Homework \# 3

The first two problems are due next Wednesday (2/04) and the computer assignment is due in two weeks on $2 / 11$.

1. Show that

$$
A^{T}\left(A A^{T}+\lambda I_{n}\right)^{-1}=\left(A^{T} A+\lambda I_{m}\right)^{-1} A^{T}
$$

2. let $x \in R^{m}$. Show that the norms $\|x\|_{p}, p \geq 1$ are convex functions of x. Show that the 1-norm is convex but not strictly convex.
3. Consider the problem $b=A x+n$, where x and n are independent Gaussian random vectors. x is $N\left(0, R_{x}\right)$ and n is $N\left(0, R_{n}\right)$. Assume R_{x} and R_{n} are positive definite matrices. Find the MAP estimate of x.
4. Matlab Computer Study
(a) Conduct computer experiments to compare the performance of ℓ_{1} norm based sparse signal recovery with Matching Pursuit type algorithms from the last homework.
(b) Please include a complexity (flop count) study.
