Homework \# 3 Solution

Problem 1

$$
\begin{aligned}
A^{T}\left(A A^{T}+\lambda I_{n}\right)^{-1} & -\left(A^{T} A+\lambda I_{m}\right)^{-1} A^{T} \\
& =\left(A^{T} A+\lambda I_{m}\right)^{-1}\left(\left(A^{T} A+\lambda I_{m}\right) A^{T}-A^{T}\left(A A^{T}+\lambda I_{n}\right)\right)\left(A A^{T}+\lambda I_{n}\right)^{-1} \\
& =\left(A^{T} A+\lambda I_{m}\right)^{-1}\left(\left(A^{T} A A^{T}+A^{T}\right)-\left(A^{T} A A^{T}+A^{T}\right)\right)\left(A A^{T}+\lambda I_{n}\right)^{-1} \\
& =\left(A^{T} A+\lambda I_{m}\right)^{-1}(0)\left(A A^{T}+\lambda I_{n}\right)^{-1}=0
\end{aligned}
$$

Problem 2

All norms $(p \geq 1)$ satisfy the triangle inequality, i.e. $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$. Hence, if we take a convex combination, the convexity follows directly from the triangle inequality.

$$
\|\alpha x+(1-\alpha) y\|_{p} \leq\|\alpha x\|_{p}+\|(1-\alpha) y\|_{p}=\alpha\|x\|_{p}+(1-\alpha)\|y\|_{p}, \forall \alpha \in[0,1] .
$$

If x and y have entries such that the sign of x_{i} is the same as the sign of y_{i}, then $\left|x_{i}+y_{i}\right|=\left|x_{i}\right|+\left|y_{i}\right|$. Hence for such sign aligned vectors

$$
\|\alpha x+(1-\alpha) y\|_{1}=\|\alpha x\|_{1}+\|(1-\alpha) y\|_{1}=\alpha\|x\|_{1}+(1-\alpha)\|y\|_{1}, \forall \alpha \in[0,1] .
$$

Hence the 1-norm is not strictly convex.

Problem 3

$p(b \mid x)$ is is $N\left(A x, R_{n}\right)$ and $p(x)$ is is $N\left(0, R_{x}\right)$. The MAP estimate is given by

$$
x_{M A P}=\arg \max _{x}[\log p(b \mid x)+\log p(x)] .
$$

Substituting for the distributions and dropping terms that do not contribute to the optimization process, we have

$$
x_{M A P}=\arg \min _{x}\left[(b-A x)^{T} R_{n}^{-1}(b-A x)+x^{T} R_{x}^{-1} x\right]
$$

This can be readily solved by setting the derivative with respect to x to zero.

$$
x_{M A P}=\left(A^{T} R_{n}^{-1} A+R_{x}^{-1}\right)^{-1} A^{T} R_{n}^{-1} b .
$$

