
Solutions to Homework 1

Problem 1:

X1 and X2 are full column rank N × M matrices. Let X1 =
[
x
(1)
1 , ·, x(1)M

]
and X2 =[

x
(2)
1 , ·, x(2)M

]
. Since R(X1) = R(X2) then x

(2)
1 , · · · , x(2)M , the columns of X2 are in R(X1), i.e.

x
(2)
l ∈ R(X1), l = 1, · · · ,M .

Hence,

x
(2)
l = X1tl, l = 1, · · · ,M

or

X2 =
[
x
(2)
1 , · · · , x(2)M

]
= [X1t1, X1t2, · · · , X1tM ] = X1 [t1, t2, · · · , tM ] = X1T,

where T is a M ×M square matrices. Since X1 and X2 are full column rank, T is non-singular

and invertible. Note that T singular would automatically contradict the assumption that X2 is

full column rank and hence has no nullspace.

X2X
+
2 = X2(X

H
2 X2)

−1XH
2 = X1T (T

HXH
1 X1T )

−1THXH
1

= X1TT
−1(XH

1 X)−1(TH)−1THXH
1 = X1(X

H
1 X1)

−1XH
1 = X1X

+
1

Problem 3: Let P = PMPS , where PM and PS are orthogonal projection operators onto

subspaces of dimensionM and S respectively. They satisfy PM = PH
M = P 2

M , and PS = PH
S = P 2

S .

To show P is an orthogonal projection matrix, we have to show that it satisfies P = PH = P 2.

We first check the symmetry property.

PH = (PMPS)
H = PH

S PH
M = PSPM .

In general, matrix product is not a commutative operation and so PMPS ̸= PSPM and hence
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P ̸= PH . An easy way to confirm this is with an example. Consider

PM =


1 0 0

0 1 0

0 0 0

 and PS =


1 0 0

0 1
2

1
2

0 1
2

1
2


It is easy to verify that the above matrices are orthogonal projection matrices.

P = PMPS =


1 0 0

0 1
2

1
2

0 0 0

 and PSPM =


1 0 0

0 1
2 0

0 1
2 0


P is clearly not symmetric and PMPS ̸= PSPM . So for P to be an orthogonal projection matrix

we need

PMPS = PSPM . (1)

Next let’s check the idempotent property.

P 2 = PMPSPMPS .

If PMPS = PSPM , then

P 2 = PMPSPMPS = PMPSPSPM = PMPSPM = PMPMPS = PMPS = P.

So property (1) is also sufficient to establish the idempotent property. In summary P = PMPS

is an orthogonal projection matrix iff PMPS = PSPM .

Now we discuss when this is possible. We will use the notation VM to denote the subspaces

of dimension M, and V ⊥
M its orthogonal complement, i.e. VM ⊕ V ⊥

M = CN . ⊕ implies direct sum,

that is any vector in CN can be expressed uniquely as a sum of two vectors, one from VM and the

other from V ⊥
M . Similar comments apply to subspace VS of dimension S. The intersection of the

subspaces VM and VS is also a subspace denoted by VM∩S . Note that if PMPS is an orthogonal

projection operator, it will project onto the space VM∩S . Now we can split VM into two subspaces
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as shown below

VM = VM∩S ⊕ ṼM

where ṼM⊥VM∩S , and describes the space that is in VM and not shared with VS . Hence CN =

VM ⊕ V ⊥
M = VM∩S ⊕ ṼM ⊕ V ⊥

M , and any vector in CN can be decomposed into three components

x = xM∩S + x̃M + x⊥M .

The relationship between the components and the spaces should be clear from the notation. Then

PSPMx = xM∩S + PS x̃M . (2)

Similarly CN = VM∩S ⊕ ṼS ⊕ V ⊥
S , and x = xM∩S + x̃S + x⊥S . Then

PMPSx = xM∩S + PM x̃S . (3)

Since PMPS = PSPM is an orthogonal projection operator onto VM∩S , it follows that

PM x̃S = PS x̃M = 0, ∀x̃S ∈ ṼS and x̃M ∈ ṼM .

This implies ṼS⊥VM and ṼM⊥VS or ṼM⊥ṼS .

In summary,

VM = VM∩S ⊕ ṼM , VS = VM∩S ⊕ ṼS , and ṼM⊥ṼS ⇔ PMPS = PSPM
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