D2D Resource Sharing and Beamforming

PhuongBang Nguyen

Department of Electrical Engineering University of San Diego, California

Fall 2012

PhuongBang Nguyen (UCSD)

2 Single Antenna Scenario (SISO)

Outline

2 Single Antenna Scenario (SISO)

3 Multiple Antenna Scenario (MIMO)

4 References

Project Outline

- This presentation discusses the **resource optimization problem** in a Device-to-Device communications network.
- The problem is examined under several different settings:
 - Single antenna, single carrier (Single-carrier SISO)
 - Single antenna, multiple carriers (Multi-carrier SISO)
 - Multiple antennas, single carrier (Single-carrier MIMO)
- Only brief summaries are presented for the SISO cases.
- The MIMO case is discussed in detail in three sub-topics:
 - Orthogonal Beamforming
 - Zero-forcing Beamforming
 - Tunable Beamforming

What is Device-to-Device (D2D) Communication?

- User Equipments (UE's) communicate directly with each other.
- D2D connections remain under the control of the base station.

D2D Link Budget I

• Assume 10 MHz bandwidth with the receiver operating at 290K.

а	Max. TX power (dBm)	24.0	
b	TX antenna gain (dBi)	0.0	
С	Body loss (dB)	0.0	
d	EIRP (dBm)	24.0	= a + b + c
е	RX UE noise figure (dB)	7.0	
f	Thermal noise (dBm)	-104.5	= k * T * B
g	Receiver noise floor (dBm)	-97.5	= e + f
h	SINR (dB)	-10.0	
i	Receiver sensitivity (dBm)	-107.5	= g + h
j	Interference margin (dB)	3.0	
k	Control channel overhead (dB)	1.0	
Ι	RX antenna gain (dBi)	0.0	
m	Body loss (dB)	0.0	
	Maximum path loss (dB)	127.5	= d - i - j - k + l - m

D2D Link Budget II

• Using simple a path loss model (Okumura-Hata model)

$$G_{avg} = C - 10\alpha \log_{10} r \tag{1}$$

Where *C* is a correction factor and $\alpha \approx 3-5$.

• Using C = -15 dB [1], corresponding to rural areas, and $\alpha = 5$ for lots of loss due to the fact both UE's are very close the the ground, the maximum range between devices can be computed to be

$$r = 10^{\frac{C - G_{avg}}{10\alpha}} = 10^{\frac{-15 + 127.5}{10 \times 5}} = 10^{2.25} = 178m$$
 (2)

• The D2D operating range is several hundred meters, depending on the environment and handset capabilities.

Multiple D2D Links

 Due to the short range of D2D communications, it is possible to have multiple D2D links sharing a common resource with little interference.

Benefits and Challenges of D2D Communications

Benefits

- For the UE's:
 - Better throughput
 - Lower power
 - * Shorter delay
 - ★ Transparent mode switching
- For the system:
 - ★ Less relay load for the base stations
 - ★ Better channel resource reuse
- For the service provider:
 - Easier to plan access, investment and interference coordination in a licensed band.
 - * Resource can still be assigned to D2D in a dense network.

Challenges

- Peer Discovery
- Mode Selection
- Interference Management/Coordination

D2D Interference Scenarios

PhuongBang Nguyen (UCSD)

D2D Beamforming

2 Single Antenna Scenario (SISO)

3 Multiple Antenna Scenario (MIMO)

4 References

PhuongBang Nguyen (UCSD)

Single-Antenna, Single-Carrier System

• The objective is to maximize the minimum SINR of the two links, Γ_c and Γ_d , subject to individual power constraints.

$$(P_c^*, P_d^*) = \underset{P_c, P_d}{\operatorname{arg\,max}} \{ \min\{\Gamma_c, \Gamma_d\} \} \text{ s.t. } 0 \le P_c, P_d \le P_{max} \quad (P1)$$
Where $\Gamma_c = \frac{g_c P_c}{g_{dc} P_d + N_c}, \Gamma_d = \frac{g_d P_d}{g_{cd} P_c + N_d}$
(3)

- The optimal solution must satisfy $P_d = P_{\text{max}}$ or $P_c = P_{\text{max}}$ [2].
- In either case, problem (P1) is a *quasi concave* problem in P_c or P_d .
- The solution can be obtained directly by setting $\Gamma_c = \Gamma_d$ and solving a simple quadratic equation for the power.

Single-Antenna, Multi-Carrier System

• We joint-optimize over the shared set of N sub-carriers.

$$\max_{\mathbf{x},\mathbf{y}} \min \{R_c, R_d\} \text{ s.t. } \mathbf{1}^T \mathbf{x} \le P_c^{tot}, \ \mathbf{1}^T \mathbf{y} \le P_d^{tot}$$
(P2)
$$R_{c,d} \triangleq \sum_{k=0}^{N-1} \log_2(1 + \text{SINR}_{c,d}^{(k)}), x_k \triangleq P_c^{(k)}, y_k \triangleq P_d^{(k)}$$
(4)

• Rewriting problem (P2) using a *slack* variable *s*, we have

$$\max_{\mathbf{x},\mathbf{y},s} \{s\} \text{ s.t. } \mathbf{1}^{T}\mathbf{x} \le P_{c}^{tot}, \ \mathbf{1}^{T}\mathbf{y} \le P_{d}^{tot}$$
(5)
$$s \times \prod_{k=0}^{N-1} \frac{g_{dc}^{(k)}y_{k} + N_{c}^{(k)}}{g_{dc}^{(k)}y_{k} + N_{c}^{(k)} + g_{c}^{(k)}x_{k}} \le 1$$
(6)
$$s \times \prod_{k=0}^{N-1} \frac{g_{cd}^{(k)}x_{k} + N_{d}^{(k)}}{g_{cd}^{(k)}x_{k} + N_{d}^{(k)} + g_{d}^{(k)}y_{k}} \le 1$$
(7)

 This problem can be solved as a *geometric program* by using monomial approximation to the denominators of (6) and (7) [3].

PhuongBang Nguyen (UCSD)

Single-Antenna, Multi-Carrier System

PhuongBang Nguyen (UCSD)

Outline

1 Introduction

2 Single Antenna Scenario (SISO)

3 Multiple Antenna Scenario (MIMO)

4 References

System Model I

- We consider a downlink celular system [4] with D2D enabled under the following conditions:
 - The base station has N antennas.
 - The mobile devices have M antennas, where M < N.
 - Transmit and receive beamformers are used at all terminals.

System Model II

 The signals received at the D2D and cellular receivers are given by

$$y_d = \mathbf{u}_d^H \mathbf{H}_d \mathbf{v}_d \sqrt{P_d} x_d + \mathbf{u}_d^H \mathbf{H}_{cd} \mathbf{v}_c \sqrt{P_c} x_c + N_d$$
(8)

$$y_c = \mathbf{u}_c^H \mathbf{H}_c \mathbf{v}_c \sqrt{P_c} x_c + \mathbf{u}_c^H \mathbf{H}_{dc} \mathbf{v}_d \sqrt{P_d} x_d + N_c$$
(9)

Where

- x_c, x_d are scalar transmit signals for the cellular and D2D links
- $\mathbf{v}_c, \mathbf{v}_d$ and $\mathbf{u}_c, \mathbf{u}_d$ are unit-norm transmit/receive beamformers
- P_c, P_d are transmit powers
- ► **H**_c, **H**_d are MIMO channel matrices for the direct paths, **H**_{cd}, **H**_{dc} are channel matrices for the interference paths
- $N_c \sim \mathcal{N}(0, \sigma_c^2)$ and $N_d \sim \mathcal{N}(0, \sigma_d^2)$ are Gaussian noises.

Problem Formulation

• Consider the following joint optimization problem

$$\max_{\mathbf{u}_{c},\mathbf{u}_{d},\mathbf{v}_{c},\mathbf{v}_{d},P_{c},P_{d}} \min \{\Gamma_{c},\Gamma_{d}\}$$
(P3)
s.t.: $0 \le P_{c} \le P_{c}^{max}, 0 \le P_{d} \le P_{d}^{max}$
 $\|\mathbf{u}_{c}\| = 1, \|\mathbf{v}_{c}\| = 1, \|\mathbf{u}_{d}\| = 1, \|\mathbf{v}_{d}\| = 1$

Where

$$\Gamma_{c} = \frac{|\mathbf{u}_{c}^{H}\mathbf{H}_{c}\mathbf{v}_{c}|^{2}P_{c}}{|\mathbf{u}_{c}^{H}\mathbf{H}_{dc}\mathbf{v}_{d}|^{2}P_{d} + \sigma_{c}^{2}} = \frac{\mathbf{u}_{c}^{H}(P_{c}\Phi_{c})\mathbf{u}_{c}}{\mathbf{u}_{c}^{H}(P_{d}\Phi_{dc} + \sigma_{c}^{2}\mathbf{I})\mathbf{u}_{c}}$$
(10)

$$\Gamma_{d} = \frac{|\mathbf{u}_{d}^{H}\mathbf{H}_{d}\mathbf{v}_{d}|^{2}P_{d}}{|\mathbf{u}_{d}^{H}\mathbf{H}_{cd}\mathbf{v}_{c}|^{2}P_{c} + \sigma_{d}^{2}} = \frac{\mathbf{u}_{d}^{H}(P_{d}\Phi_{d})\mathbf{u}_{d}}{\mathbf{u}_{d}^{H}(P_{c}\Phi_{cd} + \sigma_{d}^{2}\mathbf{I})\mathbf{u}_{d}}$$
(11)

$$\Phi_{c} = \mathbf{H}_{c}\mathbf{v}_{c}\mathbf{v}_{c}^{H}\mathbf{H}_{c}^{H}, \ \Phi_{d} = \mathbf{H}_{d}\mathbf{v}_{d}\mathbf{v}_{d}^{H}\mathbf{H}_{d}^{H}$$

$$\Phi_{dc} = \mathbf{H}_{dc}\mathbf{v}_{d}\mathbf{v}_{d}^{H}\mathbf{H}_{dc}^{H}, \ \Phi_{cd} = \mathbf{H}_{cd}\mathbf{v}_{c}\mathbf{v}_{c}^{H}\mathbf{H}_{cd}^{H}$$

• Problem (P3) is a non convex optimization problem.

D2D Optimization Procedure

- For the performance/complexity tradeoffs under D2D settings, we consider the following optimization procedure:
 - The D2D link ignores the interference from the cellular link and optimizes its own SNR using *Maximal Ratio Transmission (MRT)* [5].

$$\gamma_d = \max_{\mathbf{u}_d, \mathbf{v}_d, P_d} \Gamma_d = \frac{|\mathbf{u}_d^H \mathbf{H}_d \mathbf{v}_d|^2 P_d}{\sigma_d^2} \text{ subject to: } 0 \le P_d \le P_d^{max} \quad (12)$$

Given \mathbf{v}_d , and P_d , the base station solves for \mathbf{u}_c , \mathbf{v}_c , P_c by minimizing the interference to the D2D link and maximizing the cellular link SINR Γ_c .

$$\min_{\mathbf{v}_c} \left(\mathbf{v}_c^H \mathbf{H}_{cd}^H \mathbf{u}_d \right) \left(\mathbf{u}_d^H \mathbf{H}_{cd} \mathbf{v}_c \right)$$
subject to $\|\mathbf{v}_c\| = 1$
(13)

- Zero interference can be achieved when
 - $\mathbf{v}_c \perp (\mathbf{H}_{cd}^H \mathbf{u}_d)$: Orthogonal beamforming.
 - $\mathbf{H}_{cd}\mathbf{v}_{c} = \mathbf{0}$: Zero-forcing beamforming.

Orthogonal Beamforming I

- In this case, \mathbf{v}_c must lie in the *orthogonal complement* space of $\mathbf{H}_{cd}^H \mathbf{u}_d$, denoted as \mathbf{W}^{\perp} with dimension N-1.
- Let $\mathcal{B} = {\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{N-1}}$ be an ortho-normal basis of \mathbf{W}^{\perp} , then \mathbf{v}_c must be a linear combination of \mathcal{B} .

$$\mathbf{v}_c = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_{N-1}]\mathbf{x} = \mathbf{K}\mathbf{x}$$
(14)

$$\Phi_c = \mathbf{H}_c \mathbf{v}_c \mathbf{v}_c^H \mathbf{H}_c^H = \mathbf{H}_c \mathbf{K} \mathbf{x} \mathbf{x}^H \mathbf{K}^H \mathbf{H}_c^H$$
(15)

Where
$$\mathbf{x} = [x_1, x_2, ..., x_{N-1}]^T$$

• We want to maximize the SINR Γ_c for the cellular link:

$$\Gamma_{c}^{max} = \max_{\mathbf{x}, \mathbf{u}_{c}} \Gamma_{c} = \max_{\mathbf{x}} \max_{\mathbf{u}_{c}} \frac{\mathbf{u}_{c}^{H} \left(\mathbf{H}_{c} \mathbf{K} \mathbf{x} \mathbf{x}^{H} \mathbf{K}^{H} \mathbf{H}_{c}^{H}\right) \mathbf{u}_{c}}{\mathbf{u}_{c}^{H} B \mathbf{u}_{c}}$$
(16)
s.t: $\mathbf{x}^{H} \mathbf{x} = 1$

Where $B = (P_d/P_c)\Phi_{dc} + (\sigma_c^2/P_c)\mathbf{I}$ and $\Phi_{dc} = \mathbf{H}_{dc}\mathbf{v}_d\mathbf{v}_d^H\mathbf{H}_{dc}^H$

Orthogonal Beamforming II

• Let $\mathbf{y} \triangleq B^{\frac{1}{2}}\mathbf{u}_c$, we have

$$\Gamma_{c}^{max} = \max_{\mathbf{x}} \max_{\mathbf{y}} \frac{\mathbf{y}^{H} \left(B^{-\frac{1}{2}}\right)^{H} \mathbf{H}_{c} \mathbf{K} \mathbf{x} \mathbf{x}^{H} \mathbf{K}^{H} \mathbf{H}_{c}^{H} B^{-\frac{1}{2}} \mathbf{y}}{\mathbf{y}^{H} \mathbf{y}}$$
(17)
s.t: $\mathbf{x}^{H} \mathbf{x} = 1$

 $\bullet\,$ Without changing the problem, we can constrain $\|\mathbf{y}\|=1$ and get

$$\Gamma_{c}^{max} = \max_{\mathbf{x}} \max_{\mathbf{y}} \mathbf{y}^{H} \left(B^{-\frac{1}{2}} \right)^{H} \mathbf{H}_{c} \mathbf{K} \mathbf{x} \mathbf{x}^{H} \mathbf{K}^{H} \mathbf{H}_{c}^{H} B^{-\frac{1}{2}} \mathbf{y}$$
(18)
s.t: $\mathbf{x}^{H} \mathbf{x} = 1, \mathbf{y}^{H} \mathbf{y} = 1$
 $\Leftrightarrow \Gamma_{c}^{max} = \max_{\mathbf{z}} \{ \max_{\mathbf{y}} \mathbf{y}^{H} \mathbf{z} \mathbf{z}^{H} \mathbf{y} \}$ (19)
s.t: $\mathbf{x}^{H} \mathbf{x} = 1, \mathbf{y}^{H} \mathbf{y} = 1$
Where $\mathbf{z} \triangleq \left(B^{-\frac{1}{2}} \right)^{H} \mathbf{H}_{c} \mathbf{K} \mathbf{x}$

Orthogonal Beamforming III

• The solution to the inner maximization of (19) is simply $\mathbf{y} = \frac{\mathbf{z}}{\|\mathbf{z}\|}$. Consequently, we have

$$\Gamma_{c}^{max} = \max_{\mathbf{z}} \frac{\mathbf{z}^{H} \mathbf{z} \mathbf{z}^{H} \mathbf{z}}{\mathbf{z}^{H} \mathbf{z}} = \max_{\mathbf{z}} \mathbf{z}^{H} \mathbf{z} = \max_{\mathbf{x}} \{\mathbf{x}^{H} \mathbf{A} \mathbf{x}\}$$
(20)
s.t. $\mathbf{x}^{H} \mathbf{x} = 1$
Where $\mathbf{A} = \mathbf{K}^{H} \mathbf{H}_{c}^{H} B^{-1} \mathbf{H}_{c} \mathbf{K}$

• Problem (20) can be recognized as finding the max eigen value $\lambda_{max}(\mathbf{A})$, which can be solved for \mathbf{x} . Once \mathbf{x} is found, we can obtain \mathbf{v}_c from (14) and then solve for \mathbf{u}_c as follows:

$$\mathbf{u}_{c} = B^{-\frac{1}{2}}\mathbf{y} = B^{-\frac{1}{2}}\frac{\mathbf{z}}{\|\mathbf{z}\|}$$
(21)
Where $\mathbf{z} = \left(B^{-\frac{1}{2}}\right)^{H}\mathbf{H}_{c}\mathbf{K}\mathbf{x}$ (22)

Zero-forcing Beamforming I

- When N > M, it is possible to impose zero-forcing constraint on v_c in order to eliminate interference to the D2D link.
- For the cellular link, we maximize its SINR and get the following optimization problem:

$$\max_{\mathbf{v}_c, \mathbf{u}_c} \Gamma_c = \max_{\mathbf{v}_c} \max_{\mathbf{u}_c} \frac{\mathbf{u}_c^H \Phi_c \mathbf{u}_c}{\mathbf{u}_c^H B \mathbf{u}_c}$$
(23)
subject to: $\mathbf{H}_{cd} \mathbf{v}_c = 0$ (24)
 $\|\mathbf{v}_c\| = 1$ (25)

• Constraint (24) means \mathbf{v}_c lies in the null space of \mathbf{H}_{cd} . Let $\mathbf{H}_{cd} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$ be the singular decomposition of \mathbf{H}_{cd} . A basis of the null space of \mathbf{H}_{cd} is the last (N - R) columns of \mathbf{V} , denoted as $\mathbf{v}_{R+1}, \mathbf{v}_{R+2}, \dots, \mathbf{v}_N$, where R is the rank of \mathbf{H}_{cd} .

Zero-forcing Beamforming II • As a result, \mathbf{v}_c is a linear combination of this basis:

$$\mathbf{v}_{c} = [\mathbf{v}_{R+1}, \mathbf{v}_{R+2}, \dots, \mathbf{v}_{N}] \mathbf{x} = \mathbf{K}' \mathbf{x}$$
(26)
$$\Phi_{c} = \mathbf{H}_{c} \mathbf{v}_{c} \mathbf{v}_{c}^{H} \mathbf{H}_{c}^{H} = \mathbf{H}_{c} \mathbf{K}' \mathbf{x} \mathbf{x}^{H} \mathbf{K}'^{H} \mathbf{H}_{c}^{H}$$
(27)

Where $\mathbf{x} = [x_1, x_2, ..., x_{N-R}]^T$

• Consequently, we have:

$$\max_{\mathbf{x},\mathbf{u}_{c}} \frac{\mathbf{u}_{c}^{H} \left(\mathbf{H}_{c} \mathbf{K}' \mathbf{x} \mathbf{x}^{H} \mathbf{K}'^{H} \mathbf{H}_{c}^{H}\right) \mathbf{u}_{c}}{\mathbf{u}_{c}^{H} B \mathbf{u}_{c}}$$
subject to: $\|\mathbf{x}\| = 1$
(28)

- Problem (28) is identical to problem (16) in the Orthogonal Beamforming section with K' instead of K.
- Hence, the solution \mathbf{x} must be the max eigen vector corresponding to $\lambda_{max}(\mathbf{A}')$, where $\mathbf{A}' = {\mathbf{K}'}^H \mathbf{H}_c^H B^{-1} \mathbf{H}_c \mathbf{K}'$. The solutions for \mathbf{u}_c and \mathbf{v}_c can be obtained in the same way.

Tunable Beamforming I

 The zero-forcing solution can cause poor performance for the cellular link. Thus, it may be advantageous to add a *tunable* component outside of the null-space of H_{cd}.

$$\mathbf{v}_{c} = \left[\mathbf{v}_{R}, \mathbf{v}_{R+1}, \mathbf{v}_{R+2}, \dots, \mathbf{v}_{N}\right] \left[\begin{array}{c} t\\ \mathbf{x} \end{array}\right] = \mathbf{K}'' \mathbf{x}'$$
(29)

$$\Phi_c = \mathbf{H}_c \mathbf{v}_c \mathbf{v}_c^H \mathbf{H}_c^H = \mathbf{H}_c \mathbf{K}'' \mathbf{x}' \mathbf{x}'^H \mathbf{K}''^H \mathbf{H}_c^H$$
(30)

Where \mathbf{v}_R corresponds to the smallest singular value of \mathbf{H}_{cd} , and $t \in [0, 1]$ is the *tuning* parameter.

• For a fixed t, we can solve for x and u_c by maximizing the SINR:

$$\Gamma_{c}^{max} = \max_{\mathbf{x},\mathbf{u}_{c}} \Gamma_{c} = \max_{\mathbf{x}} \max_{\mathbf{u}_{c}} \frac{\mathbf{u}_{c}^{H} \left(\mathbf{H}_{c} \mathbf{K}'' \mathbf{x}' \mathbf{x}'^{H} \mathbf{K}''^{H} \mathbf{H}_{c}^{H}\right) \mathbf{u}_{c}}{\mathbf{u}_{c}^{H} B \mathbf{u}_{c}}$$
(31)
s.t: $\mathbf{x}'^{H} \mathbf{x}' = 1$

Tunable Beamforming II

• Following similar steps in the *Orthogonal Beamforming* section, we arrive at

$$\Gamma_c^{max} = \max_{\mathbf{x}} \{ \mathbf{x'}^H \mathbf{A''} \mathbf{x'} \}$$
(32)
s.t. $\mathbf{x'}^H \mathbf{x'} = 1$
Where $\mathbf{A''} = \mathbf{K''}^H \mathbf{H}_c^H B^{-1} \mathbf{H}_c \mathbf{K''}$ (33)

• Let
$$\mathbf{A}'' = \begin{bmatrix} a_{11} & \mathbf{q}^H \\ \mathbf{q} & \mathbf{Q} \end{bmatrix}$$
, we get

$$\Gamma_c^{max} = \max_{\mathbf{x}} \left\{ \mathbf{x}^H \mathbf{Q} \mathbf{x} + (\mathbf{q}^H \mathbf{x} + \mathbf{x}^H \mathbf{q})t + a_{11}t^2 \right\}$$
(P4)
Subject to: $\mathbf{x}^H \mathbf{x} = (1 - t^2)$ (34)

Tunable Beamforming III

 Problem (P4) can be solved using Lagrange method with the help of Wirtinger calculus. The solution is

$$\mathbf{x} = -t(\mathbf{Q} + \mu \mathbf{I})^{-1}\mathbf{q}$$
(35)

Here µ is the minimum real solution of the following equation

$$f(\mu) \triangleq \sum_{i=1}^{k} \frac{|p_i|^2}{(\lambda_i + \mu)^2} = \alpha$$
(36)

Where $\mathbf{Q} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^H$ is an eigen-value decomposition of \mathbf{Q} , $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_k), \ k = \operatorname{rank}(\mathbf{Q}), \ \alpha = \frac{1-t^2}{t^2}, \ \text{and}$ $\mathbf{p} \triangleq \mathbf{U}^H \mathbf{q} = [p_1, p_2, \dots, p_k]^T.$

Tunable Beamforming IV

Simulation Results

PhuongBang Nguyen (UCSD)

Outline

1 Introduction

- 2 Single Antenna Scenario (SISO)
- 3 Multiple Antenna Scenario (MIMO)

4 References

References I

- H. Holma and A. Toskala, WCDMA for UMTS: HSPA Evolution and LTE. John Wiley & Sons, 2010.
- [2] A. Gjendemsjo, G. E. Oien, and D. Gesbert, "Binary power control for multi-cell capacity maximization," *IEEE 8th Workshop on Signal Processing Advances in Wireless Communications*, pp. 1–5, Jun 2007.
- [3] M. Chiang, "Geometric programming for communications systems," Foundations and Trends in Communications and Information Theory, vol. 2, pp. 1–156, Aug 2005.
- [4] B. Song, R. Cruz, and B. Rao, "Network duality for multiuser mimo beamforming networks and applications," *IEEE Transactions on Communications*, vol. 55, pp. 618–630, Mar 2007.

[5] T. K. Y. Lo, "Maximum ratio transmission," *IEEE Transactions on Communications*, vol. 47, pp. 1458–1461, Oct 1999.