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Abstract— An expression for the Cramer-Rao lower bound
(CRB) on the covariance of unbiased estimators of a constrained
complex parameter vector is derived. The application and useful-
ness of the result is demonstrated through its use in the context
of a semi-blind channel estimation problem.

Index Terms— Cramer-Rao Bound, CRB, Constrained Param-
eters, Channel Estimation, Semi-Blind, MIMO.

I. I NTRODUCTION

The CRB serves as an important tool in the performance
evaluation of estimators which arise frequently in the fields
of communications and signal processing. Most problems
involving the CRB are formulated in terms of unconstrained
real parameters [1]. Two useful developments of the CRB
theory have been presented in later research. The first being a
CRB formulation for unconstrained complex parameters given
in [2]. This treatment has valuable applications in studying
the base-band performance of modern communication systems
where the problem of estimating complex parameters arises
frequently. A second result is the development of the CRB
theory for constrained real parameters [3], [4], [5]. However,
in applications such as semi-blind channel estimation one is
faced with the estimation of constrained complex parameters.
Though one can reduce the problem to that of estimating con-
strained real parameters by considering the real and imaginary
components of the complex parameter vector, the complicated
resulting expressions result in loss of insight. Using the
calculus of complex derivatives as is often done in signal
processing applications, considerable insight and simplicity
can be achieved by working with the complex vector parameter
as a single entity [1], [6], [7]. We thus present an extension
of the result in [3], [4], [5] inspired by the theory in [2] for
the case of constrained complex parameters. To conclude, we
illustrate its usefulness by an example of a semi-blind channel
estimation problem.

II. CRB FOR COMPLEX PARAMETERS WITH

CONSTRAINTS

Consider the complex parameter vectorγ̄ ∈ Cn×1. Let γ̄ ,
ᾱ + jβ̄ such that the real and imaginary parameter vectors
ᾱ, β̄ ∈ Rn×1 and ξ̄ ,

[
ᾱT , β̄T

]T
. Assume that the likelihood

function of the (possibly complex) observation vectorω̄ ∈ Ω
parameterized bȳξ is s(ω̄; ξ̄). Let ˆ̄ξ : Ω → R2n×1 be given as
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ˆ̄ξ ,
[
ˆ̄αT , ˆ̄βT

]T

, where ˆ̄α, ˆ̄β are unbiased estimators of̄α, β̄

respectively. In the foregoing analysis, we define the gradient
dr(ᾱ)
dᾱ

∈ R1×n of a scalar functionr(ᾱ) as a row vector:

dr(ᾱ)
dᾱ

,
[

dr(ᾱ)
dα1

,
dr(ᾱ)
dα2

, . . . ,
dr(ᾱ)
dαn

]
. (1)

Let θ̄ ∈ C2n×1 be defined as in [2] by

θ̄ ,
[

γ̄
γ̄∗

]
. (2)

Suppose now that thel complex constraints on̄θ are given as

h
(
θ̄
)

= 0, (3)

i.e. h
(
θ̄
) ∈ Cl×1. We then construct an extended constraint

set (of possibly redundant constraints)f
(
θ̄
) ∈ C2l×1 as

f
(
θ̄
)

,
[

h
(
θ̄
)

h∗
(
θ̄
)

]
= 0. (4)

An important observation from (4) above is that symmetric
complex constraints on these parameters are treated as disjoint.
For instance, given the orthogonality of complex parameter
vectorsθ̄1, θ̄2, i.e. θ̄H

1 θ̄2 = 0, the symmetric constraint̄θH
2 θ̄1 =

0 is to be treated as an additional complex constraint and hence
f(θ̄) =

[
θ̄H
1 θ̄2, θ̄

H
2 θ̄1

]T
. The extension of the constraints is

akin to the extension of the parameter set fromγ̄ to θ̄ =
[γ̄, γ̄∗] called for when dealing with complex parameters, and
the need will become evident from the proof of lemma(1).
Reparameterizingh

(
θ̄
)

= hR

(
θ̄
)
+ jhI

(
θ̄
)

in terms ofξ̄, let
the set of2l parameter constraints for̄ξ be given byg

(
ξ̄
)

=[
hR

(
θ̄
)T

,hI

(
θ̄
)T

]T
∣∣∣∣
θ̄=ᾱ+jβ̄

. Employing notation defined in

[3] and borrowing the notion of a complex derivative from [1],
[6], we defineF

(
θ̄
) ∈ C2l×2n as

F
(
θ̄
)

, ∂f(θ̄)
∂θ̄

=
[

∂f
(
θ̄
)

∂γ̄
,

∂f
(
θ̄
)

∂γ̄∗

]
, (5)

It then follows from the properties of the complex derivative
[6] that

F
(
θ̄
)

=
1
2
T

∂g
(
ξ̄
)

∂ξ̄
S, (6)

whereT ∈ C2l×2n, S ∈ C2n×2n are given as

T ,
[

1 j
1 −j

]
⊗ Il×l , S ,

[
1 1

−j j

]
⊗ In×n. (7)

The non-minimality of the set of complex constraint does
not affect the CRB . Alternatively, a minimal set of complex
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constraints can be obtained by first formulatingg
(
ξ̄
)

and
then reparameterizing in terms of̄θ. However, such a pro-
cess involves a tedious procedure of separating the real and
imaginary parts, when it might be more natural to consider
the complex parameters themselves as in the above example
of orthogonality of parameter vectors. Letrank

(
F

(
θ̄
))

=
k < 2n. Hence there exists aU ∈ C2n×2n−k such thatU
forms an orthonormal basis for the nullspace ofF (θ̄) i.e.
F (θ̄)U = 0. Let the likelihood of the observed datap(ω̄; θ̄) be
reparameterized ass

(
ω̄; ξ̄

)
by substitutingγ̄ = ᾱ + jβ̄, γ̄∗ =

ᾱ− jβ̄. Define∆ as

∆ , ∂ ln p(ω̄; θ̄)
∂θ̄

=

[(
1
2

∂ ln s
(
ω̄; ξ̄

)

∂ᾱ
− j

2
∂ ln s

(
ω̄; ξ̄

)

∂β̄

)
,

(
1
2

∂ ln s
(
ω̄; ξ̄

)

∂ᾱ
+

j

2
∂ ln s

(
ω̄; ξ̄

)

∂β̄

)]T

,

(8)

where the last equation follows from the definition ofp(ω̄; θ̄).
Let J = E

{
∆∗∆T

}
denote the Fisher information matrix

(FIM) for the unconstrained estimation ofθ̄. Also assume that

A.1: The parameter vector̄ξ ∈ R2n×1 and the likelihood
function s

(
ω̄; ξ̄

)
satisfy the regularity conditions as in

[3], [8]. We present them below for the sake of com-
pleteness.

(i) ξ̄ ∈ Ξ, whereΞ ⊆ R2n.

(ii)
∂s(ω̄;ξ̄)

∂ξi
, i ∈ {1, 2, . . . , 2n} exists and is a.s. finite

for every ξ̄ ∈ Ξ.

(iii)
∫ ∣∣∣∣

∂ks(ω̄;ξ̄)
∂ξk

i

∣∣∣∣ < ∞, for every ξ̄ ∈ Ξ, andk = 1, 2.

(iv) E

{∣∣∣∣
∂s(ω̄;ξ̄)

∂ξi

∣∣∣∣
2
}

< ∞, for every ξ̄ ∈ Ξ.

We now present a result for the constrained complex esti-
mator ˆ̄θ analogous to the real case.

Lemma 1:Under assumption A.1 and constraints given by
(3), the constrained estimator̄̂θ : Ω → Cn×1 defined as

ˆ̄θ ,
[

ˆ̄α + j ˆ̄β
ˆ̄α− j ˆ̄β

]
(9)

satisfies the property

E
{(

ˆ̄θ − θ̄
)

∆T
}

UUH = UUH . (10)

Proof: From the results for constrained real parameter
vector in [3], [5] we have

E
{(

ˆ̄ξ − ξ̄
)

∆̃T
}

Ũ ŨT = Ũ ŨT , (11)

where ∆̃ =
[

∂ ln s
(
ω̄; ξ̄

)

∂ᾱ

∂ ln s
(
ω̄; ξ̄

)

∂β̄

]
, and Ũ ∈

C2n×2n−k is a basis for the nullspace of
∂g

(
ξ̄
)

∂ξ̄
. Let Ũ =

[
UT

I , UT
R

]T
, UI , UR ∈ Rn×2n−k, ˜̄α , ˆ̄α − ᾱ and ˜̄β ,

ˆ̄β − β̄. Then rewriting the above expression in terms of block

partitioned matrices we have,
∫

Ω

([ ˜̄α
˜̄β

] [
∂ ln s

(
ω̄; ξ̄

)

∂ᾱ

∂ ln s
(
ω̄; ξ̄

)

∂β̄

] [
UI

UR

]

× [
UT

I UT
R

]
dω̄

)
=

[
UI

UR

] [
UT

I UT
R

]
. (12)

Let U ∈ C2n×2n−k is defined as

U , 1√
2

[
UI + j UR

UI − j UR

]
.

With some manipulation, (12) can be written in terms of
complex matrices as

∫

Ω

([
˜̄α + j ˜̄β
˜̄α− j ˜̄β

][
1
2

∂ ln s
(
ω̄; ξ̄

)

∂ᾱ
− j

2
∂ ln s

(
ω̄; ξ̄

)

∂β̄
,

1
2

∂ ln s
(
ω̄; ξ̄

)

∂ᾱ
+

j

2
∂ ln s

(
ω̄; ξ̄

)

∂β̄

]
UUH dω̄

)
= UUH ,

Using (8) and (9), the above equation can be expressed in the
form given by (10). It remains to show thatU forms a basis
for the nullspace ofF

(
θ̄
)
. It follows from the definition ofŨ

that
∂g

(
ξ̄
)

∂ξ̄
Ũ = 0 and this equality is true if and only if,

1√
2

∂g
(
ξ̄
)

∂ξ̄

(
1
2
SSH

)
Ũ = 0 (13)

⇔ 1
2
√

2
T

∂g
(
ξ̄
)

∂ξ̄
SSH Ũ = 0 (14)

⇔ F
(
θ̄
)(

1√
2
SH Ũ

)
= 0, (15)

where the equalities in (13), (14) follow from the facts
1
2SSH = I andT is invertible, respectively. The matricesS, T

have been defined in (7). It can be seen thatU = 1√
2
SH Ũ

and thereforeU ⊥ F
(
θ̄
)
. Moreover,UHU = 1

2 ŨT SSH Ũ =
Ik×k. HenceU contains orthonormal columns. Showing that
it spans the nullspace ofF

(
θ̄
)

completes the proof. LetU not

span the nullspace ofF
(
θ̄
)
. Then there existsu ,

[
uT

a ,uT
b

]T

whereua,ub ∈ Cn×1 such thatF
(
θ̄
)
u = 0 andUHu = 0.

Hence we haveT
∂g

(
ξ̄
)

∂ξ̄
Su = 0 ⇒ ∂g

(
ξ̄
)

∂ξ̄
Su = 0 as T is

an invertible matrix. Let̃u , Su = [uT
a + uT

b , juT
b − juT

a ]T .

Since
∂g

(
ξ̄
)

∂ξ̄
is real we have

∂g
(
ξ̄
)

∂ξ̄
ũR = 0 where ũR is

the real part of̃u. Also, it can be observed thatUHu = 0 ⇒
ŨT ũ = 0 and sinceŨ is a real matrix,ŨT ũR = 0. Thus
there exists a real vector viz.v , ũR ∈ R2n×1 such that
∂g

(
ξ̄
)

∂ξ̄
v = ŨT v = 0 contradicting the assumption thatŨ is

a basis for the nullspace of
∂g

(
ξ̄
)

∂ξ̄
. This completes the proof.

Theorem 1:Under assumption A.1 and constraints given by
(3), the CRB for estimation of the constrained parameterθ̄ ∈
C2n×1 is then given as

E
{(

ˆ̄θ − θ̄
)(

ˆ̄θ − θ̄
)H

}
≥ U

(
UHJU

)−1
UH . (16)
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Proof: Let PU = UUH be the projection matrix
onto the column space ofU and let W ∈ C2n×2n be an
arbitrary matrix. Let˜̄θ ,

(
ˆ̄θ − θ̄

)
. As in [3] we now consider

E
{(

˜̄θ −WPU∆∗
)(

˜̄θ −WPU∆∗
)H

}
. Following a proce-

dure similar to that for real vectors provided in [3], the proof
of (16) then follows by making the obvious modifications for
complex matrices (i.e. replacing the transpose operator with
the hermitian, etc.).

III. A C ONSTRAINED MATRIX ESTIMATION EXAMPLE

A. Problem Formulation

We consider in this section the problem of pilot assisted
semi-blind estimation of a complex MIMO (Multi-Input Multi-
Output) channel matrixH ∈ Ct×t (i.e. # transmit antennas =
# receive antennas =t). Let a total of L pilot symbols be
transmitted. The channel input-output relation is represented
as

yk = Hxk + vk , k = 1, 2, . . . , L, (17)

whereyk,xk ∈ Ct×1 are the received and transmitted signal
vectors at the k-th time instant.vk ∈ Ct×1 is spatio-temporally
uncorrelated Gaussian noise such thatE

{
vkvH

k

}
= σ2

nI. H
can be factorized using its singular value decomposition (SVD)
as H = PΣQH whereP, R ∈ Ct×t are orthogonal matrices
such thatPHP = QHQ = I, Σ = diag (σ1, σ2, . . . , σt),
σ1 ≥ σ2 ≥ . . . ≥ σt > 0. P, Σ can be estimated using
blind techniques. We then employ the pilot data exclusively
to estimate the constrained orthogonal matrixQ. More about
the significance of such a problem can be found in [9].

B. Cramer-Rao Bound

Let ỹk = PHyk,ṽk = PHvk. Denote byqi the i-th column
of the matrixQ. The unconstrained input-output relation for
eachqi can be written as

ỹk,i = σixH
k qi + ṽk,i, (18)

whereyk,i denotes the i-th element ofyk and analogously for
vk,i. Define the desired parameter vector to be estimatedθ̄ ,
[vec (Q), vec (Q∗)]T . It can now be seen that̄θ is a constrained
parameter vector and the constraints are given as

qH
i qi = 1, 1 ≤ i ≤ t (19)

qH
i qj = 0, 1 ≤ i < j ≤ t. (20)

Hence, the set of t +
(

t
2

)
complex constraintsh

(
θ̄
)

is given as h
(
θ̄
)

=
[
qH

1 q1 − 1,qH
1 q2,qH

3 q1,

. . . ,qH
t qt − 1

]T
. The extended constraint setf

(
θ̄
)

is then given as f
(
θ̄
)

=
[
qH

1 q1 − 1,qH
1 q2,qH

1 q3,

. . . ,qH
t qt − 1, . . . ,qH

1 q1 − 1,qH
2 q1,qH

3 q1, . . . ,qH
t qt − 1

]T
.

f
(
θ̄
)

can then be employed to computeU . However, it can be
noticed that the repeated constraintqH

i qi−1 for i = 1, 2, . . . , t
is trivially redundant. Eliminating this redundancy, the
minimal set oft + 2

(
t
2

)
= t2 set of non-redundant constraints

f̃
(
θ̄
)

can be obtained as̃f
(
θ̄
)

=
[
qH

1 q1 − 1,qH
1 q2,qH

2 q1,

qH
1 q3,qH

3 q1, . . . ,qH
t qt − 1

]T
.

F
(
θ̄
)

is constructed as given in (5), by differentiating
f̃
(
θ̄
)

with respect to the parameter vector̄θ. For exam-
ple, the derivative of constraint # 2 i.e.qH

1 q2 is given as
∂qH

1 q2

∂θ̄
=

[
0,qH

1 , 0, . . . ,qT
2 , 0, 0, . . .

]
, where we have used

the fact that ∂qH
1

∂q1
= ∂q2

∂qH
2

= 0. This result follows from
the properties of the complex derivative in [1]. Similarly,
∂qH

1 q1

∂θ̄
=

[
qH

1 , 0, 0, . . . ,qT
1 , 0, 0, . . .

]
, and so on. The matrix

U is an orthogonal basis for the nullspace ofF
(
θ̄
)
. Hence,

for this example, the matricesF
(
θ̄
) ∈ Ct2×2t2 , U ∈ C2t2×t2

can be written explicitly and are given as

F
(
θ̄
)

=




qH
1 0 0 . . . qT

1 0 0 . . .
0 qH

1 0 . . . qT
2 0 0 . . .

qH
2 0 0 . . . 0 qT

1 0 . . .
0 qH

2 0 . . . 0 qT
2 0 . . .

qH
3 0 0 . . . 0 0 qT

1 . . .
0 0 q1 . . . qT

3 0 0 . . .
...

...
...

.. .
...

...
...

. . .




,

U =
1√
2




q1 0 q2 0 q3 . . .
0 q1 0 q2 0 . . .
0 0 0 0 0 . . .
...

...
...

...
...

. . .
−q∗1 −q∗2 0 0 0 . . .

0 0 −q∗1 q∗2 0 . . .
0 0 0 0 −q∗1 . . .
...

...
...

...
...

. . .




.

The simplistic and insightful nature of the above matri-
ces F

(
θ̄
)
, U in terms of the orthogonal parameter vectors

q1,q2, . . . ,qt, is particularly appealing and illustrates the
efficacy of using the complex CRB. From Eq(18) and using the
results for least-squares estimation [1] the Fisher information
matrixJ

(
θ̄
) ∈ C2t2×2t2 for the unconstrained case is given by

the block diagonal matrixJ
(
θ̄
)

= 1
σ2

n

(
I2×2 ⊗ Σ2 ⊗XpX

H
p

)
.

The complex constrained CRB for the parameter vectorθ̄ is
then obtained by substituting these matrices in (16).

C. ML Estimate and Simulation Results

We now compute the Maximum-Likelihood (ML) estimate
and compare its performance with that predicted by the
CRB. The received symbol vectors can be stacked asỸp ,
(ỹ1, ỹ2, . . . , ỹL). Let Xp be defined analogously by stacking
the transmitted symbol vectors. Then̂Q the ML estimate of
Q is given as a solution of the cost

Q̂ = arg min
∥∥∥Ỹp

H −XH
p QΣ

∥∥∥
2

subject to QQH = I

where the norm‖·‖ is the matrix Frobenius norm such that
‖A‖2 = tr

(
AAH

)
. From [10] the constrained estimatêQ

employing an orthonormal pilot sequenceXp (i.e.XpX
H
p = I)

is given as

Q̂ = PpR
H
p where PpΣpR

H
p = SVD

(
XpỸp

H
Σ

)
(21)

Our simulation set-up consists of a4 × 4 MIMO channelH
(i.e. t = 4). A single realization ofH was generated as a
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matrix of zero-mean circularly symmetric complex Gaussian
random entries such that the variance of the real and imaginary
parts was unity. The source symbol vectorsx ∈ C4×1 are
assumed to be drawn from a BPSK constellation and the
orthonormality condition is achieved by using the Hadamard
structure. The transmitted pilot was assumed to be of length
L = 12 symbols. The error was then averaged for a fixed
H over several instantiations (Ni = 1000) of the channel
noise vk. Figure(1) shows the MSE in the 1st element

Q̂(1, 1)
(

i.e.
∣∣∣Q(1, 1)− Q̂(1, 1)

∣∣∣
2
)

vs its CRB. Similar results

were obtained for the CRB of other elements ofQ. Figure(2)

then shows the total MSE in estimation ofQ

(
i.e.

∥∥∥Q− Q̂
∥∥∥

2
)

vs the trace of the CRB matrix. The ML estimatêQ can
be seen to achieve a performance close to the CRB and its
performance progressively improves with increasing SNR.
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