Solutions to Homework 1

Problem 1:

X_{1} and X_{2} are full column rank $N \times M$ matrices. Let $X_{1}=\left[x_{1}^{(1)}, \cdot, x_{M}^{(1)}\right]$ and $X_{2}=$ $\left[x_{1}^{(2)}, \cdot, x_{M}^{(2)}\right]$. Since $\mathcal{R}\left(X_{1}\right)=\mathcal{R}\left(X_{2}\right)$ then $x_{1}^{(2)}, \cdots, x_{M}^{(2)}$, the columns of X_{2} are in $\mathcal{R}\left(X_{1}\right)$, i.e. $x_{l}^{(2)} \in \mathcal{R}\left(X_{1}\right), l=1, \cdots, M$.

Hence,

$$
x_{l}^{(2)}=X_{1} t_{l}, l=1, \cdots, M
$$

or

$$
X_{2}=\left[x_{1}^{(2)}, \cdots, x_{M}^{(2)}\right]=\left[X_{1} t_{1}, X_{1} t_{2}, \cdots, X_{1} t_{M}\right]=X_{1}\left[t_{1}, t_{2}, \cdots, t_{M}\right]=X_{1} T
$$

where T is a $M \times M$ square matrices. Since X_{1} and X_{2} are full column rank, T is non-singular and invertible. Note that T singular would automatically contradict the assumption that X_{2} is full column rank and hence has no nullspace.

$$
\begin{aligned}
X_{2} X_{2}^{+} & =X_{2}\left(X_{2}^{H} X_{2}\right)^{-1} X_{2}^{H}=X_{1} T\left(T^{H} X_{1}^{H} X_{1} T\right)^{-1} T^{H} X_{1}^{H} \\
& =X_{1} T T^{-1}\left(X_{1}^{H} X\right)^{-1}\left(T^{H}\right)^{-1} T^{H} X_{1}^{H}=X_{1}\left(X_{1}^{H} X_{1}\right)^{-1} X_{1}^{H}=X_{1} X_{1}^{+}
\end{aligned}
$$

Problem 3: Let $P=P_{M} P_{S}$, where P_{M} and P_{S} are orthogonal projection operators onto subspaces of dimension M and S respectively. They satisfy $P_{M}=P_{M}^{H}=P_{M}^{2}$, and $P_{S}=P_{S}^{H}=P_{S}^{2}$. To show P is an orthogonal projection matrix, we have to show that it satisfies $P=P^{H}=P^{2}$. We first check the symmetry property.

$$
P^{H}=\left(P_{M} P_{S}\right)^{H}=P_{S}^{H} P_{M}^{H}=P_{S} P_{M}
$$

In general, matrix product is not a commutative operation and so $P_{M} P_{S} \neq P_{S} P_{M}$ and hence
$P \neq P^{H}$. An easy way to confirm this is with an example. Consider

$$
P_{M}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } P_{S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

It is easy to verify that the above matrices are orthogonal projection matrices.

$$
P=P_{M} P_{S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0
\end{array}\right) \text { and } P_{S} P_{M}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right)
$$

P is clearly not symmetric and $P_{M} P_{S} \neq P_{S} P_{M}$. So for P to be an orthogonal projection matrix we need

$$
\begin{equation*}
P_{M} P_{S}=P_{S} P_{M} \tag{1}
\end{equation*}
$$

Next let's check the idempotent property.

$$
P^{2}=P_{M} P_{S} P_{M} P_{S}
$$

If $P_{M} P_{S}=P_{S} P_{M}$, then

$$
P^{2}=P_{M} P_{S} P_{M} P_{S}=P_{M} P_{S} P_{S} P_{M}=P_{M} P_{S} P_{M}=P_{M} P_{M} P_{S}=P_{M} P_{S}=P
$$

So property (1) is also sufficient to establish the idempotent property. In summary $P=P_{M} P_{S}$ is an orthogonal projection matrix iff $P_{M} P_{S}=P_{S} P_{M}$.

Now we discuss when this is possible. We will use the notation V_{M} to denote the subspaces of dimension M, and V_{M}^{\perp} its orthogonal complement, i.e. $V_{M} \oplus V_{M}^{\perp}=C^{N} . \oplus$ implies direct sum, that is any vector in C^{N} can be expressed uniquely as a sum of two vectors, one from V_{M} and the other from V_{M}^{\perp}. Similar comments apply to subspace V_{S} of dimension S. The intersection of the subspaces V_{M} and V_{S} is also a subspace denoted by $V_{M \cap S}$. Note that if $P_{M} P_{S}$ is an orthogonal projection operator, it will project onto the space $V_{M \cap S}$. Now we can split V_{M} into two subspaces
as shown below

$$
V_{M}=V_{M \cap S} \oplus \tilde{V}_{M}
$$

where $\tilde{V}_{M} \perp V_{M \cap S}$, and describes the space that is in V_{M} and not shared with V_{S}. Hence $C^{N}=$ $V_{M} \oplus V_{M}^{\perp}=V_{M \cap S} \oplus \tilde{V}_{M} \oplus V_{M}^{\perp}$, and any vector in C^{N} can be decomposed into three components

$$
x=x_{M \cap S}+\tilde{x}_{M}+x_{M}^{\perp}
$$

The relationship between the components and the spaces should be clear from the notation. Then

$$
\begin{equation*}
P_{S} P_{M} x=x_{M \cap S}+P_{S} \tilde{x}_{M} \tag{2}
\end{equation*}
$$

Similarly $C^{N}=V_{M \cap S} \oplus \tilde{V}_{S} \oplus V_{S}^{\perp}$, and $x=x_{M \cap S}+\tilde{x}_{S}+x_{S}^{\perp}$. Then

$$
\begin{equation*}
P_{M} P_{S} x=x_{M \cap S}+P_{M} \tilde{x}_{S} \tag{3}
\end{equation*}
$$

Since $P_{M} P_{S}=P_{S} P_{M}$ is an orthogonal projection operator onto $V_{M \cap S}$, it follows that

$$
P_{M} \tilde{x}_{S}=P_{S} \tilde{x}_{M}=0, \quad \forall \tilde{x}_{S} \in \tilde{V}_{S} \text { and } \tilde{x}_{M} \in \tilde{V}_{M}
$$

This implies $\tilde{V}_{S} \perp V_{M}$ and $\tilde{V}_{M} \perp V_{S}$ or $\tilde{V}_{M} \perp \tilde{V}_{S}$.
In summary,

$$
V_{M}=V_{M \cap S} \oplus \tilde{V}_{M}, V_{S}=V_{M \cap S} \oplus \tilde{V}_{S}, \text { and } \tilde{V}_{M} \perp \tilde{V}_{S} \Leftrightarrow P_{M} P_{S}=P_{S} P_{M}
$$

