set then consists of 1764 instances and the
test set 1236. The dictionary is learned using the training
set only. Table 3 presents the twenty first words of the
dictionary. For the text categorization examples, the
extreme case of GLS corresponding to exponential PCA
is solely considered. Figure 8 represents the training
set documents in the low-dimensional subspace of the
parameter space learned with classical PCA for a dimen-
sion q of the subspace equal to 2. Similarly, Figure
9 represents the training set documents in the low-
dimensional subspace of the parameter space learned
with the GLS approach using a Binomial distribution for
a dimension q of the subspace equal to 2.

Classification effectiveness is often measured in terms
of precision and recall in the text categorization com-
munity [18]. Precision with respect to a class Ci (πi) is
defined as the probability that, if a random document is
classified under Ci, this decision is correct. Recall with
respect to a class Ci (ρi) is defined as the probability that,

TABLE 3
Twenty Newsgroups data set: the twenty first words of
the dictionary learned to differentiate the newsgroup

sci.med from the newsgroups comp.sys.mac.hardware
and comp.sys.ibm.pc.hardware.

doctor
card
mac
drive
disease
medical
treatment
food
patient
effect medicine
drug
skepticism
pc
body
health
blood
study
hardware
infection

−4 −2 0 2 4 6 8 10
−10

−8
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−4
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0

2

4
Twenty Newsgroup (sci.med vs. mac,ibm): classical PCA (q=2)

Fig. 8. Twenty Newsgroup data set: training documents in
the lower-dimensional subspace of the parameter space
learned with classical PCA, q = 2 (sci.med: *, others: ◦).

if a random document ought to be classified under Ci,
this decision is taken. These probabilities are estimated
in terms of the contingency table for Ci on a given test
set as follows:

π̂i =
TPi

TPi + FPi
and ρ̂i =

TPi

TPi + FNi
,

where TPi, FPi and FNi refer to the sets of true positives
with respect to Ci (documents correctly deemed to belong
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TABLE 4
Averaging precision, recall and F1 measure across different classes.

microaveraging (µ) macroaveraging (M )

precision (π) π̂µ =
∑|C|

i=1 TPi∑|C|
i=1(TPi+FPi)

π̂M =
∑|C|

i=1 πi

|C| =

∑|C|
i=1

T Pi
T Pi+F Pi
|C|

recall (ρ) ρ̂µ =
∑|C|

i=1 TPi∑|C|
i=1(TPi+FNi)

ρ̂M =
∑|C|

i=1 πi

|C| =

∑|C|
i=1

T Pi
T Pi+F Ni
|C|

F1 F µ
1 =

2·∑|C|
i=1 TPi

2·∑|C|
i=1 TPi+

∑|C|
i=1 FPi+

∑|C|
i=1 FNi

F M
1 =

∑|C|
i=1 F1,i

|C| =

∑|C|
i=1

2·T Pi
2·T Pi+F Pi+F Ni

|C|
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Twenty Newsgroup (sci.med vs. mac,ibm): GLS with Binomial assumption (q=2)

Fig. 9. Twenty Newsgroup data set: training documents in
the lower-dimensional subspace of the parameter space
learned with GLS (Binomial), q = 2 (sci.med: *, others: ◦).

to class Ci), false positives with respect to Ci (documents
incorrectly deemed to belong to class Ci), and false nega-
tives with respect to Ci (documents incorrectly deemed not
to belong to class Ci). Then, the F1 measure combines
precision and recall, attributing equal importance to π
and ρ:

F1 =
2 · πρ

π + ρ
.

When effectiveness is computed for several classes, the
results for individual classes can be averaged in two
ways: microaveraging, where π and ρ are obtained by
summing over all individual classes (the subscript “µ”
indicates microaveraging), and macroaveraging, where π
and ρ are first evaluated “locally” for each class and then
“globally” by averaging over the results of the different
classes (the subscript “M” indicates macroaveraging)
[18].

Supervised text categorization. Table 5 compares clas-
sification performances on (a) the q-dimensional latent
variable subspace learned with GLS using a Binomial
distribution assumption and (b) the q-dimensional clas-
sical Principal Component Analysis (PCA) subspace
learned in data space in terms of precision, recall and F1

measure, for several values of q. The classifier is a simple
linear discriminant. The classification performances are

−18 −16 −14 −12 −10 −8 −6 −4
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−2

0

2

4

6

8
Twenty Newsgroup (sci.med vs. mac,ibm): kmeans on GLS subspace (q=2)

Fig. 10. Twenty Newsgroup data set: K-means results for
a two-class classification of the training documents in the
GLS subspace (Binomial, q = 2).

often very similar, at times at the advantage of GLS
(q = 4 and q = 10). These results were obtained by using
the MatlabArsenal toolbox, a package for classification
algorithms [25]. The operating point is defined as the
one maximizing the F1 measure.

Unsupervised text categorization. The K-means al-
gorithm is used to cluster the training documents into
two distinct classes. Figure 10 represents the two clusters
learned with K-means on the training set documents
in the low-dimensional parameter subspace (q = 2).
Comparing Figure 10 with Figure 9 shows how effective
the K-means clustering algorithm is in this parameter
subspace. Based on this clustering information, a linear
discriminant is learned on the training documents and
used to classify the test documents. Figure 11 presents
the corresponding ROC curve for this unsupervised
approach performed on both the GLS parameter sub-
space and the classical PCA data subspace (q = 2). The
performance is best when the unsupervised approach is
used on the GLS subspace rather than on the classical
PCA subspace.

4.3.2 Reuters-21578 data set
The Reuters-21578 text categorization test collection Dis-
tribution 1.0 is considered as the standard benchmark for
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Fig. 11. Twenty Newsgroups data set: ROC curve for
the unsupervised approach learned on the GLS subspace
(solid line) and the classical PCA subspace (dashed line)
(q = 2).

TABLE 6
The ten topics with the highest number of training
documents in the Reuters-21578 data set with the

number of their documents in the training and test sets.

topics training set test set

earn 2877 1087
acq 1650 719

money-fx 538 179
grain 433 149
crude 389 189
trade 369 118

interest 347 131
wheat 212 71
ship 197 89
corn 181 56

automatic document organization systems and consists
of documents that appeared on the Reuters newswire
in 1987. This corpus contains 21578 documents assigned
to 135 different economic subject categories called topics.
The topics are not disjoint. For the training test division
of the data, the “Modified Apte” (ModApte) split is used,
dividing the corpus into a training set of 9603 documents
and a test set of 3299 documents. We reduce the size of
the training test sets by only considering the ten topics
that have the highest number of training documents as
as suggested in [18], [26]. These topics are given in Table
6 and yield a training set of 6490 documents and a test
set of 2545 documents. They cover almost all of the data,
hence, researchers are able to restrict their work to them
and still capture the essence of the data set. The data are
preprocessed as for the previous data set: parsing, case-
folding, elimination of stopwords, stemming by using
Porter’s stemming algorithm commonly used for word
stemming in English [27], elimination of words that
appear less than 20 times in the corpus, tf×idf weighting.
At this point, 3613 distinct words were identified to rep-
resent the Reuters-21578 documents. Then, we choose to

bin the weights and work with integer valued weights (5
bins are selected), i.e., categorical features. A dictionary
of d = 50 words is learned using the following approach.
The dictionary is learned on the training set only and
built independently for each of the ten classes. Feature
selection was incremental purely out of computational-
runtime reasons. First we do a backward selection to 300
features with linear regression. From these 300 features,
we use a logistic regression with a number of iterations
reduced down to 5 for convergence, and do a backward
selection down to 100 features. Finally, we do a stan-
dard full-convergence logistic regression from those 100
features down to 50 features.

Table 7 compares linear discriminant classification per-
formances on the q-dimensional latent variable space
learned with classical PCA and GLS with a Binomial
distribution (1087 positive test instances) for the first
and the tenth categories of the Reuters-21578 data set.
Table 8 compares classification performances micro-
and macroaveraged over the top ten categories of the
Reuters-21578 data set using a linear discriminant clas-
sifier on (a) the latent q-dimensional variable subspace
learned with GLS using a Binomial distribution assump-
tion and (b) the classical PCA q-dimensional subspace
learned in data space. The averaging is performed as
explained in Table 4. Microaveraging and macroaver-
aging methods give quite different results: the linear
discriminant classifier performs better based on the GLS
information than on classical PCA information when the
macroaveraging method is used, while microaveraging
emphasizes how similar the two results are. It is known
that the ability of a classifier to behave well on categories
with few positive training instances will be highlighted
by macroaveraging compared to microaveraging [18].
The linear discriminant classifier based on GLS infor-
mation performs very well for the categories with fewer
positive training instances yielding a better macroaver-
aged performance than the microaveraged one, cf. Table
6.

4.4 Abalone data set
The task is to predict the age of an abalone based on
physical measurements. The Abalone data set consists
of 4177 instances with 8 attributes. The problem can be
seen as a classification problem aiming to distinguish
three classes (number of rings = 1 to 8, number of rings
= 9 to 10, number of rings = 11 and higher). The number
of rings approximately corresponds to the age of the
abalone. We use this data set leaving out a randomly
selected 40% of the instances to use as a test set (2506
training points and 1671 test points).

Figure 12 represents the histograms of the complete
data set for each attribute. Attribute 4 has two outliers
not shown in its histogram below; with the exception of
these two data points, all histograms show the full data.

Attribute 1 (sex, defined as infant, male or female) is
the only noncontinuous attribute. We choose to model
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Fig. 12. Histograms performed on each attribute of the
Abalone data set.

−1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Fitting a distribution on attribute 1

histogram
Binomial (N=2, p=0.48)

Fig. 13. Abalone data set: distribution fitting on attribute
1.

this attribute with a Binomial (N = 2) distribution,
hence choosing a Gaussian-Binomial mixed-data GLS
assumption. The extreme GLS case corresponding to
exponential PCA is used here. Figure 13 presents a dis-
tribution fitting option for attribute 1. Table 9 compares
micro- and macroaveraged classification performances
using a linear discriminant classifier on (a) the latent q-
dimensional variable subspace learned with GLS using
a mixed Gaussian-Binomial distribution assumption and
(b) the classical PCA q-dimensional subspace learned in
data space. Performances are best when classification is
performed on the GLS parameter subspace.

Then, we try to fit a distribution to the attributes 5, 6, 7
and 8. Possible distributions are the Weibull distribution,
the Gamma distribution, the Beta distribution, the Chi-
square distribution and the Non-central Chi-square dis-
tribution. The Beta distribution has a special constraint
that the data should be greater than 0 and smaller than
1; only attributes 7 and 8 verify this constraint. Figure 14
presents distribution fitting options for attribute 5. The
Gamma distribution is chosen as a good candidate to fit
attributes 5, 6, 7 and 8.

Hence, we choose a Binomial-Gaussian-Gamma
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Noncentral Chi−square (ν=3, δ = 0.5)

Fig. 14. Abalone data set: distribution fitting on attribute
5.

mixed-data assumption for the data set, with attribute
1 modeled as a Binomial variable, attributes 2, 3 and
4 modeled as Gaussian variables and attributes 5,
6, 7 and 8 modeled as Gamma variables. Table 10
compares the micro- and macroaveraged classification
performances using a linear discriminant classifier on
(a) the latent q-dimensional variable subspace learned
with GLS using a mixed Binomial-Gaussian-Gamma
distribution assumption and (b) the classical PCA
q-dimensional subspace learned in data space. There
are no statistically significant differences between the
performances obtained with a mixed Binomial-Gaussian
GLS assumption and performances obtained with a
mixed Binomial-Gaussian-Gamma GLS assumption. As
a conclusion, using a Gamma modeling assumption for
the last four attributes, while it did not hurt, was not
useful to the linear discriminant classifier.

5 CONCLUSION

As with Bayesian Networks in general, the specialized
Generalized Linear Statistics (GLS) framework offers
important insight into the underlying statistical struc-
ture of complex data of mixed types, both creating a
generative model of vector data and enabling effective
classification. We first demonstrated our ability to learn
a GLS generative model using synthetic data examples
with data components of varying exponential family
types. The angle between the estimated low-dimensional
parameter subspace and the original low-dimensional
parameter subspace used to generate the synthetic data
was proposed to assess the quality of the estimated GLS
model. The benefits of making decisions in parameter
space rather than in data space as with more classical
approaches have been clearly illustrated with examples
of Binomial data supervised and unsupervised text cat-
egorization and several mixed-data supervised and un-
supervised classification examples, involving up to three
different exponential family distributions to describe the
data components. For the text categorization situation,
the conditional mutual information maximization based
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feature selection algorithm was modified to fit categori-
cal data. It has been shown previously that GLS contains
as special cases exponential family Principal Component
Analysis, Semi-Parametric exponential family Principal
Component Analysis and Bregman soft clustering. We
compared the relative performances of the three al-
gorithms in a clustering setting for mixed data sets,
showing that GLS in general achieves comparable, and
at times superior performance to established methods.
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TABLE 5
Twenty Newsgroups data set: linear discriminant classification performances on the q-dimensional latent variable
space learned with classical PCA and GLS with a Binomial distribution (distinguishing newsgroup sci.med from

newsgroups comp.sys.mac.hardware and comp.sys.ibm.pc.hardware).

PCA - Precision PCA - Recall PCA - F1 GLS - Precision GLS - Recall GLS - F1

q = 1 0.5045 0.8149 0.6232 0.3677 0.6603 0.4744
q = 2 0.7843 0.9351 0.8531 0.7844 0.8918 0.8346
q = 3 0.9388 0.8846 0.9109 0.8641 0.8558 0.8599
q = 4 0.9389 0.8870 0.9122 0.8830 0.9615 0.9206
q = 5 0.9038 0.9712 0.9363 0.8931 0.9639 0.9272
q = 6 0.9038 0.9712 0.9363 0.8914 0.9663 0.9273
q = 8 0.9040 0.9736 0.9375 0.8813 0.9639 0.9208
q = 10 0.8904 0.9760 0.9312 0.9691 0.9038 0.9353

TABLE 7
Reuters-21578 data set: linear discriminant classification performances on the q-dimensional latent variable space

learned with classical PCA and GLS with a Binomial distribution for two of the top ten topics.

(a) Performances for topic named “earn”

earn PCA - Precision PCA - Recall PCA - F1 GLS - Precision GLS - Recall GLS - F1

q = 1 0.8893 0.8868 0.8881 0.4483 0.3707 0.4058
q = 2 0.9682 0.8951 0.9302 0.9834 0.8712 0.9239
q = 3 0.9644 0.8960 0.9289 0.9907 0.8804 0.9323
q = 4 0.9709 0.8905 0.9290 0.9866 0.8822 0.9315
q = 5 0.9630 0.9108 0.9362 0.9768 0.8914 0.9322

(b) Performances for topic named “corn”

corn PCA - Precision PCA - Recall PCA - F1 GLS - Precision GLS - Recall GLS - F1

q = 1 0.0220 0.2500 0.0404 0.1542 0.6250 0.2473
q = 2 0.0900 0.5000 0.1526 0.1757 0.6964 0.2806
q = 3 0.2394 0.8036 0.3689 0.2009 0.7679 0.3185
q = 4 0.3659 0.8036 0.5028 0.4272 0.7857 0.5535
q = 5 0.3600 0.8036 0.4972 0.4175 0.7679 0.5409

TABLE 8
Reuters-21578 data set: linear discriminant classification performances (micro- and macroaveraged) on the

q-dimensional latent variable space learned with classical PCA and GLS with a Binomial distribution.

(a) Microaveraged performances

PCA - Precisionµ PCA - Recallµ PCA - F µ
1 GLS - Precisionµ GLS - Recallµ GLS - F µ

1

q = 1 0.2408 0.7306 0.3622 0.2845 0.5653 0.3785
q = 2 0.3704 0.8303 0.5123 0.4087 0.7665 0.5331
q = 3 0.4553 0.8296 0.5880 0.4239 0.8099 0.5565
q = 4 0.4709 0.8260 0.5998 0.4743 0.8128 0.5990
q = 5 0.6178 0.8275 0.7075 0.6233 0.7895 0.6966
q = 6 0.6265 0.8364 0.7164 0.6484 0.8056 0.7185

(b) Macroaveraged performances

PCA - PrecisionM PCA - RecallM PCA - F M
1 GLS - PrecisionM GLS - RecallM GLS - F M

1

q = 1 0.2200 0.6403 0.2905 0.3040 0.6274 0.3751
q = 2 0.3763 0.7717 0.4475 0.4006 0.7174 0.4757
q = 3 0.4342 0.7842 0.5184 0.4662 0.7552 0.5267
q = 4 0.4594 0.7820 0.5423 0.5138 0.7611 0.5804
q = 5 0.4988 0.7673 0.5870 0.5307 0.7386 0.6007
q = 6 0.5306 0.7809 0.6150 0.5471 0.7373 0.6134
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TABLE 9
Abalone data set: linear discriminant classification performances (micro- and macroaveraged) on the q-dimensional

latent variable space learned with classical PCA and GLS with a Binomial-Gaussian distribution.

(a) Microaveraged performances

PCA PCA PCA GLS GLS GLS
Precisionµ Recallµ F µ

1 Precisionµ Recallµ F µ
1

q = 1 0.5036 0.7120 0.5899 0.5043 0.7409 0.6001
q = 2 0.5085 0.7337 0.6007 0.5178 0.7385 0.6088
q = 3 0.5523 0.7331 0.6300 0.5103 0.6954 0.5887

(b) Macroaveraged performances

PCA PCA PCA GLS GLS GLS
PrecisionM RecallM F M

1 PrecisionM RecallM F M
1

q = 1 0.5204 0.7126 0.5952 0.5208 0.7415 0.6058
q = 2 0.5242 0.7335 0.6062 0.5337 0.7380 0.6141
q = 3 0.5667 0.7336 0.6355 0.5220 0.6958 0.5925

TABLE 10
Abalone data set: linear discriminant classification performances (micro- and macroaveraged) on the q-dimensional

latent variable space learned with classical PCA and GLS with a Binomial-Gaussian-Gamma distribution.

(a) Microaveraged performances

PCA PCA PCA GLS GLS GLS
Precisionµ Recallµ F µ

1 Precisionµ Recallµ F µ
1

q = 1 0.5036 0.7120 0.5899 0.5037 0.7394 0.5992
q = 2 0.5085 0.7337 0.6007 0.5191 0.7382 0.6096
q = 3 0.5523 0.7331 0.6300 0.5119 0.6960 0.5899

(b) Macroaveraged performances

PCA PCA PCA GLS GLS GLS
PrecisionM RecallM F M

1 PrecisionM RecallM F M
1

q = 1 0.5204 0.7126 0.5952 0.5199 0.7400 0.6046
q = 2 0.5242 0.7335 0.6062 0.5348 0.7375 0.6146
q = 3 0.5667 0.7336 0.6355 0.5243 0.6967 0.5939


