Array Design

The chosen design parameters are $N = 48$ and $\frac{d}{\lambda} = \frac{2}{3}$

Explanations: We satisfy the given constraints as follows:
1. The array is to be used for steering towards broadside over the range $(60^\circ, 120^\circ)$. Thus,
 \[\frac{d}{\lambda} \leq \frac{1}{1 + \cos 60^\circ} = \frac{2}{3} \]

3. The BF has a beamwidth of 20° when steered to 60°. Use the passband edges to determine the beamwidth.

Let the passband edge be at ψ_p. Then, we have

\[\psi_t - \psi_p = 2\pi \frac{d}{\lambda} \cos B \quad (1) \]
\[\psi_t + \psi_p = 2\pi \frac{d}{\lambda} \cos b \quad (2) \]

where, $\psi_t = 2\pi \frac{d}{\lambda} \cos 60^\circ$ and B and b are beam edges in theta-space when the beam is steered to 60°. Since beamwidth is 20°, we have

\[B - b = \frac{\pi}{9} = \cos^{-1} \left\{ \frac{\lambda}{2\pi d}(\psi_t - \psi_p) \right\} - \cos^{-1} \left\{ \frac{\lambda}{2\pi d}(\psi_t + \psi_p) \right\} \quad (3) \]

We solve the above equation for the passband edge, ψ_p

2. The BF former has a low pass filter shape when steered towards broadside with a passband ripple of .01 and stopband ripple of .001. The transition bandwidth is 5°. Use Parks-McClellan approach for filter design

We shall use the above information to find the stopband edge ψ_s. When steered to broadside i.e $\psi_t = 0^\circ$, let x be the corresponding passband edge in theta-space, measured from broadside. Thus,

\[\psi_p = 2\pi \frac{d}{\lambda} \cos(90^\circ - x) \quad (4) \]
\[\psi_p \frac{\lambda}{2\pi d} = \sin x \quad (5) \]
\[x = \sin^{-1} \left\{ \psi_p \frac{\lambda}{2\pi d} \right\} \quad (6) \]

The stopband edge is then given by,

\[\psi_s = 2\pi \frac{d}{\lambda} \cos(90^\circ - x - 5^\circ) \quad (7) \]

Using, ψ_p and ψ_s we then design the Parks-McClellan filter. The number of array elements is chosen so as to constrain the ripples in passband to 0.01 and
stopband to 0.001. This phenomena starts happening for \(N \geq 48 \). Thus, we chose \(N = 48 \).

Code:

```matlab
% Homework 2: Design Problem
close all

%% params

% Fixed
lambda = 2/3;
psi = -2*pi*lambda:0.01:2*pi*lambda;
theta = flip(acos(3*pi/(4*pi)));

%wp = 0.1;
%ws = 0.2;

% Solving subpart 3 to find wp
syms x
% to ensure beamwidth=20 degree when steer=60 degree
solu = vpasolve(acos(0.5-x*3/(4*pi))-acos(0.5+x*3/(4*pi)) == pi/9, x);
wp = double(solu)/pi;

% Using wp and subpart 2 to find ws
wp_thet = asin(pi*wp*3/(4*pi));
ws = 4*sin(wp_thet+5*pi/180)/3;

% Design params
N = 48;
ford = N-1; %filter order

%% Compute final beampattern
b = firpm(ford,[0 wp ws 1], [1 1 0 0], [1 10]);
freqz(b);

%wts = ifft(h);
wts = b;
[psi_mat, arg_mat] = meshgrid(psi, -(N-1)/2:(N-1)/2);
v_psi = exp(1i*psi_mat.*arg_mat);
B_psi = conj(wts)*v_psi/sum(wts);
B_psi_db = 10*log10(abs(B_psi).^2);
B_theta_db = flip(B_psi_db);

%% Filter response in Passband and Stopband
pb_ripple = max(abs(abs(h(w<=wp*pi)) - 1))
sb_ripple = max(abs(h(w>=ws*pi)))
```

2
%% plots
figure
plot([0 wp ws 1, [1 1 0 0], w/pi, abs(h))
title('filter response')
grid on

figure
plot(psi/pi, B_psi_db, 'LineWidth', 2)
title('psi plot')
grid on

figure
polarplot([theta 2*pi-flip(theta)], [B_theta_db fliplr(B_theta_db)],
'LineWidth', 2)
title('Polar Plot MRA-broadside')
ax = gca;
rlim([min(B theta_db) max(B theta_db)])
ax.RTick = -40:10:0;
ax.ThetaZeroLocation = 'top';
ax.ThetaDir = 'clockwise';
ax.ThetaTickLabel = {'0', '30', '60', '90', '120', '150', '180', '150', '120', '90', '60', '30'};
ax.FontSize = 12;
ax.LineWidth = 2;
grid on

figure
plot([theta 2*pi-flip(theta)]*180/pi, [B_theta_db fliplr(B_theta_db)],
'LineWidth', 2)
title('Transition bandwidth = 5 degree')
grid on

%% Steer Angle = 60 degree
psi_t = 2*pi/3; % = 2*pi*(d/lambda)*cos60
[psi_mat, arg_mat] = meshgrid(psi - psi_t, -(N-1)/2:(N-1)/2);
v_psi = exp(1i*psi_mat.*arg_mat);
B_psi = conj(wts)*v_psi/sum(wts);
B_psi_db = 10*log10(abs(B_psi).^2);
B theta_db = flip(B psi_db);

figure
plot(psi/pi, B_psi_db, 'LineWidth', 2)
title('psi plot (Steered at 60 degree)')
grid on

figure
polarplot([theta 2*pi - flip(theta)], [B_theta_db fliplr(B_theta_db)],
'LineWidth', 2)
title('Polar Plot MRA=60 degree')
ax = gca;
rlim([min(B_theta_db) max(B_theta_db)])
ax.RTick = -40:10:0;
ax.ThetaZeroLocation = 'top';
ax.ThetaDir = 'clockwise';
ax.ThetaTickLabel = {'0','30','60','90', '120', '150', '180', '150', '120', '90', '60', '30'};
ax.FontSize = 12;
ax.LineWidth = 2;
grid on

figure
plot([theta 2*pi - flip(theta)]*180/pi, [B_theta_db fliplr(B_theta_db)],
'LineWidth', 2)
title('Beamwidth = 20 degree')
grid on
Transition bandwidth = 5 degree (in θ-space)

Passband edge = 98.6

Stopband edge = 103.6
Beamwidth = 20 degree (when steered to 60 degree)
Polar Plot MRA=broadside
Polar Plot MRA=60 degree