
Homework # 3 Solution

Problem 1
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Problem 2

All norms (p ≥ 1) satisfy the triangle inequality, i.e. ∥x+y∥p ≤ ∥x∥p+∥y∥p. Hence, if we
take a convex combination, the convexity follows directly from the triangle inequality.

∥αx+ (1− α)y∥p ≤ ∥αx∥p + ∥(1− α)y∥p = α∥x∥p + (1− α)∥y∥p, ∀α ∈ [0, 1].

If x and y have entries such that the sign of xi is the same as the sign of yi, then

|xi + yi| = |xi|+ |yi|. Hence for such sign aligned vectors

∥αx+ (1− α)y∥1 = ∥αx∥1 + ∥(1− α)y∥1 = α∥x∥1 + (1− α)∥y∥1, ∀α ∈ [0, 1].

Hence the 1-norm is not strictly convex.

Problem 3

p(b|x) is is N(Ax,Rn) and p(x) is is N(0, Rx). The MAP estimate is given by

xMAP = argmax
x

[log p(b|x) + log p(x)] .

Substituting for the distributions and dropping terms that do not contribute to the

optimization process, we have
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x
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]
This can be readily solved by setting the derivative with respect to x to zero.
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