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Abstract—An expression for the Cramer-Rao lower bound ¢ £ |47 57| | wherea, 3 are unbiased estimators of 3
(CRB) on the covariance of unbiased estimators of a constrained . . . . .
complex parameter vector is derived. The application and useful- ;les ectively. In the foregoing analysis, we define the gradient
ness of the result is demonstrated through its use in the context ——~ ¢ R1*" of a scalar function(a) as a row vector:
of a semi-blind channel estimation problem. da

Index Terms— Cramer-Rao Bound, CRB, Constrained Param- dr(a) o [ dr(@) dr(a) dr(a) )
eters, Channel Estimation, Semi-Blind, MIMO. da doy 7 daz T T day,
Let § € C*"*! be defined as in [2] by
|. INTRODUCTION
: . ga |
The CRB serves as an important tool in the performance 0= { A+ } : )

evaluation of estimators which arise frequently in the fields

of communications and signal processing. Most problenfIppose now that thecomplex constraints ofi are given as
involving the CRB are formulated in terms of unconstrained h (9) —0 3)

real parameters [1]. Two useful developments of the CRB ’

theory have been presented in later research. The first belrlgeah( ) € C'*1. We then construct an extended constraint
CRB formulation for unconstrained complex parameters giveset (of possibly redundant constramfs()&) € C?>! as

in [2]. This treatment has valuable applications in studying =

the base-band performance of modern communication systems f(0) 2 { }lll*(%) } =0. (4)
where the problem of estimating complex parameters arises ( )

frequently. A second result is the development of the CRBn important observation from (4) above is that symmetric
theory for constrained real parameters [3], [4], [5]. Howevecomplex constraints on these parameters are treated as disjoint.
in applications such as semi-blind channel estimation oneHer instance, given the orthogonality of complex parameter
faced with the estimation of constrained complex parametevectorsd,, 6, i.e.07, = 0, the symmetric constraim’ 6, =
Though one can reduce the problem to that of estimating canis to be treated as an additional complex constraint and hence
strained real parameters by considering the real and imagingfy) = [5{152,55151]T_ The extension of the constraints is
components of the complex parameter vector, the complicatgiln to the extension of the parameter set franto § =
resulting expressions result in loss of insight. Using the, 5+ called for when dealing with complex parameters, and
calculus of complex derivatives as is often done in signgle need will become evident from the proof of lemma(1).
processing applications, considerable insight and simplicineparameterizing.(‘) hp (§)+jh1 (9_) in terms ofé, let
can be achieved by working with the complex vector parametge set of2! parameter constraints f@rbe given byg (g‘) =

as a single entity [1], [6], [7]. We thus present an extensio _ T

of the result in [3], [4], [5] inspired by the theory in [2] for FhR (9) by (6) } e

the case of constrained complex parameters. To conclude, [®Eand borrowing the notfbr? of a complex derivative from [1],
illustrate its usefulness by an example of a semi-blind channg|, we defineF’ ( ) c C2x2n gg

estimation problem.

. Employing notation defined in

of of (6 of (6
re) e 20 [ 7o xO w@
Il. CRB FOR COMPLEX PARAMETERS WITH 2 g
CONSTRAINTS It then follows from the properties of the complex derivative
Consider the complex parameter vectoe Cnl, Lety & [6] that 1 o
@ + jB such that the real and imaginary parameter vectors F (5) — L@S, (6)
a,B e R™*! and¢ £ [@T,BT]T. Assume that the likelihood 2%
function of the (possibly complex) observation vedibe Q  whereT € C2/*27 § € C27*2n gre given as
parameterized by is s(w; ). Let&: Q — R27*! be given as .
= [ . :| ® I« , S = |: . :| ® Lysn. (7)
Manuscript received February 3, 2004; revised April 5, 2004. This work 1 =y =J J

was supported by CoRe research grant Cor00-10074. h . l f th f | int d
A.K. Jagannatham and B.D. Rao are with the Center for Wireless Con;l;- e non-minimality of the set of complex constraint does

munications (CWC) at the University of California, SanDiego. not affect the CRB . Alternatively, a minimal set of complex



constraints can be obtained by first formulatigg¢) and
then reparameterizing in terms 6f However, such a pro-

cess involves a tedious procedure of separating the real an
imaginary parts, when it might be more natural to consider
the complex parameters themselves as in the above example,

of orthogonality of parameter vectors. Letnk (F (6)) =
k < 2n. Hence there exists & € C?"*2"~k such thatU
forms an orthonormal basis for the nullspace 16(9)

F(9)U = 0. Let the likelihood of the observed datéy; 9) be
reparameterized as(w; £) by substitutingy = a + j3, ¥
a — jf3. Define A as

AL dlnp(w;0) 19Ins (w;€) jOlns (w;€)

R A e
10lns (w;€) jOlns (@) ’
2 oa 2 o3

8)

where the last equation follows from the definitionygts; ).

partitioned matrices we have,

7f ({ Oié:| { 8lns(u’);@ 8lns(u’);@ ] [ U }
I&j da B Ur
[Ur UL ds ):[gﬂ[sz Ur]. 1)
Let U € C?»*2n—F is defined as
Ué1|:U1+]UR:|
V2 | Ur—jUr |’

With some manipulation, (12) can be written in terms of
complex matrices as

/ a—i_jﬂi lalns(@;g)_zalns(@;f_)

o\l a-j3 |2 oa 2 o3 7
10Ins (w;€)  jOls (w;€) H -\ _ H
3 e 3 Y UU% dw | =U0U",

Using (8) and (9), the above equation can be expressed in the
form given by (10). It remains to show that forms a basis

Let J = E {A AT} denote the Fisher information matrixfor the nullspace of” (0) It follows from the definition of0

(FIM) for the unconstrained estimation 6f Also assume that

A.1: The parameter vectaf € R>"*! and the likelihood
function s (@; ) satisfy the regularity conditions as in

[3], [8]. We present them below for the sake of com-

pleteness.
(i) € € Z, whereZ C R*".
(i4) 68&?’5), i€ {1,2,...,2n} exists and is a.s. finite
for every¢ € =.
9% s( & _
(iii) [ o ‘ag;’i) < oo, for every¢é € £, andk =1, 2.

s(@;ﬁ_) 2

JE, < oo, for every¢ € =.

(iv) E{ 2

We now present a result for the constrained complex es?

mator g analogous to the real case.

Lemma 1:Under assumption A.1 and constraints given bg

(3), the constrained estimatér 2 — C"*! defined as

ja | d+id ©)
i
satisfies the property
(5 - é) AT} UUH = yuH, (10)

th tag 25_) U = 0 and this equality is true if and only if,
98 (€) w\ g _
\f o <2SS ) =0 (13)
1 @ Hpy
2[ SS =0 (14)
H _
=P (0) (ﬁs U) _ o, (15)

where the equalities in (13), (14) follow from the facts
%SSH =TI andT is invertible, respectively. The matricésT

have been defined in (7). It can be seen that %SHU
nd thereford/ L F (9). Moreover,U"U = U7 SSHU =

kxk. HenceU contains orthonormal columns Showing that
it spans the nullspace aFf( ) completes the proof. Ldf not

pan the nullspace df (6). Then there exista = [ul ubT}T
whereu,, u, € (C”Xl such thatF (9_) u =0 and UHu = 0.

(5) %8 (€) o

3
an invertible matrlx Letu Su=[u nr,

Z+U;,jug _jua
0
g@) is real we have%—@ﬁR = 0 whereug, is

u=0asTis

Hence we havd“

. 0
Since

the real part ofa. Also, it can be observed that’u =0 =
UTa = 0 and sinceU is a real matrix,U”ar = 0. Thus

Proof: From the results for constrained real paramet@fere exists a real vector via: 2 iip € R2"*! such that

vector in [3], [5] we have 0 . .
131, (3] gagf)v = UTv = 0 contradicting the assumption thét is
ATLoUT =007, 11 9
{(E 5) } ) a basis for the nullspace ef% This completes the proof.
= Olns (w;€) Olns(w;€& ~ |
where A { 857 ) a% ) } and U € Theorem 1:Under assumption A.1 and constraints given by
og (g) ~ (3), the CRB for estimation of the constrained paraméter
C?nx2n=k js a basis for the nullspace ef? Let U = (2rx! js then given as
U7 UR)", Ur,Un € R4 G £ 6 —aand§ 2 E{(é—e) (é—e)H} >u(UHn) T Ut (18)

B -

(3. Then rewriting the above expression in terms of block



Proof: Let Py = UU" be the projection matrix F (¢) is constructed as given in (5), by differentiating
onto the column space dff and let'W € C*"**" be an f(¢) with respect to the parameter vectér For exam-
arbitrary matrix. Let) £ (5—9_ . As in [3] we now consider ple, the derivative of constraint # 2 i.el’q. is given as

= = H _ daraz _ [0,qf,0,...,93,0,0,...] , where we have used
E{(G - WPUA*) (9 - WPUA*) . Following a proce- 97

H -
the fact that%";‘;1 = g;‘;‘} = 0. This result follows from

dure similar to that for real vectors provided in [3], the proaf,o properties of the cgomplex derivative in [1]. Similarly,
of (16) then follows by making the obvious modifications folqiq, [ql,0,0 o7,0,0,.. ], and so on. The matrix
- 1 Yy Yy ey s YUy Uy oo ey .

mplex matri i.e. replacing the tran rator with?? ; -
compie ”at ces (i.e. replacing the transpose operato ﬁﬂls an orthogonal basis for the nullspaceléf(e). Hence,
the hermitian, etc.).

for this example, the matrice’ () € ct'x2’ U e 2t
can be written explicitly and are given as

IIl. A CONSTRAINED MATRIX ESTIMATION EXAMPLE

H T
A. Problem Formulation a 0 0 ....q 0 0
T . : . 0 q 0 @ 0 0
We consider in this section the problem of pilot assisted a0 0 0 T
- . . . . 2 q;
semi-blind estimation of a complex MIMO (Multi-Input Multi- _ 0 H 0 T
0] i txt (i i - (9) = 92 2 5
utput) channel matri¥! € C*** (i.e. # transmit antennas = qll 0 0 ... 0 0 4T
# receive antennas #). Let a total of L pilot symbols be 0 0 a ...qf 0 0
transmitted. The channel input-output relation is represented )
as L : . : : |
yk:ka+Vk ) k:1727"'7L7 (17) [ a1 0 q2 0 a3 i
. . . 0 0 0
wherey;,x, € C**! are the received and transmitted signal 0 %1 0 %2 0
vectors at the k-th time instant;, € C**! is spatio-temporally _
uncorrelated Gaussian noise such thgtv, v/} = o21. H U~ L :
can be factorized using its singular value decomposition (SVD) V2| —d4i —g95 O 0 0
asH = PX.QY where P,R € C'*! are orthogonal matrices 0 0 —aqj g5 O
such thatP’P = QHQ = 1, ¥ = diag(o1,02,...,0¢), 0 0 0 0 —-qi
oy > o9 > ... > o, > 0. P,Y can be estimated using . .

blind techniques. We then employ the pilot data exclusively - ' ' ' ' " -
to estimate the constrained orthogonal matgixMore about The simplistic and insightful nature of the above matri-
the significance of such a problem can be found in [9]. ces F (é) ,U in terms of the orthogonal parameter vectors
qi,92,---,q:, 1S particularly appealing and illustrates the
efficacy of using the complex CRB. From Eq(18) and using the
) results for least-squares estimation [1] the Fisher information

Letyy = Py, vy = P"vy. Denote by, the i-th column marix 7 (5) € C2°*2¢" for the unconstrained case is given by
of the matrix Q. The unconstrained input-output relation fokne plock diagonal matri¥ (g) _ J% (szz QY2 ® XPX;J)_
eachq; can be written as The complex constrained CRB for the parameter veétis

Vi = oixtq; + Vs (18) then obtained by substituting these matrices in (16).

B. Cramer-Rao Bound

whereyy ; denotes the i-th element gf. and analogously for
vi,;. Define the desired parameter vector to be estimatéd
[vec (Q), vec (Q*)]”. It can now be seen thétis a constrained ~ We now compute the Maximum-Likelihood (ML) estimate

C. ML Estimate and Simulation Results

parameter vector and the constraints are given as and compare its performance with that predicted by the
" _ CRB. The received symbol vectors can be stacked,as
qgqa = 1, l<i<t (19 (31,¥2,...,y1). Let X, be defined analogously by stacking
qf"qj = 0, 1<i<j<t. (20) the transmitted symbol vectors. Théhthe ML estimate of

. Q is given as a solution of the cost

Hence, the set oft + (3)complex constraintsh ()

. . y N - 2
is given as h(d) = [qf'ai—1,qf'q2,qfq, O = argmin HY H XHQEH subject to QQY =T
H T . = P p
affq —1] The extended constraint sef ()
is then given asf(§) = [affai—1,af'qz,qf’q3, where the norm-|| is the matrix Frobenius norm such that

~afla 1, afa - Lafa,afa,. . affq 1] [4I° = tr (44). From [10] the constrained es},ima(é
f () can then be employed to compute However, it can be €mploying an orthonormal pilot sequengg (i.e. X, X" = 1)
noticed that the repeated constraiftq; —1 fori = 1,2,...,¢+ S givenas

is trivially redundant. Eliminating this redundancy, the . o H ~ H

minimal set oft 4 2(;) = t? set of non-redundant constraints Q=PR, where B3R, =S5VD (XPY” E) (1)

f () can be obtained aﬁ(@ = [af'ar — 1,qfaz,a¥’a1,  Our simulation set-up consists of4ax 4 MIMO channel H
af’qs,d¥aq1,....af'q, — 1] . (i.e. t = 4). A single realization ofH was generated as a
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matrix of zero-mean circularly symmetric complex Gaussian
random entries such that the variance of the real and imaginary
parts was unity. The source symbol vecterse C**! are
assumed to be drawn from a BPSK constellation and the
orthonormality condition is achieved by using the Hadamard
structure. The transmitted pilot was assumed to be of length
L = 12 symbols. The error was then averaged for a fixed
H over several instantiationsV{ = 1000) of the channel

noise vi. Figure(1) shows the MSE in the 1st element
2

Q(1.1) (ie.|Q(11) — QL)

were obtained for the CRB of other elementstafFigure(2)
~ 112

then shows the total MSE in estimation@f(i.e. HQ — QH

vs its CRB. Similar results

vs the trace of the CRB matrix. The ML estimafg can
be seen to achieve a performance close to the CRB and its
performance progressively improves with increasing SNR.
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