# Power Allocation over Slow Fading Channels with QAM Inputs

Hwan-Joon (Eddy) Kwon

November 29, 2012

## Power Allocation to Maximize the Mutual Information of Parallel Gaussian Channels with QAM Inputs



## Outline

- I. Motivation / Summary
- II. System Model and Performance Metric
- III. Problem Formulation
- IV. Power Allocation Schemes
  - Optimal Power Allocation (Mercury/water-filling)
  - Waterfilling
  - Uniform Power Allocation with Thresholding (UPAT)
- V. Power Allocation Examples
- VI. Performance Results: Outage Probability
- VII. Conclusion

**Appendix**: Summary of a relevant paper in preparation "Uniform Power Allocation with Thresholding for Rayleigh Fading and QAM Inputs"

#### • Why mutual information?

Channel capacity is characterized by the maximum mutual information between the input and the output of the channel.

#### • Mutual information of parallel Gaussian channels

- ► Parallel Gaussian channels: OFDM, SVD-MIMO, etc.
- Under an average power constraint, maximized by Gaussian inputs along with the waterfilling power allocation.
- Gaussian inputs can never be realized in practice.
- Rather, the inputs must be drawn from finite discrete constellations such as PSK, PAM, and QAM.
- For these practical discrete input constellations, mercury/water-filling (MWF) is optimal.

## Waterfilling and Mercury/water-filling

• Waterfilling

$$p_i^{wf} = \begin{cases} \frac{1}{\lambda_{wf}} - \frac{1}{\gamma_i}, & \gamma_i > \lambda_{wf} \\ 0, & \gamma_i \le \lambda_{wf} \end{cases}$$

• Mercury/water-filling

$$p_{i}^{mwf} = \begin{cases} \frac{1}{\gamma_{i}} \mathsf{MMSE}^{-1} \left( \frac{\lambda_{mwf}}{\gamma_{i}} \right), & \gamma_{i} > \lambda_{mwf} \\ 0, & \gamma_{i} \le \lambda_{mwf} \end{cases}$$





p,

 $\frac{1}{\gamma_i}$ 

## Why Study UPAT with QAM Inputs?

#### • Concerns on Mercury/water-filling

- Feedback overhead
  - $Rx \rightarrow Tx$ : channel gains of each subchannel
  - $Tx \rightarrow Rx$ : power levels of each subchannel
- Implementation complexity
  - Inverse MMSE functions are involved in MWF
- Much effort has been made to develop simple power allocation schemes
- In particular, UPAT has received much attention thanks to:
  - Remarkably relaxed overhead requirements
  - Simplification of transmitter and receiver design
- However, study on UPAT has focused on the Gaussian input over fast fading channels (ergodic performance)
  - ► Insight into practical system design is limited

### Consider

- SISO Point-to-point communication
- Slow fading channels (Rayleigh) and the outage probability
- M-QAM inputs
- Compare three power allocation schemes:
  - Optimal power allocation (Mercury/water-filling)
  - Waterfilling
  - UPAT
- It will be shown that
  - ► As long as the constellation size *M* is sufficiently large,
  - UPAT  $\approx$  waterfilling  $\approx$  Mercury/water-filling.

## Outline

#### I. Motivation / Summary

- II. System Model and Performance Metric (Outage Probability)
- III. Problem Formulation: minimize the outage probability
- IV. Power Allocation Schemes
  - Optimal Power Allocation (Mercury/water-filling)
  - Waterfilling
  - ► Uniform Power Allocation with Thresholding (UPAT)
- V. Power Allocation Examples
- VI. Outage Probability Results
- VII. Conclusion

**Appendix**: Summary of a relevant paper in preparation "Uniform Power Allocation with Thresholding for Rayleigh Fading and QAM Inputs"

## System Model: Power Allocation over a Block Fading Ch.



A codeword spans *B* blocks of *L* transmissions. (L: arbitrarily large)

$$\mathbf{Y}_i = H_i \sqrt{p_i(\boldsymbol{\gamma}; M) P} \mathbf{S}_i + \mathbf{Z}_i, \quad i = 1, 2, \dots, B$$

- Y<sub>i</sub>: channel output vector in block i
- $\mathbf{Z}_i \sim \mathcal{N}_{\mathbb{C}}(0, \mathsf{I})$
- S<sub>i</sub>: the standard M-QAM symbols (unit average power)
- P: average power constraint
- ► H<sub>i</sub>: random channel gain ~ N<sub>C</sub>(0, 1), constant during the block, i.i.d. across the blocks, known to Tx and Rx
- ▶  $\gamma_i \triangleq P|H_i|^2$ : SNR before power adaptation,  $\gamma = (\gamma_1, ..., \gamma_B)$
- $p_i(\gamma; M) \ge 0$ : normalized Tx power  $(\frac{1}{B} \sum_{i=1}^{B} p_i(\gamma; M) \le 1)$
- ►  $p_i(\gamma; M)\gamma_i$ : SNR after power adaptation or instantaneous SNR
- ▶  $\mathbf{p}(\gamma; M) = (p_1(\gamma; M), \dots, p_B(\gamma; M))$ : power allocation scheme

### Performance Metric: Outage Probability

#### Instantaneous mutual information

$$I_B(M,\gamma,\mathbf{p}(\gamma;M)) \triangleq \frac{1}{B} \sum_{i=1}^B I_{AW}(\mathbf{p}_i(\gamma;M)\gamma_i;M)$$

where  $I_{AW}(\rho; M)$  is the MI of the AWGN channel with *M*-QAM inputs at SNR  $\rho$ .

$$I_{AW}(\rho; M) = \log_2 M - \frac{1}{M} \sum_{s \in \mathcal{S}_M} \mathsf{E}_Z \left[ \log_2 \left( \sum_{s' \in \mathcal{S}_M} e^{-|\sqrt{\rho}(s-s')+Z|^2 + |Z|^2} \right) \right]$$

• Outage probability

$$P_{out}(B, M, P, R, \mathbf{p}(\gamma; M)) \triangleq \mathsf{P}(I_B(M, \gamma, \mathbf{p}(\gamma; M)) < R)$$

where R is the fixed target transmission rate.

## $I_{AW}(\rho; M)$ : MI of the AWGN Channel with QAM Inputs



#### • Outage probability minimization problem

$$\begin{array}{ll} \text{minimize} & P_{out}(B, M, P, R, \mathbf{p}(\gamma; M)) \\ \text{subject to} & \displaystyle \frac{1}{B} \sum_{i=1}^{B} p_i(\gamma; M) \leq 1 \\ & p_i(\gamma; M) \geq 0, \ \forall i. \end{array}$$

• Equivalent problem (under the same power constraint)

$$\arg \max_{\mathbf{p}(\gamma;M)} I_B(M,\gamma,\mathbf{p}(\gamma;M))$$

## Outline

- I. Motivation / Summary
- II. System Model and Performance Metric
- III. Problem Formulation
- IV. Power Allocation Schemes
  - Optimal Power Allocation (Mercury/water-filling)
  - Waterfilling
  - Uniform Power Allocation with Thresholding (UPAT)

#### V. Power Allocation Examples

- VI. Outage Probability Results
- VII. Conclusion

**Appendix**: Summary of a relevant paper in preparation "Uniform Power Allocation with Thresholding for Rayleigh Fading and QAM Inputs"

Mercury/water-fillingWater-fillingThe optimal UPATProblem
$$\max_{p(\gamma;M)} I_B(M, \mathbf{p}(\gamma;M), \gamma) \\ s.t. \ power \ constraint$$
$$\max_{p(\gamma;M)} \sum_{i} \log \left( 1 + p_i(\gamma;M) \gamma_i \right) \\ s.t. \ power \ constraint$$
$$\max_{0 \leq n < B} \sum_{i=n+1}^{B} I_{AW} \left( \gamma_i^o \frac{B}{B-n}; M \right) \\ \sum_{i=n+1}^{N} I_{AW} \left( \gamma_i^o \frac{B}{N_{upat}}; M \right) \\ \sum_{i=n+1}^{N} I_{AW} \left( \gamma_i^o \frac{B}{N_{upat}}; M \right) \\ \sum_{i=n+1}^{N} I_{AW} \left( \gamma_i^o \frac{B}{B-n}; M \right) \\ \sum_{i=n+1}^{N} I_{AW$$



15 / 23



16/23

## Outline

- I. Motivation / Summary
- II. System Model and Performance Metric
- III. Problem Formulation
- IV. Power Allocation Schemes
  - Optimal Power Allocation (Mercury/water-filling)
  - Waterfilling
  - Uniform Power Allocation with Thresholding (UPAT)
- V. Power Allocation Examples

#### VI. Outage Probability Results

VII. Conclusion

**Appendix**: Summary of a relevant paper in preparation "Uniform Power Allocation with Thresholding for Rayleigh Fading and QAM Inputs"

## Suboptimality of the Optimal UPAT and Waterfilling

- If  $R \ll \log_2 M$ , the optimal UPAT and waterfilling perform near MWF.
- If  $R \approx log_2 M$ , the performance loss is significant, especially for waterfilling.

#### Asymptotic Results: as $R \rightarrow 0$ ,

 $P_{out}(UPAT) = P_{out}(WF) = P_{out}(MWF).$ 



## " $R \approx \log_2 M$ " Should Be Avoided

- All the schemes perform so poorly in the regime where  $R \approx log_2 M$ .
- One-step larger *M* could significantly improve the performance, leading to the condition  $R \ll log_2 M$ .



#### As long as the constellation size M is properly chosen,

## The optimal UPAT as well as waterfilling perform near optimal !!!

(Note: The same conclusion holds for fast fading channels where the ergodic mutual information is considered.)

- UPAT is an attractive power allocation policy in practice.
- In many communication problems, e.g., power allocation, multi-user scheduling, MIMO techniques, solutions for optimizing  $f(\log(1 + SNR))$  are significant in practice with sufficiently large constellation sizes.

#### Appendix: Summary of a Relevant Paper

## "Uniform Power Allocation with Thresholding for Rayleigh Fading and QAM Inputs"

- Hwan-Joon(Eddy) Kwon, Young-Han Kim, and Bhaskar D. Rao
- to be submitted to IEEE Transactions on Wireless Communications.

## Summary of the Main Results

- 1) Analyze the suboptimality of the optimal UPAT
  - The optimal UPAT performs near MWF as long as the constellation size *M* is appropriately chosen.

#### 2) Propose a constellation size selection rule

- Provides a good compromise between performance and complexity.
- With the rule, the optimal UPAT performs near MWF.

3) Analyze the amount of gain of the optimal UPAT over uniform power allocation

- ► Significant when the target rate *R* is low and the number of fading DOFs is large.
- 4) Propose a simple algorithm to set the threshold for UPAT
  - Significantly reduces the computational complexity with minimal performance loss.

#### 5) Extend to Fast Fading Channels

Show that the same conclusion holds.