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Topics 
 Sparse Signal Recovery Problem and Compressed Sensing 
 Uniqueness 
◦ Spark  

 Greedy search techniques and their performance evaluation 
◦ Coherence condition 

 ℓ1 methods and their performance evaluation 
◦ Restricted isometry property (RIP) 

 Bayesian methods 
◦ MAP (Reweighted ℓ1 and Reweighted ℓ2) 
◦ Hierarchical Bayesian Methods (Sparse Bayesian Learning) 

 Extensions (Block Sparsity, Multiple Measurement vectors) 
 Dictionary Learning 
 Message passing algorithms 
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Reference Books 
 

  Sparse and Redundant Representations: From Theory 
to Applications in Signal and Image Processing by 
Michael Elad 
 

 Compressed Sensing: Theory and Applications, edited 
by Yonina C. Eldar  and Gitta Kutyniok 
 

 An Introduction to Compressive Sensing, Collection 
Editors: Richard Baraniuk, Mark A. Davenport, Marco F. 
Duarte, Chinmay Hegde 
 

 A Mathematical Introduction to Compressive Sensing  
by Simon Foucart and Holger Rauhut  
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Administrative details 
 Who should take this class and background? 
◦ ≥ Second year graduate students, recommend S/U 
◦ Optimization theory, Estimation theory 
◦ Recommend an application to motivate the work 

 Grades 
◦ Homework (60%) 
◦ Project (40%) 

 Office hours 
◦ Tuesday 1-2pm 
◦ Office: Jacobs Hall 6407 
◦ Email: brao@ucsd.edu 
◦ Class Website: dsp.ucsd.edu 
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Motivation 
 The concept of Sparsity has many potential 

applications. Unification of the theory will provide 
synergy. 

 Methods developed for solving the Sparse Signal 
Recovery problem can be a valuable tool for signal 
processing practitioners. 

 Many interesting developments in the recent past that 
make the subject timely. 
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Sparse Signal Recovery: Problem Description 

 b is n × 1 measurement vector 
 A is n × m measurement/Dictionary matrix, m >> n 
 x is m × 1 desired vector which is sparse with r nonzero entries 
 ε is the measurement noise 
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Early Works 
 R. R. Hocking and R. N. Leslie , “Selection of the Best Subset in 

Regression Analysis,” Technometrics, 1967.  
 

 S. Singhal and B. S. Atal, “Amplitude Optimization and Pitch 
Estimation in Multipulse Coders,” IEEE Trans. Acoust., Speech, Signal 
Processing, 1989 
 

 S. D. Cabrera and T. W. Parks, “Extrapolation and spectral estimation 
with iterative weighted norm modification,” IEEE Trans. Acoust., 
Speech, Signal Processing, April 1991. 
 

 Many More works 
 

 Our first work 
◦ I.F. Gorodnitsky, B. D. Rao and J. George, “Source Localization in 

Magnetoencephal0graphy using an Iterative Weighted Minimum Norm Algorithm, 
IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 
Pages: 167-171, Oct. 1992 

10 



Problem Statement 
 Noise Free Case: Given a target signal y and a 

dictionary Φ, find the weights x that solve: 
 
 
 

  where I(.) is the indicator function 
 
 Noisy Case: Given a target signal y and a dictionary Φ, 

find the weights x that solve: 
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Complexity 

 Search over all possible subsets, which would mean a search 
over a total of (mCr) subsets. Combinatorial Complexity.  

 With m = 30;n = 20; and r= 10 there are 3 × 107 subsets (Very 
Complex) 

 A branch and bound algorithm can be used to find the optimal 
solution. The space of subsets searched is pruned but the 
search may still be very complex. 

 Indicator function not continuous and so not amenable to 
standard optimization tools. 

 
 Challenge: Find low complexity methods with acceptable 

performance 
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Applications 
 Signal Representation (Mallat, Coifman, Wickerhauser, Donoho, ...) 

 EEG/MEG (Leahy, Gorodnitsky, Ioannides, ...) 

 Functional Approximation and Neural Networks (Chen, Natarajan, 
Cun, Hassibi, ...) 

 Bandlimited extrapolations and spectral estimation (Papoulis, Lee, 
Cabrera, Parks, ...) 

 Speech Coding (Ozawa, Ono, Kroon, Atal, ...) 

 Sparse channel equalization (Fevrier, Greenstein, Proakis, …) 

 Compressive Sampling (Donoho, Candes, Tao...) 

 Magnetic Resonance Imaging (Lustig,..) 

 Cognitive Radio (Eldar, ..) 
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DFT Example 
 Measurement y 

 
  

 
 Dictionary Elements: 

 

 Consider m = 64, 128, 256 and 512. 
Questions: 
 What is the result of a zero padded DFT? 
 When viewed as problem of solving a linear system of 

equations (dictionary), what solution does the DFT give 
us? 

 Are there more desirable solutions for this problem? 
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DFT Example 
 Note that 

 
 
 

 Consider the linear system of equations 
 

  The frequency components in the data are in 
the dictionaries A(m) for m = 128, 256, 512. 

 What solution among all possible solutions 
does the DFT compute? 
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DFT Example 
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Sparse Channel Estimation 
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  Formulated as a sparse signal recovery problem 
 
 
 
 
 

 Can use any relevant algorithm to estimate the sparse 
channel coefficients 
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MEG/EEG Source Localization 

? 

Maxwell’s eqs. 

source space (x) sensor space (b) 



Compressive Sampling 

 D. Donoho, “Compressed Sensing,” IEEE 
Trans. on Information Theory, 2006 
 

 E. Candes and T. Tao, “Near Optimal 
Signal Recovery from random 
Projections: Universal Encoding 
Strategies,” IEEE Trans. on Information 
Theory, 2006 
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Compressive Sampling 

 Transform Coding 
 
 
 
 
 

 What is the problem here? 
◦ Sampling at the Nyquist rate 

◦ Keeping only a small amount of nonzero coefficients 

◦ Can we directly acquire the signal below the Nyquist rate? 

 
 

 
 
 
 
 
 

22 

Ψ x b 



 Transform Coding 
 
 
 
 

 Compressive Sampling 
 
 
 
 

Compressive Sampling 
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Compressive Sampling 
 Compressive Sampling 

 
 
 
 
 
 

 Computation:  
1. Solve for x such that Ax = b 
2. Reconstruction: y = Ψx 

 Issues 
◦ Need to recover sparse signal x with constraint Ax = b 
◦ Need to design sampling matrix Ф 

24 

Ψ x y Ф Ф b 

A 



Model noise 

w: Sparse 
Component, 

Outliers 

ε: Gaussian 
Component, 
Regular error 

y X c n 
Robust Linear  
Regression 
X, y: data; 
c: regression coeffs.; 
n: model noise; 

Transform into 
overcomplete 
representation: 

Y = X c + Φ w + ε, where Φ=I, 
or  
Y = [X , Φ]       + ε 
 
 

c
w
 
 
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Potential Approaches 
    Combinatorial Complexity and so need alternate strategies 

 Greedy Search Techniques: Matching Pursuit, Orthogonal 
Matching Pursuit 

 Minimizing Diversity Measures: Indicator function not continuous. 
Define Surrogate Cost functions that are more tractable and 
whose minimization leads to sparse  solutions, e.g.       
minimization 

 Bayesian Methods:  

◦ MAP estimation (Reweighted       and reweighted  ℓ2 ) 

◦ Hierarchical Bayesian Methods (Sparse Bayesian Learning) 

 Message Passing Algorithms 

 

27 

1



GREEDY SEARCH 
TECHNIQUES 
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Greedy Search Method: Matching 
Pursuit 

 Select a column that is most aligned with the current residual 
 

 

 

 

◦ r(0) = b 
◦ S(i): set of indices selected 
◦   

 Remove its contribution from the residual 
◦ Update S(i): If                                                   . Or, keep S(i) the same 

◦ Update r(i): 
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Question related to Matching 
Pursuit Type Algorithms  

 Alternate search techniques 
 Performance Guarantees 
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MINIMIZING DIVERSITY 
MEASURES 
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Inverse Techniques 
 For the systems of equations Ax = b, the solution set is 

characterized by {xs : xs = A+ y + v; v    N(A)}, where N(A) 
denotes the null space of A and A+ = AT(AAT )-1. 

 

 Minimum Norm solution: The minimum ℓ2 norm solution  

      xmn = A+b is a popular solution 

 

 Noisy Case: regularized ℓ2 norm solution often employed and 
is given by 

xreg = AT(AAT +λI)-1 b 
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Minimum 2-Norm Solution 

 Problem: Minimum ℓ2 norm solution is not sparse 

Example: 

 
                                           
 
             vs. 
 
DFT: Also computes minimum 2-norm solution 
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Diversity Measures 
 

 

 Functionals whose minimization leads to sparse 
solutions 

 Many examples are found in the fields of economics, 
social science and information theory 

 These functionals are usually concave which leads to 
difficult optimization problems 
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Examples of Diversity Measures 
 ℓ(p≤1)  Diversity Measure 

 
 
 

 As p → 0, 
 
 
 

 Gaussian Entropy 

 

35 

( )

1

( ) ,  1
m

pp
i

i

E x x p


 

2( )

1

( ) ln( )
m

G
i

i

E x ε x


 

( )

0 0
1 1

lim ( ) lim ( 0)  
m m

pp
i ip p

i i

E x x I x
 

 

   



ℓ1 Diversity Measure 
 Noiseless case 

 
 

 Noisy case 
◦ ℓ1 regularization [Candes, Romberg, Tao] 

 
 
◦ Lasso [Tibshirani], Basis Pursuit De-noising [Chen, 

Donoho, Saunders]  
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Attractiveness of ℓ1 methods 
 Convex Optimization and associated with 

rich class of optimization algorithms 

◦ Interior-point methods 

◦ Coordinate descent method 

◦ ……. 

 Question 
◦ What is the ability to find the sparse solution? 
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Why diversity measure encourages 
sparse solutions? 
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Example with ℓ1 diversity measure 

 Noiseless Case 

◦ xBP = [1,   0,   0]T     (machine precision) 

 Noisy Case 

◦ Assume the measurement noise ε = [0.01,   -0.01]T 

◦       regularization result: xl1R = [0.986,   0,   8.77 × 10-6]T 

◦ Lasso result (λ = 0.05): xlasso = [0.975,   0,   2.50 × 10-5]T 
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Example with ℓ1 diversity measure 
 Continue with the DFT example: 

 
 
 

 64, 128,256,512 DFT cannot separate the adjacent 
frequency components 

 Using ℓ1  diversity measure minimization (m=256) 
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BAYESIAN METHODS 
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Bayesian Methods 

 Maximum Aposteriori Approach (MAP) 
◦ Assume a sparsity inducing prior on the latent variable x 
◦ Developing an appropriate MAP estimation algorithm 

 
 
 

 Empirical Bayes 
◦ Assume a parameterized prior for the latent variable x 

(hyper-parameters) 
◦ Marginalize over the latent variable x and estimate the 

hyper-parameters 
◦ Determine the posterior distribution  of x and obtain a 

point as the mean, mode or median of this density 
 

arg max ( | ) arg max ( | ) ( )
x x

x p x b p b x p x
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Important Questions 
 When is the ℓ0 solution unique? 

 When is the ℓ1 solution equivalent to that of ℓ0? 

◦ Noiseless Case 

◦ Noisy Measurements 

 What are the limits of recovery in the presence 
of noise? 

 How to design the dictionary matrix A? 
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Empirical Example 
 For each test case: 

 
1. Generate a random dictionary A with 50 rows and 100 columns. 

 
2. Generate a sparse coefficient vector x0.  

 
3. Compute signal via   b = A x0 (noiseless). 

 
4. Run BP and OMP, as well as a competing Bayesian method called SBL (more 

on this later) to try and correctly estimate x0. 

 
5. Average over1000 trials to compute empirical probability of failure. 

 
 Repeat with different sparsity values, i.e.,         

ranging from 10 to 30.  
 

 

0 0
x



 

 If the magnitudes of the non-zero elements in x0 are highly 
scaled, then the canonical sparse recovery problem 
should be easier. 
 
 
 
 

 
 

 
 

 The (approximate) Jeffreys distribution produces 
sufficiently scaled coefficients such that best solution can 
always be easily computed. 

Amplitude Distribution 

uniform coefficients (hard) 

x0 

scaled coefficients (easy) 

x0 



Sample Results (n = 50, m = 100) 
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Imaging Applications 

1. Recovering fiber track geometry from diffusion 
weighted MR images [Ramirez-Manzanares et al. 2007]. 
 

2. Multivariate autoregressive modeling of fMRI 
time series for functional connectivity analyses 
[Harrison et al. 2003]. 
 

3. Compressive sensing for rapid MRI [Lustig et al. 2007]. 
 

4. MEG/EEG source localization [Sato et al. 2004; Friston et al. 

2008]. 



Variants and Extensions 

 Block Sparsity 
 Multiple Measurement Vectors 
 Dictionary Learning 
 Scalable Algorithms  
◦ Message Passing Algorithms 

 Sparsity for more general inverse 
problems 

 More to come 
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Summary 
 Sparse Signal Recovery is an interesting area with many potential 

applications. 
 

 Methods developed for solving the Sparse Signal Recovery problem 
can be valuable tools for signal processing practitioners. 

 
 Rich set of computational algorithms, e.g., 
◦ Greedy search (OMP) 
◦ ℓ1  norm minimization (Basis Pursuit, Lasso) 
◦ MAP methods (Reweighted ℓ1  and ℓ2  methods) 
◦ Bayesian Inference methods like SBL (show great promise) 

 
 Potential for great theory in support of performance guarantees for 

algorithms.  
 

 Expectation is that there will be continued growth in the application 
domain as well as in the algorithm development. 
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