Cell throughput analysis of the Proportional Fair scheduler in the single cell environment

Jin-Ghoo Choi and Seawoong Bahk IEEE Trans on Vehicular Tech, Mar 2007

Presented by: Anh H. Nguyen

February 21, 2013

< ロ > < 同 > < 三 > .

Jin-Ghoo Choi and Seawoong BahkIEEE Trans on Vehicular Tech

Analysis

- Linear model
- Logarithmic model
- 4 Extension to MIMO
- 6 Conclusions and Future works

イロト イポト イヨト イヨト

ъ

- 3 Analys
 - Linear model
 - Logarithmic model
- 4 Extension to MIMO
- 5 Conclusions and Future works

イロト イポト イヨト イヨト

э

- Round Robin: sequentially allocates resource to users. Loss in multiuser diversity.
- Min-max: maximize the minimum rate.
- **Proportional Fair** [1, 2]: allocates reasonable portion of the resource to all users while giving preference to the users with good channel condition.

ъ

- 3 Analy
 - nalysis
 - Linear model
 - Logarithmic model
- 4 Extension to MIMO
- 5 Conclusions and Future works

イロト イポト イヨト イヨト

System model

- A downlink multiuser system where the BS serves N users
- The received signal at user k is $P_k = |h_k|^2 P_t$.

$$h_k = \sqrt{cd_k^{-\alpha}s_k}m_k, \qquad (1)$$

where *c* is constant, d_k is distant BS-user *k*, random variable s_k is for shadowing effect (log-normal with variance $\sigma_s^2 dB$), m_k represents Rayleigh fading.

• The average received SNR of user k

$$\bar{Z}_k = \rho (D/d_k)^{\alpha} s_k, \qquad (2)$$

イロト イポト イヨト イヨト

where *D* is the radius of the cell, $\rho = cD^{-\alpha}P_t/P_n$ the average SNR at the cell edge.

Proportional Fair scheduler

PF select user k*

$$k^* = \arg\max_k \frac{R_k[n]}{\tilde{R}_k[n]},\tag{3}$$

イロト イポト イヨト イヨト

where $R_k[n]$ the instantaneous rate, $\tilde{R}_k[n]$ is the average throughput of user *k*

$$\tilde{R}_{k}[n+1] = \begin{cases} (1 - \frac{1}{t_{c}})\tilde{R}_{k}[n] + \frac{1}{t_{c}}R_{k}[n] & k = k^{*} \\ (1 - \frac{1}{t_{c}})\tilde{R}_{k}[n] & k \neq k^{*} \end{cases}$$
(4)

, where t_c is the time constant for the moving average.

Linear model Logarithmic model

イロト イポト イヨト イヨト

Outline

2 System model

Analysis

- Linear model
- Logarithmic model
- 4 Extension to MIMO
- 5 Conclusions and Future works

Linear model Logarithmic model

Assumptions

- Users are distributed uniformly throughout the entire cell area.
- Every session is always active in the downlink direction.
- The distribution of channel gain of user *k* does not depend on time slot *n* and is constant for the slot duration.
- In this model, the ratio of the SNR to the average SNR is used.
- The feasible rate is a strictly monotonic increasing function of the SNR.
- Average throughput and average SNR are obtained by the time average.

イロト イポト イヨト イヨト

Linear model Logarithmic model

Cell throughput of the PF scheduler

 Suppose the average rate of user k, R_k[n], gets stable and stationary as time goes by

$$T_{k} = \lim_{n \to \infty} \tilde{R}_{k}[n] = \lim_{n \to \infty} E\{R_{k}[n]I_{k}\},$$
(5)

with I_k is the indicator which equal 1 when the user is allocated.

• The preference metric is

$$\Gamma_k = \lim_{n \to \infty} \frac{Z_k[n]}{\tilde{Z}_k[n]} = \frac{Z_k}{\tilde{Z}_k},$$
(6)

イロト イポト イヨト イヨト

where Z_k , \tilde{Z}_k are the instantaneous and the average SNR.

Linear model Logarithmic model

Cell throughput of the PF scheduler

The longterm average throughput of user k is

$$T_{k} = \Pr\{\Gamma_{k} > \Gamma_{k-}\} E\{R_{k} | \Gamma_{k} > \Gamma_{k-}\}$$
$$= \int_{\xi(0)}^{\xi(\infty)} \xi(t) f_{\Gamma_{k}}(t) F_{\Gamma_{k-}}(t) dt, \qquad (7)$$

イロト イポト イヨト イヨト 一臣

where the instantaneous rate $R_k = \xi(\Gamma_k)$, $f_{\Gamma_k}(t)$ is the distribution of $\Gamma_k = \frac{Z_k}{Z_k}$, and $F_{\Gamma_{k-1}}(t)$ is the distribution of the maximum Γ_j with $j = 1, \ldots, K$ and $j \neq k$.

Linear model Logarithmic model

Cell throughput of the PF scheduler

• Under Rayleigh fading, throughput of user k is

$$T_{k} = \int_{\xi(0)}^{\xi(\infty)} \xi(t) \frac{1}{\Gamma} \exp\left(-\frac{t}{\Gamma}\right) \left(1 - \exp\left(-\frac{t}{\Gamma}\right)\right)^{N-1} dt, \quad (8)$$

イロン イボン イヨン イヨン

ъ

where $\xi(t)$ is the rate function

Linear model Logarithmic mode

PF - linear model

• The feasible rate is linearly proportional to the SNR $R_k = \beta WZ_k$. The average throughput

$$T_{k} = \frac{\beta W \bar{Z}_{k}}{N} \int_{0}^{\infty} t e^{-t} (1 - e^{-t})^{N-1} dt$$
$$= \left(\frac{\beta W}{N} M(N)\right) E_{s}(\bar{Z}_{k})$$
$$= \left(\frac{\beta W}{N} M(N)\right) E_{s}(s_{k}) \rho\left(\frac{D}{d_{k}}\right)^{\alpha}, \tag{9}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

with $\bar{Z}_k = \rho(D/d_k)^{\alpha} s_k$ and $M(N) = N \sum_{m=0}^{N-1} {\binom{N-1}{m}} \frac{(-1)^m}{(m+1)^2}$.

Linear model Logarithmic mode

PF - linear model

• Taking average over the entire cell E_A {.}, the cell throughput is

$$\hat{T}_{cell} = NE_{A} \{ E_{s} \{ T_{k} \} \}$$

$$= \beta WN(M)E_{s} \{ s_{k} \} \Omega_{A}^{-1} \int_{A} \rho \left(\frac{D}{d_{k}} \right)^{\alpha} dA$$

$$= W \frac{2\rho\beta}{2-\alpha} \frac{1-\eta^{2-\alpha}}{1-\eta^{2}} \exp\left(\left(\frac{\ln 10}{10\sqrt{2}} \sigma_{s} \right)^{2} \right) M(N), \quad (10)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

by using $E_s\{s_k\} = \exp(((\ln 10)/10\sqrt{2}\sigma_s)^2)$.

Linear model Logarithmic model

PF - logarithmic model

• The rate to user k is $R_k = W \log_2 \left(1 + \frac{Z_k}{K}\right)$, where K is a constant depending on the system design and the target BER. Similarly,

$$T_{k} = \frac{W}{\ln 2} \int_{0}^{\infty} \ln\left(1 + \frac{\bar{Z}_{k}}{K}t\right) e^{-t} (1 - e^{-t})^{N-1} dt$$

= $\frac{W}{\ln 2} \sum_{m=0}^{N-1} {\binom{N-1}{m}} \frac{(-1)^{m}}{(m+1)} \exp\left(\frac{K}{\bar{Z}_{k}}(m+1)\right) Ei\left(\frac{K}{\bar{Z}_{k}}(m+1)\right)$
 $\simeq W \nu_{1} \sum_{m=0}^{N-1} {\binom{N-1}{m}} \frac{(-1)^{m}}{(m+1)} \ln\left(1 + \frac{\nu_{2}}{K(m+1)}\bar{Z}_{k}\right).$ (11)

where $\int_0^\infty \ln(1+at)e^{-bt}dt = \frac{1}{a}\exp(b/a)Ei(b/a)$, the parameters $\nu_1 = 1.4$ and $\nu_2 = 0.82$.

Linear model Logarithmic model

PF - logarithmic model

 Taking expectation over shadowing fading and average over the entire cell area

$$T_{cell} \simeq N\nu_1 \sum_{m=0}^{N-1} {\binom{N-1}{m}} \frac{(-1)^m}{(m+1)} (B_m + \nu_3), \tag{12}$$

where B_m is defined as

1

$$B_m = \frac{2}{D^2} \int_0^D r \ln\left(1 + b_m \left(\frac{D}{r}\right)^\alpha\right) dr, \qquad (13)$$

イロト イポト イヨト イヨト

1

with $b_m = (\nu_2 \rho)/(K(m+1))$. Note B_m can be exactly calculate for α integer. When $\alpha = 4$,

$$B_m = \ln(1 + b_m) + 2b_m^{0.5} \arctan b_m^{-0.5}$$

- 2 System model
- 3 Analys
 - Linear model
 - Logarithmic model

4 Extension to MIMO

5 Conclusions and Future works

イロト イポト イヨト イヨト

MIMO systems

n_T transmit antennas, *n_R* receive antennas, *n_T* = *n_R* = *n_A*. The signal received by *RA_j* is

$$y_j = \sum_{i=1}^{n_T} h_{ij} x_i + n_j,$$
 (14)

イロト イポト イヨト イヨト

where n_j denotes noise. Then, $Z_k^{(j)}$ has exponential distribution.

• The cell throughput in logarithmic rate model is given

$$T_{cell} = Nn_A \nu_1 \sum_{m=0}^{N-1} {\binom{N-1}{m}} \frac{(-1)^m}{(m+1)} (B_m + \nu_3).$$
(15)

PF in MIMO systems

Jin-Ghoo Choi and Seawoong BahkIEEE Trans on Vehicular Tech

Simulations results

- Single cell D = 1km.
- Transmit power $P_t = 10W$.
- pathloss exponent $\alpha = 4$, shadow fading $\sigma_s = 8$ dB.
- The median SNR at the cell edge ρ = 0dB. System efficiency factor K = 8dB.

イロト イポト イヨト イヨト

э.

• Two user 100, 200m from the BS.

Time average vs. moving average

Fig. 5. Comparison of the moving average with the time average.

イロト イポト イヨト イヨト

э

Jin-Ghoo Choi and Seawoong BahkIEEE Trans on Vehicular Tech

Time average vs. moving average

イロト イポト イヨト イヨト

ъ

Jin-Ghoo Choi and Seawoong BahkIEEE Trans on Vehicular Tech

Time average vs. moving average

 $\rho = 0$ dB, K = 8 dB, and N = 30.

Fig. 8. Effect of the path-loss exponent on the cell throughput: $\sigma_{s} = 8$ dB. Fig. 10. Effect of the median SNR at the cell edge on the cell throughput: $\alpha = 4, \sigma_s = 8 \text{ dB}, K = 8 \text{ dB}, \text{ and } N = 30.$

Fig. 11. Effect of the system-efficiency factor on the cell throughput: $\alpha = 4.0, \sigma_s = 8 \text{ dB}, \rho = 0 \text{ dB}, \text{ and } N = 30.$

ヘロン 人間 とくほど くほとう

э

Time average vs. moving average

Fig. 14. Normalized cell throughput with multiple antennas: $\alpha = 4$, $\sigma_s = 8$ dB, K = 8 dB, and $\rho = 0$ dB.

イロト イポト イヨト イヨト

ъ

Jin-Ghoo Choi and Seawoong BahkIEEE Trans on Vehicular Tech

- 2 System model
- 3 Analys
 - Linear model
 - Logarithmic model
- 4 Extension to MIMO

イロト イポト イヨト イヨト

э

- Question: Is PF the best?
- We look for an alternative/complementary algorithm.

・ロト ・ 一下・ ・ ヨト・

프 🕨 🛛 프

- Guarantee fairness.
- Have good performance.
- Be practical.

References

- F. P. Kelly, A. K. Maulloo, and D. K. Tan, "Rate control for communication networks: shadow prices, proportional fairness and stability," *Journal of the Operational Research society*, vol. 49, no. 3, pp. 237–252, 1998.
 - J.-G. Choi and S. Bahk, "Cell-throughput analysis of the proportional fair scheduler in the single-cell environment," *Vehicular Technology, IEEE Transactions on*, vol. 56, pp. 766 –778, march 2007.

Thank you!

Questions?

< ロ > < 同 > < 三 >