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Abstract

Recently, the problem of signal representation in terms of basis vectors from a large, ”over-

complete”, spanning dictionary has been the focus of much research. Achieving a succinct,

or ”sparse”, representation is known as the problem of best basis representation. We con-

sider methods which seek to solve this problem by sequentially building up a basis set for

the signal. Three distinct algorithm types have appeared in the literature which we term

Basic Matching Pursuit (BMP), Order Recursive Matching Pursuit (ORMP) and Modified

Matching Pursuit (MMP).

The algorithms are first described and then their computation is closely examined. Mod-

ifications are made to each of the procedures which improve their computational efficiency.

Each algorithm’s complexity is considered in two contexts: one where the dictionary is

variable (time dependent), and the other where the dictionary is fixed (time independent).

Experimental results are presented which demonstrate that the ORMP method is the best

procedure in terms of its ability to give the most compact signal representation, followed by

MMP and then BMP which gives the poorest results. Finally, weighing the performance of

each algorithm, its computational complexity and the type of dictionary available, we make

recommendations as to which algorithms should be used for a given problem.
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1 Introduction

The problem of selecting a subset of basis elements from a large set of vectors has a long

history and can be traced to the search for optimal regressions in the statistical literature

[1, 2]. So called projection pursuit algorithms were first developed to solve this problem in

[3]. However, it was the adaptation of this algorithm in [4] to signal decomposition which led

to a great deal of interest in this problem. In [4], a greedy algorithm called matching pursuit

was developed to choose vectors from a large dictionary (collection of waveforms) to produce

a compact signal representation. The use of a redundant dictionary allows flexibility in signal

representation and an appropriate choice of basis will give a compact representation.

Subsequently, there has been much research in achieving compact representations of sig-

nals by selecting subsets of elements from overcomplete bases [5, 6]. Audio signals [7, 8] and

images [9, 10, 11] have been the focus of most attention and the most commonly used dic-

tionaries are wavelet or wavelet packet dictionaries. Interestingly, subset selection problems

arise in many different areas [12], such as spectral estimation, functional approximation etc.

[13]-[23].

Many different algorithms have been suggested for the solution of this problem. Mini-

mization of functionals such as the `1 norm [24, 25] or the more general `(p≤1) norm [17, 26]

have been shown to produce sparse solutions. The most commonly used algorithms are those

based on a forward sequential search [4, 18, 19, 27, 28, 29, 30, 31] where the basis vectors,

which will be used to compactly represent the signal, are selected one after the other from

the dictionary of available vectors. These algorithms are the focus of this paper.

The results of this paper are an extension and refinement of some of our earlier work

reported in [31, 32]. In section 2, the best basis selection problem is clearly formulated

and the three forward selection algorithms are described. We introduce modifications to

these basic algorithms in section 3 which increase the efficiency of these algorithms over

implementations described elsewhere. The full computation involved in implementing each

algorithm is detailed and compared with that of the other algorithms. Various experiments

are presented in section 4 to show how the algorithms perform in finding a compact basis

set. In section 5, we draw some conclusions from the analysis presented in earlier sections.

2 Forward Selection Algorithms

The best basis selection problem is as follows. Let D = {al}n
l=1 be a set/dictionary of vectors

which is highly redundant, i.e. al ∈ Rm and m << n with Rm = Span(D). For convenience,

we assume that the vectors al have unit norm i.e. ‖al‖ = 1, l = 1, · · · , n. Given a signal
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vector b ∈ Rm, and a preset error tolerance, ε, the problem is to find the most compact

representation of b to within the given tolerance using the basis vectors in the dictionary D.

Therefore it involves determining the number r (the sparsity index) and the set of vectors

{aki
}r

i=1 that best model b. Because we are pursuing the goal of determining a small subset

of vectors in the dictionary D that best match the vector b, algorithms that accomplish this

goal are often referred to as matching pursuit algorithms.

To determine the optimal value for the sparsity of the solution we would have to search

over subsets of the columns of size r where r varies from 1, · · · ,m. This problem is NP-

hard [18], and the computation quickly becomes infeasible as the dictionary size increases.

Therefore, suboptimal methods of reasonable complexity, such as those described in sections

2.1-2.3, have been developed to solve this problem. In each of the algorithms to be described

the basis elements are selected sequentially i.e. the basis set is built up one vector at a time.

To facilitate the presentation, we develop some notation and this is summarized in Table 1.

Table 1

• b - the signal vector.

• bp - the residual vector after the pth iteration, where b0 = b.

• Ip = {k1, k2, .., kp}, I0 = ∅. This set stores the indices ki of the p vectors
selected.

• Sp =
[
ak1 , ak2 , ..., akp

]
, S0 = ∅. This matrix stores the selected vectors as

columns.

• PSp - the orthogonal projection matrix onto the range space of Sp. Its
orthogonal complement P⊥

Sp
=

(
I − PSp

)
, PS0 = 0, P⊥

S0
= I.

• Pal
= ala

H
l - the projection matrix onto the space spanned by a single unit

norm vector al is denoted by Pal
.

Table 1. Algorithm Notation

2.1 Basic Matching Pursuit (BMP)

This method was suggested in [4] and has the advantage of being computationally simple

with provable approximation properties. Not surprisingly, similar algorithms have been

developed for subset selection in other application contexts. For instance, the matching

pursuit algorithm was developed independently for speech coding in the context of pulse

location determination in multipulse speech coders [30, 33, 34].
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In this basis selection method, in the pth iteration the vector most closely aligned with

the residual bp−1 is chosen, where the alignment is measured as the 2-norm of the projection

of the residual onto the vector, i.e.

‖Pal
bp−1‖ = ‖ala

H
l bp−1‖ = |aH

l bp−1|.

Thus the selection criterion becomes,

kp = arg max
l
‖Pal

bp−1‖ = arg max
l
|aH

l bp−1|, l = 1, · · · , n, l 6= kp−1. (1)

If kp 6∈ Ip−1, then the index and basis sets are updated, i.e. Ip = Ip−1 ∪ {kp}, and Sp =

[Sp−1, akp ]; otherwise Ip = Ip−1 and Sp = Sp−1. The new residual vector is then computed as

bp = P⊥
akp

bp−1 = bp−1 − (aH
kp

bp−1)akp . (2)

The procedure terminates when either p = r (for specified sparsity index r) or ‖bp‖ ≤ ε

(for specified ε). Equations (1) and (2), together with the check for termination give the

Matching Pursuit (MP) algorithm (with b0 = b). To distinguish this approach from the

others introduced below we refer to this algorithm as the Basic Matching Pursuit Algorithm

(BMP). It is evident that the algorithm is computationally simple, and it is shown in [4] that

it has the desirable convergence property that the norm of the residual vector is monotonically

reduced in each iteration. However, the algorithm has its drawbacks both in terms of how the

residual vector is computed in (2), and in the manner in which the basis vector is selected

in (1). We will elaborate on these deficiencies in section 2.3. As a consequence of these

limitations, other algorithms for basis selection have been suggested which we discuss next.

2.2 Order Recursive Matching Pursuit (ORMP)

The origin of this method has its roots in many works, e.g. subset selection [2], functional

approximation [18, 19], speech coding [30] etc.. We adapt these procedures to the signal

representation problem. Conceptually, the pursuit of the matching pth basis vector involves

solving (n−p+1) order recursive least squares problems of the type miny ‖S(l)
p y−b‖ ([35],page

232), where we use the notation S
(l)
p = [Sp−1, al]. The vector al /∈ Sp−1 that reduces the

residual the most is selected and added to Sp−1 to form Sp. Since order recursive least

squares is the basis of this matching pursuit algorithm, we refer to it as the Order Recursive

Matching Pursuit (ORMP) algorithm. The selected index is

kp = arg min
l
‖P⊥

S
(l)
p

b‖ , l /∈ Ip−1, (3)
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in which case Sp = S
(kp)
p = [Sp−1, akp ] and bp = P⊥

Sp
b. The projection operator P

S
(l)
p

can be

recursively updated via

P
S

(l)
p

= PSp−1 +
1

‖P⊥
Sp−1

al‖2
P⊥

Sp−1
ala

H
l P⊥

Sp−1

= PSp−1 +
a

(p−1)
l (a

(p−1)
l )H

‖a(p−1)
l ‖2

where

a
(p)
l ≡ P⊥

Sp
al = P⊥

Sp
a

(p−1)
l , (4)

using the fact that P⊥
Sp

= P⊥
Sp

P⊥
Sp−1

(which also shows that bp = P⊥
Sp

b = P⊥
Sp

bp−1). The index

selection criterion (3), by incorporating (4), can therefore be simplified to

kp = arg max
l

|(a(p−1)
l )Hbp−1|
‖a(p−1)

l ‖
, l /∈ Ip−1, (5)

resulting in Ip = Ip−1 ∪ {kp}, Sp = S
(kp)
p = [Sp−1, akp ].

The projection operator is updated as PSp = P
S

(kp)
p

= PSp−1 + qpq
H
p where

qp ≡
a

(p−1)
kp

‖a(p−1)
kp

‖
, (6)

and the orthogonalization step (4) can then be expanded as

a
(p)
l = P⊥

Sp
a

(p−1)
l = a

(p−1)
l − (qH

p a
(p−1)
l )qp. (7)

The residual vector bp is recursively computed as

bp = P⊥
Sp

bp−1 = bp−1 − (qH
p bp−1)qp. (8)

The algorithm is terminated by using the same criteria as in the BMP i.e. when either p = r

(for specified sparsity index r) or ‖bp‖ ≤ ε (for specified ε). Equations (5)–(8) constitute the

ORMP algorithm (with b0 = b, a
(0)
l = al, l = 1, . . . , n). Note that the residual bp = P⊥

Sp
b is

the orthogonal projection of b onto the orthogonal complement of the range space of Sp, and

therefore is the smallest possible error (in the 2-norm sense) when b is to be represented in

the span of the columns of Sp.

Also it is to be noted that in (3), or equivalently in (5), the optimization is only over

previously unselected dictionary vectors. Changing the optimization to include previously

selected dictionary vectors will not change the overall outcome. The reason for this can be

seen by noting that adding a basis element, al, which has already been used to form Sp−1,

will not change the space spanned by the new set S
(l)
p . So P

S
(l)
p

= PSp−1 and this selection

will not minimize (3).
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2.3 Modified Matching Pursuit (MMP)

Compared to the BMP, the ORMP algorithm differs in both the manner in which the basis

vectors are chosen and in the computation of the residual. Because of the more exhaustive

nature of the ORMP vector selection process, there is reason to believe that it will be more

successful than BMP in finding a more compact representation. This is supported by the

simulations presented in section 4. From a computational perspective, ORMP appears at

first glance to be more complex. A more detailed account of the computational complexity

is provided in section 3.1.3.

A closer examination of the residual computation step in BMP, as given in (2), reveals

some deficiencies of the BMP method for which a fix can be readily obtained by using

the ORMP residual computation approach. This results in the Modified Matching Pursuit

(MMP) algorithm. Examining the residual computation step of the BMP algorithm, note

that

bBMP
p = P⊥

akp
bp−1 = Πp

l=1P
⊥
akl

b 6= P⊥
SBMP

p
b, akl

∈ SBMP
p .

That is, the sequence of one-dimensional projections defining the BMP residual bBMP
p is not,

in general, equal to an orthogonal projection onto the orthogonal complement of the range

space of SBMP
p . Re-selection of a column is possible in BMP but avoided in ORMP through

the formation of the residual P⊥
Sp

b. This deficiency in the BMP algorithm was also noted

in [28] and an algorithm for computing P⊥
Sp

b, termed Orthogonal Matching Pursuit, which

involves solving a set of normal equations was developed. A more efficient approach is that

based on a modified Gram-Schmidt approach [29, 31], which is presented next.

Modifying the BMP procedure, in the pth iteration the index kp is selected by find-

ing the vector best aligned with the residual obtained by projecting b onto the orthogonal

complement of the range space of Sp−1 i.e.

kp = arg max
l
|aH

l P⊥
Sp−1

b|
= arg max

l
|aH

l bp−1|, l /∈ Ip−1, (9)

where bp−1 = P⊥
Sp−1

b. Then Ip = Ip−1 ∪ {kp}, Sp = S
(kp)
p = [Sp−1, akp ]. As in ORMP, note

that limiting the range of the search to l /∈ Ip−1 yields the same result as searching over

the entire dictionary. In contrast to the ORMP basis selection step (5), in (9) there is no

need to compute a
(p−1)
l = P⊥

Sp−1
al, for every l 6∈ Ip−1. However, the quantity bp−1 = P⊥

Sp−1
b

must be calculated. Using the insights from the ORMP algorithm, we find that this can be

efficiently done by using a Modified Gram-Schmidt type of procedure as follows. With the
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initialization, â
(0)
kp

= akp , q0 = 0, we have PSp = P[Sp−1,akp ] = PSp−1 + qpq
H
p where

â
(`)
kp

= â
(`−1)
kp

− (qH
`−1â

(`−1)
kp

)q`−1, ` = 1, .., p (10)

qp =
â

(p)
kp

‖â(p)
kp
‖
.

The residual is now formed as

bp = P⊥
Sp

bp−1 = bp−1 − (qH
p bp−1)qp. (11)

In common with the other algorithms, the sequence of iterations is terminated when either

p = r (for specified sparsity index r) or ‖bp‖ ≤ ε (for specified ε).

Equations (9)–(11) define the Modified Matching Pursuit (MMP) algorithm. It is noted

that MMP avoids the burdensome step (7) required by ORMP, of having to project all the

vectors remaining in the dictionary at each iteration onto S⊥p . This has been replaced by the

need to project only the single optimal vector in (10). Also note that in (9) the optimization is

only over previously unselected dictionary vectors, thereby avoiding the re-selection problem

of the BMP. Comparison of (1)–(2) with (9)–(11) shows that MMP retains much of the

computational simplicity of BMP; the two algorithms essentially differ only in the addition

of the projection step (10). Therefore the MMP algorithm is potentially intermediate in cost

between the BMP and the ORMP. The MMP should exhibit the benefits of working with

the optimal P⊥
Sp

b–residual thereby avoiding the vector re-selection problem.

3 Computation Analysis

In the previous section, the basic algorithms for selecting a subset of the basis elements have

been presented. We now turn our attention to the computation involved in each algorithm

and describe modifications which result in more efficient implementations of the algorithms.

Motivated by applications, we consider the computational complexity of the algorithms

in two contexts: one where the dictionary D is variable (time dependent), and the other

where the dictionary D is fixed (time independent). For instance, in multipulse speech

coding the dictionary varies from frame to frame [12, 30, 33, 34] giving rise to the variable

dictionary scenario, while a fixed dictionary can be used in time–frequency representations

of a signal [4, 25]. The choice of a fixed or variable dictionary is important because it

involves a trade–off between memory usage and computation. For instance, with the use of

a fixed dictionary, certain computations can be viewed as overhead and can lead to a lower

complexity implementation at the expense of increased memory requirements. Available

resources may therefore dictate which approach is taken.
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3.1 Algorithm Computation

3.1.1 BMP

In the BMP algorithm, it can be noted that only aH
l bp is required to choose the next basis

element. The intermediate step as given in (2) can be replaced by the following recursion

which updates the inner product aH
l bp instead [4],

aH
l bp = aH

l bp−1 −
(aH

l akp)(a
H
kp

bp−1)

‖akp‖2
, l = 1, · · · , n. (12)

In the initialization of BMP, the norm of each vector, ‖al‖2, is computed. From this, the

ratio 1
‖al‖2 is formed and stored. The normalizing factor 1

‖akp‖2 is required in this equation

because the basis elements are no longer assumed to be of unit norm. However, because

of the initial computation, this quantity is available and so no divisions are required in the

iteration. We also include computation of aH
l b0 as an initial step.

From (12), we note that it is not necessary to either explicitly form bp or compute the

new inner products aH
l bp in each iteration. This results in a large saving in computation if

we have the inner product aH
l akp available to us (see section 3.4). If these inner products are

not available then we need to compute aH
l akp which is computationally equivalent to forming

aH
l bp. Recursion (12) requires a further n additions while forming bp, as in (2), requires 2m

multiplies. Computationally, the two methods are similar but from a storage perspective, it

is preferable just to store bp (m locations) instead of aH
l bp (n locations). The computational

results in section 3.3, where the dictionary is time-varying, are based on forming bp explicitly

and then forming aH
l bp. With a fixed dictionary, as considered in section 3.4, recursion (12)

is used to give an efficient implementation.

The check for termination may require the calculation of ‖bp‖ if an ε is specified but this

can be easily obtained by noting that

‖bp‖2 = ‖bp−1‖2 − |aH
kp

bp−1|2
‖akp‖2

, (13)

and that both the numerator and denominator of the final term in this expression are avail-

able.

3.1.2 MMP

In the MMP, it is clear that we can use a similar modification to that used for the BMP

(12). Instead of updating bp−1, the inner product aH
l bp−1 is updated and this is done via the

following recursion

aH
l bp = aH

l bp−1 − (aH
l qp)(q

H
p bp−1). (14)
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In this recursion, we must form aH
l qp for each column, al, l 6∈ Ip and compute qH

p bp−1. In the

fixed dictionary case, for the BMP, by using (12) and precomputing inner products aH
l akp , we

were able to save on computation. However, in (14) precomputation of aH
l qp is not possible

since qp is not available. Therefore, based on the same arguments as in 3.1.1, in both the

case of a fixed and time-varying dictionary, it is cheaper computationally and storage-wise

to implement the algorithm as given in (9)–(11).

3.1.3 ORMP

The description of the ORMP which has been presented in section 2.2 above was based on

[18]. Work presented in [19, 27] attempted to reduce the complexity of the ORMP algorithm.

For the overdetermined case i.e. m > n, it was shown that the computational complexity was

reduced. However, as the authors stated, their implementations were not computationally

better than [18] for the underdetermined case, i.e. m < n, which is the case of interest here.

We now formulate three modifications to the basic ORMP algorithm which substantially

reduce its complexity where the dictionary D is underdetermined.

First we recall that a
(p−1)
l = P⊥

Sp−1
al, so

(a
(p−1)
l )Hbp−1 = (P⊥

Sp−1
al)

Hbp−1

= aH
l (P⊥

Sp−1
bp−1)

= aH
l bp−1. (15)

This means that the projection of each of the columns al implied by (5), which is the main

computational bottleneck in ORMP, is not required! The selection step can be rewritten as

kp = arg max
l

|aH
l bp−1|

‖a(p−1)
l ‖

. (16)

A recursion with the same form as (14) can be used to compute the numerator. The

norm ‖a(p)
l ‖ in the denominator of this equation must still be computed for each value

of l. However, these norms can be formed recursively, producing a further reduction in

computation, using

‖a(p)
l ‖2 = ‖a(p−1)

l ‖2 − (|aH
l a

(p−1)
kp

|)2

‖a(p−1)
kp

‖2
. (17)

This recursion constitutes the second modification to the algorithm. We found that by

carrying out (14) and then (17), computation is reduced over explicitly forming the residual

bp, computing aH
l bp and then using (17). The reason for this is that the expression

(aH
l a

(p−1)
kp

)

‖a(p−1)
kp

‖2

arises in both (14) and (17) and the saving in computation is O(mn) multiplies per iteration.
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Thirdly, since a
(p−1)
l is no longer in the numerator, the orthogonalization of all of the

unchosen columns is no longer required. Only the chosen set of columns, which is a much

smaller set, must be orthogonalized. This may be done using the same formulation as

was developed for the MMP algorithm (10), and clearly this represents a huge saving in

computation over having to orthogonalize all the vectors at each step.

The difference in complexity between this reduced complexity ORMP algorithm and the

MMP reduces essentially to the calculation of the norms ‖a(p)
l ‖2. From (17), it is seen that

1

‖a(p)
l ‖2 is required to correctly select the next basis element and this means that divisions are

necessary. These divisions are noteworthy as they do not arise in either the BMP or MMP!

3.1.4 ORMP via Cholesky Decomposition

The ORMP algorithm described in section 2.2 uses a QR Decomposition of the basis set

to solve the sequence of least squares problems which arise. Another approach to these

least squares problems is to use the Cholesky Decomposition to solve the associated Normal

Equations [30]. As we will compare its complexity to that of the algorithms already described,

we give an outline of this algorithm.

Recall that at the pth step, (p − 1) columns have been chosen and the matrix S
(i)
p =

[Sp−1, ai] = [ak1 , ak2 , · · · , akp−1 , ai] is formed for each unchosen basis element ai. The index

kp is then chosen as

kp = arg min
i
‖b− S(i)

p xp‖.
This requires solving many least squares problems for which the corresponding normal equa-

tions are

S(i)
p

T
S(i)

p xp = S(i)
p

T
b.

The Cholesky Decomposition is used to solve this system of equations by forming S
(i)
p

T
S

(i)
p =

L(i)LT (i), where L(i) is a lower triangular matrix. The computational efficiency is achieved

by noting that in the previous iteration the Cholesky Decomposition for ST
p−1Sp−1 has already

been determined. Hence, only the final row in the matrix L(i) has to be calculated. In [30],

it is shown that only the computation of the last two elements in the final row, l
(i)
p,p−1 and l

(i)
p,p

is required and how the elements of the matrix L(i) are used to efficiently select the optimal

column, akp .

3.2 Computing the Solution

Now that the basis elements to be used have been selected, in order to find the compact

representation, it remains to find the coefficients associated with each of these elements. The

10



computation involved in doing this varies with the algorithm chosen and this is described in

this section.

As has been stated in section 2.3, the residual at each step of the BMP algorithm does

not represent the smallest residual obtainable, in general, when the signal is represented

by the subset of basis vectors chosen. A final projection using a conjugate gradient descent

algorithm [4], may be carried out to form this residual involving an extra computational load

of O((n + 1)mr) multiplications. With this additional computation the BMP complexity

becomes comparable to that of the MMP. However, because we may have reselected vectors,

more iterations than are necessary may have been performed. It is also possible to carry

out a projection after each iteration but if this is implemented then BMP is a more complex

algorithm than MMP.

In MMP, to solve for the approximate solution vector, xr, the QR Decomposition of the

chosen vector set Sr = [ak1 , ak2 , · · · , akr ] is used. Therefore, Sr = QR and the equation to

be solved is Srxr = b(0) − b(r) where b(0) is the searched for vector and b(r) is the remainder

after the rth step. Similarly, in the case of both ORMP algorithms, the solution must be

obtained using a backsolve.

3.3 Algorithm Complexity with D Variable

Computation Comparison with Variable Dictionary
Computation

Algorithm Step 0 Step p Step r Solution
BMP 2mn mults + n

divs
{(n−1)(m+2)+
m} mults

2(n− 1) mults *(see section
3.2)

MMP 2mn mults +n
divs

{(n−p)(m+2)+
(2m + 1)p + m +
1} mults + 1 div

{2(n − r + 1) +
(2m+1)(r−1)+
m} mults

r(r − 1)/2 mults
+ r divs

ORMP I 2mn mults {(n−p)(m+5)+
(2m + 1)p−m +
1} mults +{n −
p + 1} divs

{2(n − r + 1) +
(2m+1)(r−1)+
m} mults +{n−
r + 1} divs

r(r − 1)/2 mults
+r divs

ORMP II n(2m + 1) mults
+(n + 1) divs +
1 sqrt

{(n−p+1)(m+
2 + p)} mults
+(n−p+3) divs
+ 1 sqrt

{(n− r +1)(m+
r + 2)} mults
+(n−r+3) divs
+ 1 sqrt

r(r − 1)/2 mults
+r divs

Table 1: The computation required for each of the basis selection methods is compared. Here
ORMP I refers to the reduced complexity ORMP algorithm and ORMP II to the Cholesky
ORMP algorithm. r is the sparsity required and the basis set consists of n vectors, each of
dimension m.

The total complexity of each algorithm based on our discussion in section 3.1 and includ-
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ing the computations required to find the solution as detailed in section 3.2, is summarized

in Table 2.
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Figure 1: Comparison of Multiplications Required for Reduced ORMP(solid), Cholesky
ORMP(−−),MMP(−.)

Clearly, depending on the dimensions of the dictionary D and the sparsity required r, the

amount of computation required by each algorithm will vary. For basis selection problems

m ¿ n so we set the dimensions of the basis set as m = 80, n = 1000 to illustrate the

complexity of each algorithm. Figure 1 shows a comparison of the number of multiplica-

tions involved in finding a sparse solution. This shows that the reduced complexity ORMP

algorithm requires fewer multiplications than the Cholesky based ORMP. The MMP offers

a further reduction in the number of multiplications required. From Table 2, a comparison

of the computation in each step shows that while both ORMP algorithms require approxi-

mately (n − p + 1) divisions at each step, the MMP requires just 1. Since n is often large,

this saving in divides, which are cumbersome to implement in DSP hardware, is the big

advantage in using the MMP.

The BMP computation is not included since without a final projection step its complexity

is not of the same order as these algorithms. With the final projection, it has the same

complexity as the MMP.

3.4 Algorithm Complexity with D Fixed

The BMP algorithm [4] was proposed in the context of certain wavelet bases where the

inner products aH
l akp as given in (12) require little or no computation. This can be viewed

as equivalent to the case where a fixed dictionary D is used to decompose many different

signals. The once-off formation of the inner products is attractive for such applications

and in the light of this we re-consider the computational requirements of each of the three

algorithms.
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The columns, al, l = 1, · · · , n, are normalized and the inner products (aH
i aj), i =

1, · · · , n; j = i, · · ·n are formed and stored. This substantially reduces the cost of performing

the BMP, as explained in section 3.1.1, since just a single multiplication is now required to

carry out recursion (12) for each value of l, l 6= kp. In the Cholesky ORMP algorithm, initial

computation of these inner products also leads to a low complexity iteration.

In the MMP and ORMP algorithms, as noted in sections 3.1.2, 3.1.3, a Gram-Schmidt

orthogonalization has to be carried out as given in (10). Therefore, computing and storing the

inner products (aH
i aj), i = 1, · · · , n; j = i, · · ·n, does not make sense in implementing these

algorithms. In the BMP, MMP and ORMP algorithms, the initial computation (denoted

Step 0 in the table) consists of the formation of the inner products aH
l b0.

Computation Comparison with Fixed Dictionary
Computation

Algorithm Step 0 Step p Step r Solution
BMP mn mults (n− 1) mults 0 mult *(see section

3.2)
MMP mn mults {(n − p)m +

(2m + 1)p}
mults + 1 div

{(2m + 1)(r −
1) + m} mults

r(r − 1)/2 mults
+ r divs

ORMP I mn mults {(n−p)(m+5)+
(2m + 1)p−m +
1} mults +{n −
p + 1} divs

{2(n − r + 1) +
(2m+1)(r−1)+
m} mults +{n−
r + 1} divs

r(r − 1)/2 mults
+r divs

ORMP II n(m + 1) mults
+(n + 1) divs +
1 sqrt

{(n− p + 1)(p +
2)} mults +(n−
p + 3) divs + 1
sqrt

{(n− r + 1)(r +
2)} mults +(n−
r + 3) divs + 1
sqrt

r(r − 1)/2 mults
+r divs

Table 2: The computation required for each of the basis selection methods is compared
where the basis D is assumed fixed. Here ORMP I refers to the reduced complexity ORMP
algorithm and ORMP II to the Cholesky ORMP algorithm. r is the sparsity required and
the basis set consists of n vectors, each of dimension m.

The computation involved in each algorithm for a fixed dictionary D is summarized in

Table 3 where again the Cholesky ORMP complexity is included for completeness. This table

has the same format as Table 2 and a comparison of the tables shows that the computation

of each algorithm has been reduced. It is evident that the BMP is by far the least computa-

tionally intensive of the algorithms, followed by the Cholesky ORMP implementation, then

by the MMP and finally the reduced-complexity ORMP. The BMP and Cholesky ORMP

have gained a computational advantage over the other algorithms at the cost of storing in-

ner products. The computation of the MMP and ORMP is essentially unchanged, but the

storage requirements for these algorithms have not been increased.
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4 Performance in Determining Compact Representa-

tions

We now present a series of experiments which illustrate the performance of the BMP, MMP

and ORMP algorithms.

4.1 Experiment 1.

In this experiment, the dictionary is created as a random m × n matrix A whose entries

are Gaussian random variables with mean zero and variance 1. A sparse solution, xs, with

a specified number of nonzero entries r is then created; the indices of these r entries are

random, and their amplitudes are random. The vector b is then computed as b = Axs and

the error tolerance, ε, is set to 10−6. The experiment is repeated 100 times and a histogram

is plotted. We define

redundancy index =
number of columns in solution

number of columns used to generate b (r)
. (18)

An algorithm with a redundancy index histogram concentrated around 1 indicates a good

procedure.
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Figure 2: Results of Experiment 1 using (a) BMP, (b) MMP and (c) ORMP

The dimensions of the matrix A were set as 20 × 30 (other dimensions yielded similar

results) for this experiment, and the BMP, MMP and ORMP were run with sparsity r set

to 4. The results are shown in figures 2(a)–(c). From this experiment, we can conclude

that the MMP algorithm gives a significant improvement over BMP and is comparable in

performance to the ORMP algorithm. The results suggest that ORMP performs slightly

better than MMP in finding a sparse solution set.
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4.2 Experiment 2.

In this test case, the dictionary D is more structured and is chosen to be the rows of the

Discrete Fourier Transform (DFT) matrix. The number of columns indicates the resolution

in the frequency domain and the number of rows the length of the time series data. This

matrix provides the opportunity to evaluate an algorithm when the columns are correlated

and there is structure in the dictionary vectors. b is generated as before by selecting a few

columns of D.

The dimensions chosen were m = 32 and n = 128 and ε was set to 10−6. When an

initial experiment was run with two widely spaced columns (6 and 28) chosen to form b each

algorithm found the correct solution. However, due to re-selection of columns, BMP took 6

iterations to complete while MMP and ORMP completed in 2 iterations.

The experiment was re-run but this time the columns were selected close together (5

and 9). Figures 3(a)-(d) show the minimum 2-norm solution and the solution obtained using

BMP, MMP and ORMP. The magnitudes of the non-zero coefficients of each of the 128 basis

vectors which can be selected is plotted. All of the algorithms have their largest coefficients

as 4 and 10 but this magnitude plot skews how the algorithms performed. The actual values

of the largest coefficients, rather than the absolute values, are given in Table 4, along with

the number of basis elements selected by each algorithm. In the case of BMP, MMP and

ORMP, the number of basis elements selected equals the number of iterations performed by

each algorithm. This experiment shows that all three forward sequential search algorithms

can produce incorrect results under certain conditions. The drawback can be traced to the

sequential nature of the basis selection process. Such situations indicate the possible utility

of nonsequential methods such as those which have been suggested in [17, 25, 26].

Comparison of Algorithm Performance in DFT Experiment
Algorithm Component 1 Component 2 Elements Selected

BMP Column 10:
0.794+0.732j

Column 4:
0.615-0.587j

29

MMP Column 10:
0.664+0.664j

Column 4:
0.664-0.664j

32

ORMP Column 10:
0.823+0.829j

Column 4:
0.792-0.787j

18

Min. 2-norm Column 10:
0.199+0.183j

Column 4:
0.199-0.183j

128

Table 3: The largest components and the number of components in the minimum 2-norm
solution and the solutions obtained using BMP, MMP and ORMP are compared.
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Figure 3: Plot of absolute value of non–zero coefficients obtained from Experiment 2 where
b is formed from columns 5 and 9 - (a) minimum 2-norm solution, (b) BMP, (c) MMP, (d)
ORMP.

4.3 Experiment 3.

Two data sets from [25] are used to compare the algorithms. The first signal used is the

Gong waveform. This signal is zero up to the time t = t0 and for t > t0 is a decaying

sinusoid; it is depicted in figure 4(a). The basis set used is a cosine packet dictionary based

on a bell of width 16 samples. The basis elements in this dictionary are well localized in

time and frequency and are computed with a quadratic filter-bank algorithm [4, 36]. Four

elements from this dictionary are shown in the first column of figure 5. 256 samples of the
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Figure 4: (a) Gong Waveform and (b) Plot of the Residual Norm vs Number of Basis
Elements Selected: ORMP(solid), MMP(· · · ), BMP(−.)
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waveform are used and 2304 vectors are used in the overcomplete basis. In figure 4(b), the

fall off in the error ε is plotted as the number of basis vectors selected increases.
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Figure 5: The four basis elements on the left are from a cosine packet dictionary (vector
length 256). The four elements on the right are from a dictionary generated using filters for
Symmlets with 8 vanishing moments (vector length 128).

The analyzing dictionary in the second case is generated by filters for a class of wavelets

called Symmlets. Daubechies [37] (also see [38](Chapter 6)) introduced wavelets where the

higher order moments of the wavelets are set to zero. This results in wavelet functions with

a high degree of smoothness. Symmlets are the least asymmetric, compactly supported,

wavelets for a given number of zero moments which, in our case, was set to 8. In the second

column of figure 5, we give 4 sample vectors from this basis. The input signal consists of

a linear combination of elements from this dictionary: a Dirac, a sinusoid and 4 mutually

orthogonal wavelet packet atoms. It is shown in figure 6(a); this is referred to as ”Carbon”

in [25]. The number of samples of the input was chosen to be 128 and the number of basis

elements used was 1024 so that once again the basis is overcomplete. In figure 6(b), the

residual error ε is plotted as basis elements are added to the set used to represent this signal.

The three algorithms were run on these two real-world examples. The performance of the

algorithms which emerged using the more artificial data in Experiment 1 is re-emphasized

in this experiment. Clearly, the MMP and ORMP algorithms offer a performance advantage

over the BMP algorithm. In figure 4(b), the ORMP is better than the MMP but its perfor-

mance advantage is very small; in figure 6(b), the ORMP algorithm performs significantly
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better than BMP and MMP where we select more than 6 basis vectors. As outlined in

section 3.3, the price paid for this advantage is an increase in complexity.
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Figure 6: (a) Carbon Waveform and (b) Plot of the Residual Norm vs Number of Basis
Elements Selected: ORMP(solid), MMP(· · · ), BMP(−.)

5 Conclusion

In this paper, the complexity and performance of forward sequential algorithms in best basis

selection problems have been analyzed. The BMP, MMP and ORMP procedures were first

presented and, in the algorithm descriptions, we drew attention to the re-selection problem

which occurs in the BMP and how this is avoided in the selection procedures of the MMP

and ORMP algorithms.

The computation involved in each algorithm was considered and more efficient implemen-

tations were detailed. In particular, the complexity of the ORMP for underdetermined basis

sets has been substantially reduced in comparison to implementations presented elsewhere.

The basis set may either be fixed or variable, depending on the application, and the impact

of this on the complexity of the algorithms was examined.

Three experiments were presented to show how the algorithms perform. The results

definitively show that the performance of the BMP lags behind that of the MMP and ORMP,

while the ORMP performs better than MMP.

If the best possible subset is required, in the case where the basis is variable, then we

must recommend the ORMP in its reduced complexity form as introduced here. However,

in a situation where lower complexity is desirable, in particular where the number of divides

should be as small as possible, the MMP is to be recommended at the cost of a very slight

degradation in performance. If the basis set is fixed, the BMP is a very simple procedure

to implement; the Cholesky based ORMP algorithm has the lowest complexity of the other

algorithms in this case and offers much better performance.
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