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ABSTRACT

The problem addressed in this work is to separate the
signals of moving sources with independent component
analysis (ICA) and tracking the kinematics (position,
velocity, acceleration) of each individual source in the
working space using Particle filters. To identify the
unpredictable movement of the speaker over time, the
new proposed state switching scheme handles the
uncertainty of the speakerzs motion by incorporating
multiple motion models in the tracking process instead of
using the conventional IMM algorithm. The algorithm
performance has been verified by illustrating some
simulation results.

Index Terms- ICA; Particle filter; Source
separation; tracking; positioning

1. INTRODUCTION

The problem of tracking sources in reverberating
environments is relevant in several applications,
including seismology, sonar and speech. Localizing and
tracking multiple speakers talking in the same room can
be used, for example, to automatically steer camera
sensors in video-conferencing applications.

Several works with deferent strategies have been
done in the field of tracking and source separation. Some
works like [1] focuses on TRINICON algorithm in the
noise free environment. But in real life, there is always
some kind of noise present in the observations. Noise can
correspond to the actual physical noise in measuring
devices or accuracies of the model used.

In [2] an algorithm based on IMM-PDA filters has
been proposed. Each of the speakers, state equation
describing their movement and the observation equation
has been assumed to be a linear function of the state.
However, any of the equations may be a nonlinear
function of the states. In such a case, using Kalman filters
are not suggested. Furthermore, when there are severe
nonlinearities in either of the state or observation
equations, extended Kalman filters falls beneath its
suboptimal performance. In this cases, using Particle
filters as nonlinear state estimators are more suitable.

In this work we will present a novel, general
framework that can deal with both cases, that is, dealing
with the nonlinearities of the state and observation
equations for tracking the sources and separating the
voices of multiple, possibly moving, speakers in the
noisy environment. In order to be able to cover the
unpredictable movement of the speaker over time, the
new proposed state inference scheme, handles the
uncertainty of the speakerzs motion by incorporating
multiple motion models in the tracking process.

2. PROBLEM DESCTRIPTON

2.1. ICA Model

In the standard noisy ICA, the noise is assumed to be
additive. This is a rather realistic assumption used in
factor analysis and signal processing, and allows for a
simple formulation of the noisy model. Thus, the noisy
ICA model can be expressed as
Ok = Aksk + Wk (1)
where the vector Sk is the vector of independent sources
and 0k iS the observation vector in each iteration and Wk is
the vector of additive noise that in general can have any
non-Gaussian distribution.

Assume that we have L independent source
components and M observations at each iteration. The
indices k shows that in each iteration, the mixing matrix
A is changing due to the movement of sources or
possibly non-stationary environment of the work space.

As the elements of matrix A, i.e. aij, are some

parameters that depend on the distances between the
microphones and the sources, we may write any desirable
nonlinear relation between a, and the distances. Thus

we may write
a,j = fij (rij), i = 1,2,...,M j = 1,2,...,I L (2)

where is the distance between source j and

microphone i.
Note that in general, r, depends on x, y and z which

are the related distances in three dimensions of working
space. For example if source i is located in the origin, i.e.
(0, 0, 0),

We may write
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r. =X +Y2 +ZZ ,=1,2,...,L (3)
Thus for example in the case of two independent

sources with two microphones we may have

0lk ff1(r1 (x, Y, Z)) f2 (r12 (X y, z)) Slk Wlk

02k f3(r21 (x I,y Z)) f4 (r22 (x YI Z))t 2k 2k

(4)

2.2. Source Models

In order to be able to separate light-tailed sources a more
flexible source model than the traditional 1/cosh density
is needed [3]. It is difficult to use a switching model [4]
in this context. We used generalized exponentials that
provide a good deal of flexibility and do not suffer from
the combinational complexities associated with mixture
models. Each source density is modeled by

P(Sm Om) = b exp- m (5)
com

where the normalizing constant is
r

2comF(1/rm)
Clearly this density is Laplacian when rm = 1

(super-Gaussian) and uniform distribution as
rm -* 00 (sub-Gaussian).

Generalized exponential source models in static ICA
are able to separate mixtures of Laplacian, Gaussain and
uniformly distributed sources while methods using static
tanh nonlinearity are unable to separate such mixtures
[3].

2.3. Source Dynamics

Here, we consider the speaker's movement as two
different dynamic models describing constant velocity
and constant acceleration motions.

For each source, we may write the constant velocity
motion in each direction as

=

j+ 0° I 2U' +k u=;7 X, y Or z,i=1,2 L
(6)

where T is the sampling time and ui and ui are the
position and the velocity of source i as the states
respectively and vcv z are the additive model noise.

For the constant acceleration mode we haver1 I TiIT12
[-: |) T [i, + uV2, U= x ,y or z i=1,2,...,L

(7)

where iii is the state which we take as the acceleration of

source i and vca _s are the additive model noise.
In order to relate the aforementioned motion

equations and ICA model to a state-estimation problem,
we may take the position, velocity and the acceleration of
each source in every direction as a state variable. Due to
the nonlinearities in the ICA model, the observation
equations are nonlinear function of the states. Thus, we
have to use a nonlinear state-estimator for the filtering
problem. It is preferable to use nonlinear state-estimators
such as Particle Filters rather than any of the Kalman
Filter's family estimators like Extended Kalman Filters.

2.4. Particle Filtering

The problem is now to track Ak, as new observation °k iS
recorded. If Ok denotes the set of observations
{O1 02, ... 0k }then the goal of filtering methods is to
estimate the probability density function of the states
p(Xk |Ok) I where Xk denotes all the state variable vector
at iteration k. Particle filters, which date back to the
Sampling Importance Resampling (SIR) filter of Gorden
et al [6] represent the state density p(Xk Ok) using the

prediction and the update stages by a Np swarm of
"particles" each with a importance weights.
In the update stage, the normalized weights are obtained
recursively by the following normalized weight updating
equation [6]:

W1P( k Xkl)

Z p(Ok Xkl)n=l

(10)

Note that the likelihood p(0k Xk kk-l) is given by

P(ok Xk4k-1) Jp(ok Xkt,k-l s)P(s)ds
S

Due to the independency of original sources, we get
L

P(Ok Xktlk-1) JP(Ok Xklk-I S)J Pm (Sm.)ds
s m=l

(1 1)

(12)

Laplace approximation [7] have been used to

approximate the above integral for any fixed Xn k

when the observation noise is small. This approximation
has also been used in [8] for the non-stationary ICA
problem.

2.5. Source Estimation

The maximum a posteriori (MAP) or mean estimate of
Ak is used to estimate sk [7]. Each Sk is found by

maximizing logp(ok Ak,s k ) .
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2.6. Switching Between Different Dynamic Modes

A new technique has been used here for switching
between different sources movement modes. When there
are a huge number of dynamic modes for the states, it is
hard to set the transitional matrix in the traditional
techniques such as interacting multiple models (IMM).
Furthermore, accurate assignment of the probabilities to
all the dynamic modes in each iteration may not be
feasible.

In the proposed technique we make use of one
additional observation device (sensor or microphone) as
well as one artificial source that generates a known signal
at each instant of time and for simplicity is located
constantly without movement at a known point. Adding
the artificial source is to provide a reference measure for
identifying the true dynamic mode of the system in each
iteration. Thus in the ICA model, we augment the vector
of real sources by the artificial source and update the
mixing matrix. For example in the case of two real
sources, we make use of three microphones and one
artificial source. Thus the ICA model becomes
Olk fi rl(x, y,(-Y ))k 2 rl2 (x, y,))k f3 rl3 (ny, x)) Wlk
°2k = 4 (r21 (x,' y, X))k 05(22 (X, y, ))k f6 O"23 (X, y, x) 2k + W2k

[°3k f l y (r332 (X,y,x))k A (r33Y5,y, LJSI (k) W3k[
(22)

As it can be seen, the functions f3 , f6, fg are denoted
without any iteration index k. in other words they are not
changing over time because the artificial source is always
located at one specific point.

At each iteration, suppose there are D different
dynamic modes for every maneuvering source in each
direction of the three dimensional space. For example if
L real sources are maneuvering such that they switch
between D dynamic modes in each direction of the three
dimensional space, so in view of the system the total
number of combinational maneuvering modes for the L
sources would be equal to

DM = DI3 X D23 X ... X DL3-Dj _x _L
due to Sourcel due to Source2 due to Source L

L

=D3
i=1 (23)

To identify the dynamic mode at each iteration, first
we generate N, << Np swarm particles using the
prediction stage for each mode. Considering the artificial
source as one real source we evaluate the primary source
vector estimation for each of its modes using (18), i.e.

{ir }> i1 =1,...,DM. Now, we calculate the root
mean square Error (RMSE) of the augmented element of
vector Si which is related to the artificial source,

i.e. [SL±1 ]I, as the reference measure of accuracy in

estimation of the artificial source for the ith mode:

The mode which has the least RMSE, is selected as
the identified dynamic mode in that iteration.

mod e j= min{RMSEi } (24)
After selecting the mode j as the true dynamic mode,

the filtering steps begin by generating Np swarm particles
for the identified mode in the prediction stage.

3. SIMULATION RESULTS

Consider we want to track two moving sources in a
2-dimentional room with the working space of
100 x 100 M2 . As it was mentioned before, we make use
of one additional artificial source where for simplicity it
is located constantly at a point say the center of the room,
i.e. Ps = Ps,, = (79.29 m,79.29 mi). Three observing
devices are also located in three edges on the working
space as shown in Fig. (1).

A Laplacian source ( p(s) oX e S ) and a source
with uniform density and the artificial source that
generates a signal with amplitude one "+1" at each
sample are mixed with the mixing matrix whose
components vary with location as follows:
Folk - 150V +y2 150 -J2 +y2 79.29JSlkJ FWlk
02k = 150- I(100-x1)2 +(100-y1)2 150-V(100-X2)2 +(100-Y2)2 79.29 S2k + W2k
L°3k _ 150-,F(100-x )2 +±(Y1)2 150- (100-X2 )2+ (Y2 ) 79.29JLs,JL_W3k _

(25)
Note that the above choice of the mixing matrix is

optional, and we could choose any reasonable nonlinear
functions of the distances between the sources and
microphones for each of its components. It is worth
mentioning that addressing the separation and tracking
the independent sources using ICA in 3-dimnessional
space is the same as in 2-D frame.

Real sources trajectories

T

_ Source trajecory
mic | Source 2 trajectory

2 0 4 0
O :20 30 40 60 60 70 80

X axis

Figure 1. Real target trajectories

90 100

The two sources are tracked for 120 samples and the
sampling time are considered to be T =0.05 s. The
covariance of the process noise for both constant velocity
dynamics and constant acceleration dynamics is 0.01I
and the covariance of the observation noise is assumed toRMSEi(k) = IN(0 l Hi-S,,(k))

2
i = 1,...,IDM (23)
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be 0.1I where I is the identity matrix. The real targets
trajectories are shown in Fig (1).
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Figure 2. Source 1 real and estimated position
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Figure 3. Source 2 real and estimated position

To provide an initial estimate of the mixing matrix,
static ICA was run on the 20 samples received by the
microphones. After 20 iterations, the program switches to
dynamic ICA and the particle filtering algorithm starts its
function. Consequently, the two sources are tracked for
100 iterations and the sources are estimated at the end of
each iteration.

Figs (2) and (3) show the estimated positions of the
two sources in x-y space.

50 Monte Carlo runs are carried out and the average
is represented by the root mean square error (RMSE)
criterion as a measure of the performance of the
estimation of the kinematics (position, velocity,
acceleration) in this simulation:

m1
RMSE(k)= |E(rk -Pi)2, k= 1,2,...,1100; m=50\mi=1

where ki denotes the state estimate of the ith Monte
Carlo run for the kth sample. Fig. (4) shows the resultant
kinematics estimation by RMSE criterion.

To evaluate the performance of source estimation,
we define the ratio of the real source signal power to the
mean square error of source estimation in dB. In the
average the source estimation performance would be 22.4
dB.

4. CONCLUSIONS

In this paper, we have presented a general scheme that
can track and separate the signals of multiple moving
sources in noisy environment. Using particle filter in its
algorithm deals very well with the nonlinearities of the
state and observation equations in tracking the sources.
The main feature of this work is proposing a new
technique for smooth switching between huge number of
dynamic modes of the maneuvering system.
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Figure 4. Kinematics estimation RMSE vs. time iteration
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