ECE 285: Sparsity and Compressed Sensing

Bhaskar Rao
Department of Electrical and Computer Engineering
University of California, San Diego
Outline

- Course Outline
- Motivation for Course
- Sparse Signal Recovery Problem
- Applications
- Computational Algorithms
 - Greedy Search
 - l_1 norm minimization
 - Bayesian Methods
- Performance Guarantees
- Simulations
- Conclusions
Topics

- Sparse Signal Recovery Problem and Compressed Sensing
- Uniqueness
 - Spark
- Greedy search techniques and their performance evaluation
 - Coherence condition
- ℓ_1 methods and their performance evaluation
 - Restricted isometry property (RIP)
- Bayesian methods
 - MAP (Reweighted ℓ_1 and Reweighted ℓ_2)
 - Hierarchical Bayesian Methods (Sparse Bayesian Learning)
- Extensions (Block Sparsity, Multiple Measurement vectors)
- Dictionary Learning
- Message passing algorithms
Reference Books

- Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing by Michael Elad

- Compressed Sensing: Theory and Applications, edited by Yonina C. Eldar and Gitta Kutyniok

- An Introduction to Compressive Sensing, Collection Editors: Richard Baraniuk, Mark A. Davenport, Marco F. Duarte, Chinmay Hegde

- A Mathematical Introduction to Compressive Sensing by Simon Foucart and Holger Rauhut
Administrative details

- Who should take this class and background?
 - ≥ Second year graduate students, recommend S/U
 - Optimization theory, Estimation theory
 - Recommend an application to motivate the work

- Grades
 - Homework (60%)
 - Project (40%)

- Office hours
 - Tuesday 1-2pm
 - Office: Jacobs Hall 6407
 - Email: brao@ucsd.edu
 - Class Website: dsp.ucsd.edu
Outline

- Motivation for Course
- Sparse Signal Recovery Problem
- Applications
- Computational Algorithms
 - Greedy Search
 - ℓ_1 norm minimization
 - Bayesian Methods
- Performance Guarantees
- Simulations
- Conclusions
Motivation

- The concept of Sparsity has many potential applications. Unification of the theory will provide synergy.
- Methods developed for solving the Sparse Signal Recovery problem can be a valuable tool for signal processing practitioners.
- Many interesting developments in the recent past that make the subject timely.
Outline

- Motivation for Course
- Sparse Signal Recovery Problem
- Applications
- Computational Algorithms
 - Greedy Search
 - ℓ_1 norm minimization
 - Bayesian Methods
- Performance Guarantees
- Simulations
- Conclusions
Sparse Signal Recovery: Problem Description

- \(b\) is \(n \times 1\) measurement vector
- \(A\) is \(n \times m\) measurement/Dictionary matrix, \(m > n\)
- \(x\) is \(m \times 1\) desired vector which is sparse with \(r\) nonzero entries
- \(\varepsilon\) is the measurement noise

\[
\begin{align*}
\begin{array}{c}
\text{b} \\
\text{\(n \times 1\) measurements}
\end{array}
\end{align*} = \begin{array}{c}
\text{A} \\
\text{\(n \times m\)}
\end{array} + \begin{array}{c}
\text{x} \\
\text{\(r\) nonzero entries,}
\quad r \ll m
\end{array} = \begin{array}{c}
\text{\(m \times 1\) sparse signal}
\end{array}
\]
Early Works

• Many More works

• Our first work
Problem Statement

- **Noise Free Case**: Given a target signal y and a dictionary Φ, find the weights x that solve:

$$\min_x \sum_{i=1}^{m} I(x_i \neq 0) \text{ subject to } b = Ax$$

where $I(.)$ is the indicator function

- **Noisy Case**: Given a target signal y and a dictionary Φ, find the weights x that solve:

$$\min_x \sum_{i=1}^{m} I(x_i \neq 0) \text{ subject to } \|b - Ax\|_2 \leq \beta$$
Complexity

• Search over all possible subsets, which would mean a search over a total of \(\binom{m}{r} \) subsets. Combinatorial Complexity.

With \(m = 30; n = 20; \) and \(r = 10 \) there are \(3 \times 10^7 \) subsets (Very Complex)

• A branch and bound algorithm can be used to find the optimal solution. The space of subsets searched is pruned but the search may still be very complex.

• Indicator function not continuous and so not amenable to standard optimization tools.

Challenge: Find low complexity methods with acceptable performance
Outline

- Motivation for Course
- Sparse Signal Recovery Problem
- Applications
- Computational Algorithms
 - Greedy Search
 - ℓ_1 norm minimization
 - Bayesian Methods
- Performance Guarantees
- Simulations
- Conclusions
Applications

- **Signal Representation** (Mallat, Coifman, Wickerhauser, Donoho, ...)
- **EEG/MEG** (Leahy, Gorodnitsky, Ioannides, ...)
- **Functional Approximation and Neural Networks** (Chen, Natarajan, Cun, Hassibi, ...)
- **Bandlimited extrapolations and spectral estimation** (Papoulis, Lee, Cabrera, Parks, ...)
- **Speech Coding** (Ozawa, Ono, Kroon, Atal, ...)
- **Sparse channel equalization** (Fevrier, Greenstein, Proakis, ...)
- **Compressive Sampling** (Donoho, Candes, Tao...)
- **Magnetic Resonance Imaging** (Lustig,..)
- **Cognitive Radio** (Eldar, ..)
DFT Example

Measurement y

\[y[l] = 2(\cos \omega_o l + \cos \omega_1 l), \quad l = 0, 1, 2, \ldots, n-1. \quad n = 64. \]

\[\omega_o = \frac{2\pi \cdot 33}{64 \cdot 2}, \quad \omega_1 = \frac{2\pi \cdot 34}{64 \cdot 2}. \]

Dictionary Elements:

\[a_l^{(m)} = [1, e^{-j\omega_l}, e^{-j2\omega_l}, \ldots, e^{-j(n-1)\omega_l}]^T, \quad \omega_l = \frac{2\pi}{m} l \]

Consider \(m = 64, 128, 256 \) and \(512 \).

Questions:

- What is the result of a zero padded DFT?
- When viewed as problem of solving a linear system of equations (dictionary), what solution does the DFT give us?
- Are there more desirable solutions for this problem?
DFT Example

• Note that

\[b = a_{33}^{(128)} + a_{34}^{(128)} + a_{94}^{(128)} + a_{95}^{(128)} \]
\[= a_{66}^{(256)} + a_{68}^{(256)} + a_{188}^{(256)} + a_{190}^{(256)} \]
\[= a_{132}^{(512)} + a_{136}^{(512)} + a_{376}^{(512)} + a_{380}^{(512)} \]

• Consider the linear system of equations

\[b = A^{(m)} x \]

• The frequency components in the data are in the dictionaries \(A^{(m)} \) for \(m = 128, 256, 512 \).

• What solution among all possible solutions does the DFT compute?
DFT Example

- m=64
- m=128
- m=256
- m=512
Sparse Channel Estimation

\[r(i) = \sum_{j=0}^{m-1} s(i-j)c(j) + \varepsilon(i), \quad i = 0, 1, \ldots, n - 1 \]
Example: Sparse Channel Estimation

- Formulated as a sparse signal recovery problem

\[
\begin{bmatrix}
 r(0) \\
 r(1) \\
 \vdots \\
 r(n-1)
\end{bmatrix}
= \begin{bmatrix}
 s(0) & s(-1) & \cdots & s(-m+1) \\
 s(1) & s(0) & \cdots & s(-m+2) \\
 \vdots & \vdots & \ddots & \vdots \\
 s(n-1) & s(n-2) & \cdots & s(-m+n)
\end{bmatrix}
\begin{bmatrix}
 c(0) \\
 c(1) \\
 \vdots \\
 c(m-1)
\end{bmatrix}
+ \begin{bmatrix}
 \varepsilon(0) \\
 \varepsilon(1) \\
 \vdots \\
 \varepsilon(n-1)
\end{bmatrix}
\]

- Can use any relevant algorithm to estimate the sparse channel coefficients
MEG/EEG Source Localization

Maxwell’s eqs.

source space (x) –> sensor space (b)

?
Compressible Sampling

Compressive Sampling

- Transform Coding

- What is the problem here?
 - Sampling at the Nyquist rate
 - Keeping only a small amount of nonzero coefficients
 - Can we directly acquire the signal below the Nyquist rate?
Compressive Sampling

- Transform Coding

- Compressive Sampling
Compressive Sampling

Compressive Sampling

Computation:
1. Solve for x such that $Ax = b$
2. Reconstruction: $y = \Psi x$

Issues
- Need to recover sparse signal x with constraint $Ax = b$
- Need to design sampling matrix Φ
Robust Linear Regression

\[y \quad X \quad c \quad n \]

\[\text{Model noise} \]

\(w \): Sparse Component, Outliers

\(\varepsilon \): Gaussian Component, Regular error

Transform into overcomplete representation:

\[Y = X c + \Phi w + \varepsilon, \quad \text{where} \quad \Phi=I, \]

or

\[Y = [X, \Phi] \begin{bmatrix} c \\ w \end{bmatrix} + \varepsilon \]
Outline

- Motivation for Course
- Sparse Signal Recovery Problem
- Applications
- Computational Algorithms
 - Greedy Search
 - ℓ_1 norm minimization
 - Bayesian Methods
- Performance Guarantees
- Simulations
- Conclusions
Potential Approaches

Combinatorial Complexity and so need alternate strategies

- **Greedy Search Techniques**: Matching Pursuit, Orthogonal Matching Pursuit

- **Minimizing Diversity Measures**: Indicator function not continuous. Define Surrogate Cost functions that are more tractable and whose minimization leads to sparse solutions, e.g. minimization ℓ_1

- **Bayesian Methods**:
 - MAP estimation (Reweighted ℓ_1 and reweighted ℓ_2)
 - Hierarchical Bayesian Methods (Sparse Bayesian Learning)

- **Message Passing Algorithms**
GREEDY SEARCH TECHNIQUES
Greedy Search Method: Matching Pursuit

- Select a column that is most aligned with the current residual
 \[r^{(0)} = b \]
 \[S^{(i)}: \text{set of indices selected} \]
 \[l = \arg \max_{1 \leq j \leq m} |a_j^T r^{(i-1)}| \]

- Remove its contribution from the residual
 - Update \(S^{(i)} \): If \(l \notin S^{(i-1)} \), \(S^{(i)} = S^{(i-1)} \cup \{l\} \). Or, keep \(S^{(i)} \) the same
 - Update \(r^{(i)} \): \(r^{(i)} = P_{a_l} r^{(i-1)} = r^{(i-1)} - a_l a_l^T r^{(i-1)} \)

Practical stop criteria:
- Certain # iterations
- \(\| r^{(i)} \|_2 \) smaller than threshold
Question related to Matching Pursuit Type Algorithms

- Alternate search techniques
- Performance Guarantees
MINIMIZING DIVERSITY MEASURES
Inverse Techniques

- For the systems of equations $Ax = b$, the solution set is characterized by $\{x_s : x_s = A^+ y + v; v \in N(A)\}$, where $N(A)$ denotes the null space of A and $A^+ = A^T (AA^T)^{-1}$.

- **Minimum Norm solution**: The minimum ℓ_2 norm solution $x_{mn} = A^+ b$ is a popular solution.

- **Noisy Case**: regularized ℓ_2 norm solution often employed and is given by

$$x_{reg} = A^T (AA^T + \lambda I)^{-1} b$$
Minimum 2-Norm Solution

- **Problem:** Minimum ℓ_2 norm solution is not sparse

Example:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$x_{mn} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}^T$$ vs. $$x = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$

DFT: Also computes minimum 2-norm solution
Diversity Measures

\[
\min_{x} \sum_{i=1}^{m} l(x_i \neq 0) \text{ subject to } b = Ax
\]

- Functionals whose minimization leads to sparse solutions
- Many examples are found in the fields of economics, social science and information theory
- These functionals are usually concave which leads to difficult optimization problems
Examples of Diversity Measures

- $\ell_{(p \leq 1)}$ Diversity Measure

$$E^{(p)}(x) = \sum_{i=1}^{m} |x_i|^p, \ p \leq 1$$

- As $p \to 0,

$$\lim_{p \to 0} E^{(p)}(x) = \lim_{p \to 0} \sum_{i=1}^{m} |x_i|^p = \sum_{i=1}^{m} I(x_i \neq 0)$$

- Gaussian Entropy

$$E^{(G)}(x) = \sum_{i=1}^{m} \ln(\varepsilon + |x_i|^2)$$
\(\ell_1 \) Diversity Measure

- **Noiseless case**

 \[
 \min_x \sum_{i=1}^{m} |x_i| \quad \text{subject to} \quad Ax = b
 \]

- **Noisy case**
 - \(\ell_1 \) regularization [Candes, Romberg, Tao]

 \[
 \min_x \sum_{i=1}^{m} |x_i| \quad \text{subject to} \quad \|b - Ax\|_2 \leq \beta
 \]
 - Lasso [Tibshirani], Basis Pursuit De-noising [Chen, Donoho, Saunders]

 \[
 \min_x \|b - Ax\|_2^2 + \lambda \sum_{i=1}^{m} |x_i|
 \]
Attractiveness of ℓ_1 methods

• Convex Optimization and associated with rich class of optimization algorithms
 ◦ Interior-point methods
 ◦ Coordinate descent method
 ◦

• Question
 ◦ What is the ability to find the sparse solution?
Why diversity measure encourages sparse solutions?

\[
\min \| [x_1, x_2]^T \|_p^p \quad \text{subject to} \quad a_1 x_1 + a_2 x_2 = b
\]
Example with ℓ_1 diversity measure

\[
A = \begin{bmatrix}
 1 & 0 & 1 \\
 0 & 1 & 1 \\
 0 & 1 & 1 \\
\end{bmatrix}, \quad b = \begin{bmatrix}
 1 \\
 0 \\
\end{bmatrix}
\]

- **Noiseless Case**
 - $x_{BP} = [1, \ 0, \ 0]^T$ (machine precision)

- **Noisy Case**
 - Assume the measurement noise $\epsilon = [0.01, \ -0.01]^T$
 - ℓ_1 regularization result: $x_{l1R} = [0.986, \ 0, \ 8.77 \times 10^{-6}]^T$
 - Lasso result ($\lambda = 0.05$): $x_{lasso} = [0.975, \ 0, \ 2.50 \times 10^{-5}]^T$
Example with ℓ_1 diversity measure

- Continue with the DFT example:

 $$y[l] = 2(\cos \omega_0 l + \cos \omega_1 l), \quad l = 0, 1, 2, \ldots, n-1. \quad n = 64.$$

 $$\omega_0 = \frac{2\pi 33}{64}, \quad \omega_1 = \frac{2\pi 34}{64}.$$

- $64, 128, 256, 512$ DFT cannot separate the adjacent frequency components

- Using ℓ_1 diversity measure minimization ($m=256$)
BAYESIAN METHODS
Bayesian Methods

- **Maximum Aposteriori Approach (MAP)**
 - Assume a sparsity inducing prior on the latent variable \(x \)
 - Developing an appropriate MAP estimation algorithm

\[
\hat{x} = \arg \max_x p(x \mid b) = \arg \max_x p(b \mid x)p(x)
\]

- **Empirical Bayes**
 - Assume a parameterized prior for the latent variable \(x \) (hyper-parameters)
 - Marginalize over the latent variable \(x \) and estimate the hyper-parameters
 - Determine the posterior distribution of \(x \) and obtain a point as the mean, mode or median of this density
Outline

- Motivation for Course
- Sparse Signal Recovery Problem
- Applications
- Computational Algorithms
 - Greedy Search
 - ℓ_1 norm minimization
 - Bayesian Methods
- Performance Guarantees
- Simulations
- Conclusions
Important Questions

- When is the ℓ_0 solution unique?
- When is the ℓ_1 solution equivalent to that of ℓ_0?
 - Noiseless Case
 - Noisy Measurements
- What are the limits of recovery in the presence of noise?
- How to design the dictionary matrix A?
Outline

- Motivation for Course
- Sparse Signal Recovery Problem
- Applications
- Computational Algorithms
 - Greedy Search
 - ℓ_1 norm minimization
 - Bayesian Methods
- Performance Guarantees
- Simulations
- Conclusions
Empirical Example

For each test case:

1. Generate a random dictionary \(A \) with 50 rows and 100 columns.

2. Generate a sparse coefficient vector \(x_0 \).

3. Compute signal via \(b = A x_0 \) (noiseless).

4. Run BP and OMP, as well as a competing Bayesian method called SBL (more on this later) to try and correctly estimate \(x_0 \).

5. Average over 1000 trials to compute empirical probability of failure.

Repeat with different sparsity values, i.e., \(\|x_0\|_0 \) ranging from 10 to 30.
If the magnitudes of the non-zero elements in x_0 are highly scaled, then the canonical sparse recovery problem should be easier.

The (approximate) Jeffreys distribution produces sufficiently scaled coefficients such that best solution can always be easily computed.
Sample Results \((n = 50, m = 100)\)

Approx. Jeffreys Coefficients

Unit Coefficients
1. Recovering fiber track geometry from diffusion weighted MR images [Ramirez-Manzanares et al. 2007].

3. Compressive sensing for rapid MRI [Lustig et al. 2007].

4. MEG/EEG source localization [Sato et al. 2004; Friston et al. 2008].
Variants and Extensions

- Block Sparsity
- Multiple Measurement Vectors
- Dictionary Learning
- Scalable Algorithms
 - Message Passing Algorithms
- Sparsity for more general inverse problems
- More to come
Summary

- *Sparse Signal Recovery* is an interesting area with many potential applications.

- Methods developed for solving the Sparse Signal Recovery problem can be valuable tools for signal processing practitioners.

- Rich set of computational algorithms, e.g.,
 - Greedy search (OMP)
 - ℓ_1 norm minimization (Basis Pursuit, Lasso)
 - MAP methods (Reweighted ℓ_1 and ℓ_2 methods)
 - Bayesian Inference methods like SBL (show great promise)

- Potential for great theory in support of performance guarantees for algorithms.

- Expectation is that there will be continued growth in the application domain as well as in the algorithm development.