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Topics 
 Sparse Signal Recovery Problem and Compressed Sensing 
 Uniqueness 
◦ Spark  

 Greedy search techniques and their performance evaluation 
◦ Coherence condition 

 ℓ1 methods and their performance evaluation 
◦ Restricted isometry property (RIP) 

 Bayesian methods 
◦ MAP (Reweighted ℓ1 and Reweighted ℓ2) 
◦ Hierarchical Bayesian Methods (Sparse Bayesian Learning) 

 Extensions (Block Sparsity, Multiple Measurement vectors) 
 Dictionary Learning 
 Message passing algorithms 
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Reference Books 
 

  Sparse and Redundant Representations: From Theory 
to Applications in Signal and Image Processing by 
Michael Elad 
 

 Compressed Sensing: Theory and Applications, edited 
by Yonina C. Eldar  and Gitta Kutyniok 
 

 An Introduction to Compressive Sensing, Collection 
Editors: Richard Baraniuk, Mark A. Davenport, Marco F. 
Duarte, Chinmay Hegde 
 

 A Mathematical Introduction to Compressive Sensing  
by Simon Foucart and Holger Rauhut  
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Administrative details 
 Who should take this class and background? 
◦ ≥ Second year graduate students, recommend S/U 
◦ Optimization theory, Estimation theory 
◦ Recommend an application to motivate the work 

 Grades 
◦ Homework (60%) 
◦ Project (40%) 

 Office hours 
◦ Tuesday 1-2pm 
◦ Office: Jacobs Hall 6407 
◦ Email: brao@ucsd.edu 
◦ Class Website: dsp.ucsd.edu 
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Motivation 
 The concept of Sparsity has many potential 

applications. Unification of the theory will provide 
synergy. 

 Methods developed for solving the Sparse Signal 
Recovery problem can be a valuable tool for signal 
processing practitioners. 

 Many interesting developments in the recent past that 
make the subject timely. 
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Sparse Signal Recovery: Problem Description 

 b is n × 1 measurement vector 
 A is n × m measurement/Dictionary matrix, m >> n 
 x is m × 1 desired vector which is sparse with r nonzero entries 
 ε is the measurement noise 
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Early Works 
 R. R. Hocking and R. N. Leslie , “Selection of the Best Subset in 

Regression Analysis,” Technometrics, 1967.  
 

 S. Singhal and B. S. Atal, “Amplitude Optimization and Pitch 
Estimation in Multipulse Coders,” IEEE Trans. Acoust., Speech, Signal 
Processing, 1989 
 

 S. D. Cabrera and T. W. Parks, “Extrapolation and spectral estimation 
with iterative weighted norm modification,” IEEE Trans. Acoust., 
Speech, Signal Processing, April 1991. 
 

 Many More works 
 

 Our first work 
◦ I.F. Gorodnitsky, B. D. Rao and J. George, “Source Localization in 

Magnetoencephal0graphy using an Iterative Weighted Minimum Norm Algorithm, 
IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 
Pages: 167-171, Oct. 1992 
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Problem Statement 
 Noise Free Case: Given a target signal y and a 

dictionary Φ, find the weights x that solve: 
 
 
 

  where I(.) is the indicator function 
 
 Noisy Case: Given a target signal y and a dictionary Φ, 

find the weights x that solve: 
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Complexity 

 Search over all possible subsets, which would mean a search 
over a total of (mCr) subsets. Combinatorial Complexity.  

 With m = 30;n = 20; and r= 10 there are 3 × 107 subsets (Very 
Complex) 

 A branch and bound algorithm can be used to find the optimal 
solution. The space of subsets searched is pruned but the 
search may still be very complex. 

 Indicator function not continuous and so not amenable to 
standard optimization tools. 

 
 Challenge: Find low complexity methods with acceptable 

performance 
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Applications 
 Signal Representation (Mallat, Coifman, Wickerhauser, Donoho, ...) 

 EEG/MEG (Leahy, Gorodnitsky, Ioannides, ...) 

 Functional Approximation and Neural Networks (Chen, Natarajan, 
Cun, Hassibi, ...) 

 Bandlimited extrapolations and spectral estimation (Papoulis, Lee, 
Cabrera, Parks, ...) 

 Speech Coding (Ozawa, Ono, Kroon, Atal, ...) 

 Sparse channel equalization (Fevrier, Greenstein, Proakis, …) 

 Compressive Sampling (Donoho, Candes, Tao...) 

 Magnetic Resonance Imaging (Lustig,..) 

 Cognitive Radio (Eldar, ..) 
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DFT Example 
 Measurement y 

 
  

 
 Dictionary Elements: 

 

 Consider m = 64, 128, 256 and 512. 
Questions: 
 What is the result of a zero padded DFT? 
 When viewed as problem of solving a linear system of 

equations (dictionary), what solution does the DFT give 
us? 

 Are there more desirable solutions for this problem? 
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DFT Example 
 Note that 

 
 
 

 Consider the linear system of equations 
 

  The frequency components in the data are in 
the dictionaries A(m) for m = 128, 256, 512. 

 What solution among all possible solutions 
does the DFT compute? 
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DFT Example 
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Sparse Channel Estimation 
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  Formulated as a sparse signal recovery problem 
 
 
 
 
 

 Can use any relevant algorithm to estimate the sparse 
channel coefficients 
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Example:  
Sparse Channel Estimation 
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MEG/EEG Source Localization 

? 

Maxwell’s eqs. 

source space (x) sensor space (b) 



Compressive Sampling 

 D. Donoho, “Compressed Sensing,” IEEE 
Trans. on Information Theory, 2006 
 

 E. Candes and T. Tao, “Near Optimal 
Signal Recovery from random 
Projections: Universal Encoding 
Strategies,” IEEE Trans. on Information 
Theory, 2006 
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Compressive Sampling 

 Transform Coding 
 
 
 
 
 

 What is the problem here? 
◦ Sampling at the Nyquist rate 

◦ Keeping only a small amount of nonzero coefficients 

◦ Can we directly acquire the signal below the Nyquist rate? 
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Ψ x b 



 Transform Coding 
 
 
 
 

 Compressive Sampling 
 
 
 
 

Compressive Sampling 
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Compressive Sampling 
 Compressive Sampling 

 
 
 
 
 
 

 Computation:  
1. Solve for x such that Ax = b 
2. Reconstruction: y = Ψx 

 Issues 
◦ Need to recover sparse signal x with constraint Ax = b 
◦ Need to design sampling matrix Ф 

24 

Ψ x y Ф Ф b 

A 



Model noise 

w: Sparse 
Component, 

Outliers 

ε: Gaussian 
Component, 
Regular error 

y X c n 
Robust Linear  
Regression 
X, y: data; 
c: regression coeffs.; 
n: model noise; 

Transform into 
overcomplete 
representation: 

Y = X c + Φ w + ε, where Φ=I, 
or  
Y = [X , Φ]       + ε 
 
 

c
w
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Potential Approaches 
    Combinatorial Complexity and so need alternate strategies 

 Greedy Search Techniques: Matching Pursuit, Orthogonal 
Matching Pursuit 

 Minimizing Diversity Measures: Indicator function not continuous. 
Define Surrogate Cost functions that are more tractable and 
whose minimization leads to sparse  solutions, e.g.       
minimization 

 Bayesian Methods:  

◦ MAP estimation (Reweighted       and reweighted  ℓ2 ) 

◦ Hierarchical Bayesian Methods (Sparse Bayesian Learning) 

 Message Passing Algorithms 
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GREEDY SEARCH 
TECHNIQUES 
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Greedy Search Method: Matching 
Pursuit 

 Select a column that is most aligned with the current residual 
 

 

 

 

◦ r(0) = b 
◦ S(i): set of indices selected 
◦   

 Remove its contribution from the residual 
◦ Update S(i): If                                                   . Or, keep S(i) the same 

◦ Update r(i): 
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Question related to Matching 
Pursuit Type Algorithms  

 Alternate search techniques 
 Performance Guarantees 
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MINIMIZING DIVERSITY 
MEASURES 
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Inverse Techniques 
 For the systems of equations Ax = b, the solution set is 

characterized by {xs : xs = A+ y + v; v    N(A)}, where N(A) 
denotes the null space of A and A+ = AT(AAT )-1. 

 

 Minimum Norm solution: The minimum ℓ2 norm solution  

      xmn = A+b is a popular solution 

 

 Noisy Case: regularized ℓ2 norm solution often employed and 
is given by 

xreg = AT(AAT +λI)-1 b 
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Minimum 2-Norm Solution 

 Problem: Minimum ℓ2 norm solution is not sparse 

Example: 

 
                                           
 
             vs. 
 
DFT: Also computes minimum 2-norm solution 
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Diversity Measures 
 

 

 Functionals whose minimization leads to sparse 
solutions 

 Many examples are found in the fields of economics, 
social science and information theory 

 These functionals are usually concave which leads to 
difficult optimization problems 
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Examples of Diversity Measures 
 ℓ(p≤1)  Diversity Measure 

 
 
 

 As p → 0, 
 
 
 

 Gaussian Entropy 
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ℓ1 Diversity Measure 
 Noiseless case 

 
 

 Noisy case 
◦ ℓ1 regularization [Candes, Romberg, Tao] 

 
 
◦ Lasso [Tibshirani], Basis Pursuit De-noising [Chen, 

Donoho, Saunders]  
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Attractiveness of ℓ1 methods 
 Convex Optimization and associated with 

rich class of optimization algorithms 

◦ Interior-point methods 

◦ Coordinate descent method 

◦ ……. 

 Question 
◦ What is the ability to find the sparse solution? 
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Why diversity measure encourages 
sparse solutions? 
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Example with ℓ1 diversity measure 

 Noiseless Case 

◦ xBP = [1,   0,   0]T     (machine precision) 

 Noisy Case 

◦ Assume the measurement noise ε = [0.01,   -0.01]T 

◦       regularization result: xl1R = [0.986,   0,   8.77 × 10-6]T 

◦ Lasso result (λ = 0.05): xlasso = [0.975,   0,   2.50 × 10-5]T 
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Example with ℓ1 diversity measure 
 Continue with the DFT example: 

 
 
 

 64, 128,256,512 DFT cannot separate the adjacent 
frequency components 

 Using ℓ1  diversity measure minimization (m=256) 
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BAYESIAN METHODS 
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Bayesian Methods 

 Maximum Aposteriori Approach (MAP) 
◦ Assume a sparsity inducing prior on the latent variable x 
◦ Developing an appropriate MAP estimation algorithm 

 
 
 

 Empirical Bayes 
◦ Assume a parameterized prior for the latent variable x 

(hyper-parameters) 
◦ Marginalize over the latent variable x and estimate the 

hyper-parameters 
◦ Determine the posterior distribution  of x and obtain a 

point as the mean, mode or median of this density 
 

arg max ( | ) arg max ( | ) ( )
x x

x p x b p b x p x
∧

= =



43 

Outline 
 Motivation for Course 

 Sparse Signal Recovery Problem 

 Applications 

 Computational Algorithms 

 Greedy Search 

 ℓ1 norm minimization 

 Bayesian Methods 

 Performance Guarantees 

 Simulations 

 Conclusions 

 



Important Questions 
 When is the ℓ0 solution unique? 

 When is the ℓ1 solution equivalent to that of ℓ0? 

◦ Noiseless Case 

◦ Noisy Measurements 

 What are the limits of recovery in the presence 
of noise? 

 How to design the dictionary matrix A? 
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Empirical Example 
 For each test case: 

 
1. Generate a random dictionary A with 50 rows and 100 columns. 

 
2. Generate a sparse coefficient vector x0.  

 
3. Compute signal via   b = A x0 (noiseless). 

 
4. Run BP and OMP, as well as a competing Bayesian method called SBL (more 

on this later) to try and correctly estimate x0. 

 
5. Average over1000 trials to compute empirical probability of failure. 

 
 Repeat with different sparsity values, i.e.,         

ranging from 10 to 30.  
 

 

0 0
x



 

 If the magnitudes of the non-zero elements in x0 are highly 
scaled, then the canonical sparse recovery problem 
should be easier. 
 
 
 
 

 
 

 
 

 The (approximate) Jeffreys distribution produces 
sufficiently scaled coefficients such that best solution can 
always be easily computed. 

Amplitude Distribution 

uniform coefficients (hard) 

x0 

scaled coefficients (easy) 

x0 



Sample Results (n = 50, m = 100) 
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Imaging Applications 

1. Recovering fiber track geometry from diffusion 
weighted MR images [Ramirez-Manzanares et al. 2007]. 
 

2. Multivariate autoregressive modeling of fMRI 
time series for functional connectivity analyses 
[Harrison et al. 2003]. 
 

3. Compressive sensing for rapid MRI [Lustig et al. 2007]. 
 

4. MEG/EEG source localization [Sato et al. 2004; Friston et al. 

2008]. 



Variants and Extensions 

 Block Sparsity 
 Multiple Measurement Vectors 
 Dictionary Learning 
 Scalable Algorithms  
◦ Message Passing Algorithms 

 Sparsity for more general inverse 
problems 

 More to come 
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Summary 
 Sparse Signal Recovery is an interesting area with many potential 

applications. 
 

 Methods developed for solving the Sparse Signal Recovery problem 
can be valuable tools for signal processing practitioners. 

 
 Rich set of computational algorithms, e.g., 
◦ Greedy search (OMP) 
◦ ℓ1  norm minimization (Basis Pursuit, Lasso) 
◦ MAP methods (Reweighted ℓ1  and ℓ2  methods) 
◦ Bayesian Inference methods like SBL (show great promise) 

 
 Potential for great theory in support of performance guarantees for 

algorithms.  
 

 Expectation is that there will be continued growth in the application 
domain as well as in the algorithm development. 
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