
University of California, San Diego

Sparsity and Compressed Sensing

Winter 2015

Homework III

Author:
Alican NALCI
ID: A53051826

Instructor:
Prof. Bhaskar RAO

February 10, 2015

Matlab Exercise
This week we use the conduct the same experiment from the previous week including
the L1 optimization sparse signal recovery method for comparison. We use the
CVX library, a famous convex programming library designed for this task, accesible
www.cvxr.com. We follow the exercises in the textbook by Elad and provide figures
similar to 3.5 and 3.6. We also include a brief complexity analysis between the L1
approach and different pursuit algorithms for different data distributions.
The Matlab statement for the L1 optimization problem is as follows:

Listing 1: CVX L1 Sparse Recovery
cvx_begin quiet

variable X_L1(dim2)
minimize(norm(X_L1,1));
subject to

A*X_L1 == b;
cvx_end

The code above tries to find an optimal vector XL1 such that the constraint func-
tion is satisfied and 1-norm of the vector is minimized in each iteration. Note that
in comparison to the Greedy algorithms this minimization approach takes more
time to find an optimal value, and doesn’t use support based pursuit as in Greedy
algorithms.

The test we perform includes initialization of the matrix A of size 30x50 where
entries are drawn from a normal distribution, and each column is normalized to
have unit L2 norm. We also generate sparse vectors x with iid random supports
of cardinalities in the range [1,10]. The non-zero entries of this vector is selected
using four different distributions: 1)Elad’s Distribution, 2)Normal Distribution ,3)
±1 Binary Random Distribution, 4) Cauchy Distribution(Student’s t). We apply
1000 such tests and present the average of the results in terms of mean square error
of x̂−x, and distance between the actual support and estimated support dist(Ŝ, S).

Figure 1 shows the average and relative L2 Error of x̂ − x. The immediate
observation is that L1 based approach seems to perform the best among the pursuit
type algorithms. We take a closer look and zoom along the y axis and obtain
figure 2. L1 optimization based recovery approach indeed works the best among
other algorithms for the same data distribution. The average mean square error
for all distributions are very close to zero until a cardinality number of 6. After
that value for Elad distribution, mean square error increases upto 0.025. Similarly,
after cardinality 7 mean square error of L1 Binary increases to 0.027, for other
distributions mean square error for L1 recovery increases very slowly and is below
0.005 at cardinality 10.

1

http://www.cvxr.com

Figure 1: Average and Relative L2-Error for all Distributions

Figure 2: Average and Relative L2-Error for all Distributions Zoomed

2

Similarly Figure 3 and 4 show the probability of error in support, with figure 4
as the zoomed version. We see that regardless of data distribution the probability
of error in support is very small, and follows the same increase behavior for different
distributions. Largest L1 support error is observed with Normal data distribution,
and for LS-OMP Normal and LS-OMP Cauchy the support error probability per-
formance is very close to the L1 recovery method.

Figure 3: Probability of error in support for all distributions

Figure 4: Probability of error in support for all distributions zoomed

3

In figures 1,2,3 and 4 we saw using the full L1 optimization based sparse recovery
significantly improves the mean square error and probability of error in support.
However, while doing the experiment we realized the greedy algorithms converge to
a solution much faster than the L1 approach, and L1 approach takes significantly
more time. We display the mean execution times in figure 5. We computed aver-
age running times of different pursuit algorithms for different cardinality and 1000
initializations, we see that complexity of L1 optimization approach has the largest
complexity and generally seems independent of the number of cardinality. Surpris-
ingly, for cardinality of 9 and 10 for Elad’s distribution, we see that L1 approach
takes less time to converge than LS-OMP. The reason that L1 takes more time
is that, MP algorithms compute x̂ very fast using the greedy approach, not using
all data, and thus their complexity is less than the L1 approach which uses all of
the available data. We reproduce the theoretical complexity study as in previous
homework:

The complexity of L1 approach is independent of the number of cardinality since
we don’t exploit the support vectors information, and the approach works full in-
stead of working greedy. A basic complexity calculation for this approach yields we
loop over possible XL1 values and in each step we have the multiplication AxXL1

which has mxn multiplications in each iteration. The comparison AxXL1 == b
takes linear time O(n) and also taking the one norm is equivalent to summing ele-
ments of the current XL1 so it has complexity O(n) finally looping over L different
XL1 values. Therefore, overall complexity becomes O(Lmn + 2n). Note that com-
pared to the pursuit type greedy algorithms there is no dependency on the number
of cardinality k0, and in the worst case we have complexity O(n3). Therefore, we
can say that complexity is independent of k0 and thus in figure 5 the average time
elapsed to execute the L1 approach is constant with cardinality k0. Reproducing
last weeks complexity calculations: There is an increasing trend in execution times
as the Cardinality of true solution increases. This increase is linear for MP , OMP,
and Weak-MP, and quadratic for LS-OMP. This could be theoretically verified by
noting the complexity for MP and OMP are O(k0mn) where m = 30, n = 50 and
k0 is the cardinality. Therefore MP, OMP and Weak-MP(modified MP) are linear
with cardinality as in figure 3. Using the full-least squares method we introduce an
internal loop that loops over k0 values hence complexity becomes O(k2

0mn) which
is polynomial in k0.

4

Figure 5: Average Execution Times(mean of 1000) for different cardinality and
pursuit algorithms

Code

%% Simulation of the Matching Pursuit Algorithms
clear all;
close all;
clc;

%Generate Data
str = ’Binary’; %Data Distribution
dim1 = 30;
dim2 = 50;
card = 10;
consRuns = 1000;

errorOMP = zeros(1,card);
errorLSOMP = zeros(1,card);
errorMP = zeros(1,card);
errorWeakMP = zeros(1,card);
errorL1cvx = zeros(1,card);

5

errorProbOMP = zeros(1,card);
errorProbLSOMP = zeros(1,card);
errorProbMP = zeros(1,card);
errorProbWeakMP = zeros(1,card);
errorProbL1cvx = zeros(1,card);

mutual_coherence = zeros(1,card*consRuns);
upper_bound = zeros(1,card*consRuns);

timeOMP = zeros(1,card);
timeLSOMP = zeros(1,card);
timeMP = zeros(1,card);
timeWeakMP = zeros(1,card);
timeL1cvx = zeros(1,card);
itercvx = zeros(1,card);
cputimecvx = zeros(1,card);

for s=1:card
for k=1:1:consRuns

A = randn(dim1,dim2); %Normally Distributed
A = A/(diag(sqrt(diag(A’*A)))); %Normalize Cols Unit L2 Norm
x = zeros(dim2,1);
[x, shuffled] = genSparseVect(str,s,dim2);
b=A*x;
%OMP
tic;
[x_OMP, S_OMP] = OMP(A, b, 1e-4);
timeOMP(s) = timeOMP(s)+toc;
errorOMP(s) = errorOMP(s)+mean((x_OMP-x).^2)/mean(x.^2);
errorProbOMP(s)= errorProbOMP(s)+(max(s,length(S_OMP))- ...

max(size(intersect(S_OMP,shuffled(1:s)))))...
/max(s,length(S_OMP));

%LS-OMP
tic;
[x_LSOMP, S_LSOMP] = LSOMP(A, b, 1e-4);
timeLSOMP(s) = timeLSOMP(s)+toc;
errorLSOMP(s) = errorLSOMP(s)+mean((x_LSOMP-x).^2)/mean(x.^2);
errorProbLSOMP(s)= errorProbLSOMP(s)+(max(s,length(S_LSOMP))- ...

max(size(intersect(S_LSOMP,shuffled(1:s)))))...
/max(s,length(S_LSOMP));

%MP
tic;
[x_MP, S_MP] = MP(A, b, 1e-4);
timeMP(s) = timeMP(s)+toc;
errorMP(s) = errorMP(s)+mean((x_MP-x).^2)/mean(x.^2);
errorProbMP(s) = errorProbMP(s)+(max(s,length(S_MP))- ...

max(size(intersect(S_MP,shuffled(1:s)))))...
/max(s,length(S_MP));

6

%Weak MP
tic;
[x_WeakMP, S_WeakMP] = WeakMP(A, b, 1e-4, .5);
timeWeakMP(s) = timeWeakMP(s)+toc;
errorWeakMP(s) = errorWeakMP(s)+mean((x_WeakMP-x).^2)/mean(x.^2);
errorProbWeakMP(s) = errorProbWeakMP(s)+(max(s,length(S_WeakMP))-

...
max(size(intersect(S_WeakMP,shuffled(1:s)))))...
/max(s,length(S_WeakMP));

%L1 Norm Optimization
tic;

cvx_begin quiet
variable X_L1(dim2)
minimize(norm(X_L1,1));
subject to

A*X_L1 == b;
cvx_end

timeL1cvx(s) = timeL1cvx(s)+toc;
errorL1cvx(s) = errorL1cvx(s)+mean((X_L1-x).^2)/mean(x.^2);
S_CVX = find(abs(X_L1)>1e-5);
errorProbL1cvx(s) = errorProbL1cvx(s)+(max(s,length(S_CVX))- ...

max(size(intersect(S_CVX,shuffled(1:s)))))...
/max(s,length(S_CVX));

itercvx(s) = itercvx(s)+cvx_slvitr;
cputimecvx(s) = cputimecvx(s)+cvx_cputime;

mutual_coherence((s-1)*consRuns+k) =
mutual_coherence((s-1)*consRuns+k)+ ...

mutualCoherence(A);
end
disp([’Cardinality:’ num2str(s)])

end
timeOMPSingle = timeOMP/consRuns*1e6;
timeLSOMPSingle = timeLSOMP/consRuns*1e6;
timeMPSingle = timeMP/consRuns*1e6;
timeWeakMPSingle = timeWeakMP/consRuns*1e6;
timeL1cvx = timeL1cvx/consRuns*1e6;

upper_bound = (1/2)*(1+1./mutual_coherence);
errorOMP = errorOMP/consRuns;
errorProbOMP = errorProbOMP/consRuns;
errorLSOMP = errorLSOMP/consRuns;
errorProbLSOMP = errorProbLSOMP/consRuns;
errorMP = errorMP/consRuns;
errorProbMP = errorProbMP/consRuns;

7

errorWeakMP = errorWeakMP/consRuns;
errorProbWeakMP = errorProbWeakMP/consRuns;
errorL1cvx = errorL1cvx/consRuns;
errorProbL1cvx = errorProbL1cvx/consRuns;
itercvx = itercvx/consRuns;
cputimecvx = cputimecvx/consRuns;

save([str ’_HW3_test.mat’])
%%
f = figure;
hold on;
plot(1:card,errorOMP,’r’, ’LineWidth’, 2);
plot(1:card,errorLSOMP,’g’, ’LineWidth’, 2);
plot(1:card,errorMP,’b’, ’LineWidth’, 2);
plot(1:card,errorWeakMP,’b’, ’LineWidth’, 2);
plot(1:card,errorL1cvx,’k’, ’LineWidth’, 2);
xlabel(’Cardinality of the true solution’);
ylabel(’Average and Relative L2-Error’);
title([’Non-Zero Entry Distribution:’ str])
grid on;
legend(’OMP’,’LS-OMP’,’MP’, ’Weak MP’,’Location’,’NorthWest’)
%print(f,’-dpng’, ’-r500’, [str ’_1.png’])
%%
f = figure;
hold on;
plot(1:card,errorProbOMP,’r’, ’LineWidth’, 2);
plot(1:card,errorProbLSOMP,’g’, ’LineWidth’, 2);
plot(1:card,errorProbMP,’b’, ’LineWidth’, 2);
plot(1:card,errorProbWeakMP,’b’, ’LineWidth’, 2);
plot(1:card,errorProbL1cvx,’k’, ’LineWidth’, 2);
xlabel(’Cardinality of the true solution’);
title([’Non-Zero Entry Distribution: ’ str])
ylabel(’Probability of Error in Support’);
grid on;
legend(’OMP’,’LS-OMP’,’MP’, ’Weak MP’,’Location’,’NorthWest’)
%print(f,’-dpng’, ’-r500’,[str ’_2.png’])
%%
f=figure;
hold on;
plot(1:card,timeOMPSingle,’r’, ’LineWidth’, 2);
plot(1:card,timeLSOMPSingle,’g’, ’LineWidth’, 2);
plot(1:card,timeMPSingle,’b’, ’LineWidth’, 2);
plot(1:card,timeWeakMPSingle,’k’, ’LineWidth’, 2);
xlabel(’Cardinality of the true solution’);
title([’Non-Zero Entry Distribution: ’ str])
ylabel(’Average Time Elapsed to Execute (Micro Seconds)’);
grid on;
legend(’OMP’,’LS-OMP’,’MP’, ’Weak MP’,’Location’,’NorthWest’)
%print(f,’-dpng’, ’-r500’, [str ’_3.png’])

8

f=figure;
hist(mutual_coherence)
xlabel(’Bins’);
title([’Histogram of Mutual Coherence of A, Distibution ’ str])
ylabel(’Frequency’);
grid on;
%print(f,’-dpng’, ’-r500’, [str ’_4.png’])

f=figure;
hist(upper_bound)
xlabel(’Bins’);
title([’Histogram of Upper Bound of A, Distibution ’ str])
ylabel(’Frequency’);
grid on;
%print(f,’-dpng’, ’-r500’, [str ’_5.png’])

function [xk_OMP, support] = OMP(A, b, epsilon)
%Orthogonal Matching Pursuit as in Fig 3.1
%epsilon -> Threshold
xk_OMP = zeros(size(A,2),1);
residual = b; % Residual
support = []; % Initialize Sol. Support
resNorm2 = norm(residual,2); %Init Residual Norm
while resNorm2>epsilon

sweepZj = abs(A’*residual);
sweepPosj = find(sweepZj==max(sweepZj));
support = [support,sweepPosj(1)];
xk = A(:,support)\b;
residual = b-A(:,support)*xk;
resNorm2 = norm(residual,2);

end
xk_OMP(support)=xk;

end

function [xk_LSOMP, support] = LSOMP(A, b, epsilon)
%Full Least Squares
%Orthogonal Matching Pursuit as in
%Extension to Eq. 3.4
%epsilon -> Threshold

xk_LSOMP = zeros(size(A,2),1);
residual = b; % Residual
support = []; % Initialize Sol. Support
resNorm2 = norm(residual,2); %Init Residual Norm
while resNorm2>epsilon

sweepZj = zeros(size(A,2),1);
for k = 1:size(A,2)

9

suppKInt = [support k];
xkInt = pinv(A(:,suppKInt))*b;
resKInt = b-A(:,suppKInt)*xkInt;
sweepZj(k) = resKInt’*resKInt;

end
sweepPosj = find(sweepZj==min(sweepZj),1);
support = [support,sweepPosj(1)];
xk = A(:,support)\b;
residual = b-A(:,support)*xk;
resNorm2 = norm(residual,2);

end
xk_LSOMP(support)=xk;

end

function [xk_MP, support] = MP(A, b, epsilon)
%Matching Pursuit as in Fig 3.2
%epsilon -> Threshold
xk_MP = zeros(size(A,2),1); %Init Soln
residual = b; %Residual
resNorm2 = norm(residual,2); %Init Residual Norm
while resNorm2>epsilon

sweepZj = A’*residual;%Norm aj=1 dont divide
sweepPosZj = find(abs(sweepZj)==max(abs(sweepZj)),1);%Find

Minimizer
zj0 = A(:,sweepPosZj)’*residual;
xk_MP(sweepPosZj) = xk_MP(sweepPosZj)+zj0;%Update Solution
residual = residual-A(:,sweepPosZj)*zj0;
resNorm2 = norm(residual,2);

end
support = find(abs(xk_MP)>1e-6);

end

function [xk_WeakMP, support] = WeakMP(A, b, epsilon, t)
%Weak Matching Pursuit as in Fig 3.3
%epsilon -> Threshold
xk_WeakMP = zeros(size(A,2),1); %Init Soln
residual = b; %Residual
resNorm2 = norm(residual,2); %Init Residual Norm
while resNorm2>epsilon

sweepZj = abs(A’*residual); %Norm aj=1 dont divide
sweepPosZj = find(sweepZj>=t*resNorm2,1);%Find Minimizer
if isempty(sweepPosZj)

sweepPosZj=find(sweepZj==max(sweepZj),1);
end
zj0 = A(:,sweepPosZj)’*residual;
xk_WeakMP(sweepPosZj) = xk_WeakMP(sweepPosZj)+zj0;%Update Solution
residual = residual-A(:,sweepPosZj)*zj0;
resNorm2 = norm(residual,2);

10

end
support =find(abs(xk_WeakMP)>1e-6);

end

function [mu] = mutualCoherence(A)
%MUTUALCOHERENCE Summary of this function goes here
% Detailed explanation goes here

dim1 = size(A,2);
cloak=eye(dim1)~=1;
mu=max(max(abs(A’*A).*cloak));

end

function [x, pos] = genSparseVect(str, Card, dim2)
%GENSPARSEVECT Summary of this function goes here
%Generate Sparse Vector of cardinality C

if(strcmp(str,’Elad’))
x = zeros(dim2,1);
pos = randperm(dim2);
x(pos(1:Card))=sign(randn(Card,1)).*(1+rand(Card,1));

elseif(strcmp(str,’Normal’))
x = zeros(dim2,1);
pos = randperm(dim2);
x(pos(1:Card))=randn(1,Card);

elseif(strcmp(str,’Binary’))
x = zeros(dim2,1);
pos = randperm(dim2);
temp = randi([0 1],1,Card);
temp(temp==0)=-1;
x(pos(1:Card))=temp;

elseif(strcmp(str,’Cauchy’))
x = zeros(dim2,1);
pos = randperm(dim2);
x(pos(1:Card))=trnd(1,Card,1);

end
end

11

