MVDR and MPDR

Bhaskar D Rao
University of California, San Diego
Email: brao@ucsd.edu
1. Optimum Array Processing, H. L. Van Trees
Narrow-band Signals

\[x(\omega_c, n) = V(\omega_c, k_s)F_s[n] + \sum_{l=1}^{D-1} V(\omega_c, k_l)F_l[n] + Z[n] \]

Assumptions

- \(F_s[n], F_l[n], l = 1, \ldots, D - 1, \) and \(Z[n] \) are zero mean
- \(E(|F_s[n]|^2) = P_s, \) and \(E(|F_l[n]|^2) = P_l, l = 1, \ldots, D - 1, \) and \(E(Z[n]Z^*[n]) = \sigma_z^2 I \)
- All the signals/sources are uncorrelated with each other and over time: \(E(F_l[n]F_m^*[p]) = P_l \delta[l - m] \delta[n - p] \) and \(E(F_l[n]F_s^*[p]) = 0 \)
- The sources are uncorrelated with the noise: \(E(Z[n]F_l^*[m]) = 0 \)
Interference plus Noise signal Covariance

\[I[n] = \sum_{l=1}^{D-1} V_l F_l[n] + Z[n], \quad \text{where } V_l = V(\omega_c, k_l) \]

Properties of \(I[n] \)

- \(I[n] \) is zero mean
- The covariance of \(I[n] \) is given by

\[S_n = E(I[n]I^H[n]) = \sum_{l=1}^{D-1} P_l V_l V_l^H + \sigma_z^2 I \]
Distortionless constraint on beamformer W: $W^H \mathbf{v}_s = 1$

Implication:

$$W^H \mathbf{x}[n] = W^H \mathbf{v}_s F_s[n] + W^H \mathbf{l}[n]$$

$$= \underbrace{F_s[n]}_{\text{distortionless constraint}} + q[n], \text{ where } q[n] = W^H \mathbf{l}[n]$$

Minimum Variance objective: Choose W to minimize

$$E(|q[n]|^2) = W^H \mathbf{s}_n W$$

MVDR BF design

$$\min_W W^H \mathbf{s}_n W \text{ subject to } W^H \mathbf{v}_s = 1.$$
MVDR beamformer

MVDR BF design

$$\min_W W^H S_n W \quad \text{subject to} \quad W^H V_s = 1.$$

Solution: $$W_{mvdr} = \frac{1}{V_s^H S_n^{-1} V_s} S_n^{-1} V_s$$

Derivation: Can be Obtained using Lagrange multipliers. Since we are dealing with complex weights, need to use Wirtinger calculus.

See textbook for details
\[W_{mvdr} = \frac{1}{V_s^H S_n^{-1} V_s} S_n^{-1} V_s \] tries to minimize
\[E(|q[n]|^2) = E(|W^H I[n]|^2) = W^H S_n W, \] where \(S_n = \sum_{l=1}^{D-1} P_l V_l V_l^H + \sigma_z^2 I \)

It will try to place nulls at angular locations consistent with the interference plane waves if \(\sigma_z^2 \) is small.

If the number of antennas is greater than or equal to \(D \), i.e. \(N \geq D \), the MVDR BF can null out all the \((D - 1)\) interferers.

If \(N < D \), the MVDR BF will attempt to control the depth of the nulls to minimize interference.

If \(\sigma_z^2 \) is large compared to the power in the interfering plane waves, then \(S_n \approx \sigma_z^2 I \) and hence \(W_{mvdr} \propto V_s \)
MVDR by SINR maximization

\[W_{mvdr} = \arg \max_W \frac{|W^H V_s|^2 P_s}{W^H S_n W} = \arg \max_W \frac{|W^H V_s|^2}{W^H S_n W} \]

Note that the solution is not unique but is unique to scale. The scale can be chosen to satisfy the distortionless constraint.

Since \(S_n \) is positive definite it admits a factorization \(S_n = LL^H \), where \(L \) is a \(N \times N \) matrix, a square root of \(S_n \). The square root is not unique but invertible because \(S_n \) is positive definite. Then

\[W^H S_n W = W^H LL^H W = \tilde{W}^H \tilde{W}, \text{ where } \tilde{W} = L^H W \text{ or } W = L^{-H} \tilde{W} \]

The optimization over \(W \) can be replaced by an optimization over \(\tilde{W} \)

\[\tilde{W}_o = \arg \max_{\tilde{W}} \frac{\tilde{W}^H L^{-1} V_s}{\tilde{W}^H \tilde{W}} \]

By the Cauchy-Schwarz inequality, \(\tilde{W}_o \propto L^{-1} V_s \) or \(\tilde{W}_o = \beta L^{-1} V_s \)

Then \(W_{mvdr} = L^{-H} \tilde{W}_o = \beta L^{-H} L^{-1} V_s = \beta S_n^{-1} V_s \)

The distortional less constraint \(W_{mvdr}^H V_s = 1 \) leads to \(\beta = \frac{1}{V_s^H S_n^{-1} V_s} \)

Hence \(W_{mvdr} = \frac{1}{V_s^H S_n^{-1} V_s} S_n^{-1} V_s \)
Challenges with MVDR

\[W_{mvdr} = \frac{1}{V_s^H S_n^{-1} V_s} S_n^{-1} V_s \]

The main challenge is estimating \(S_n \)?

This requires coordination and may not always be possible.

This leads to MPDR, minimum power distortionless response beamformer.

Most books refer to MPDR as MVDR.
MPDR, minimum power distortionless response beamformer

MPDR very similar to MVDR with respect to the constraint.

Distortionless constraint on beamformer W: $W^H v_s = 1$

Implication:

$$W^H x[n] = W^H v_s F_s[n] + W^H i[n]$$

$$= F_s[n] + q[n], \text{ where } q[n] = W^H i[n]$$

Minimum Power objective: Choose W to minimize $E(|W^H x[n]|^2)$, the power at the output of the beamformer.

$$E(|W^H x[n]|^2) = W^H S_x W, \text{ where } S_x = P_s v_s v_s^H + S_n$$

MPDR BF design

$$\min_W W^H S_x W \text{ subject to } W^H v_s = 1.$$
MPDR beamformer

MPDR BF design

\[
\min_W W^H S_x W \text{ subject to } W^H V_s = 1.
\]

Solution:
\[
W_{mpdr} = \frac{1}{V_s^H S_x^{-1} V_s} S_x^{-1} V_s
\]

Derivation: Same as MVDR with \(S_x \) replacing \(S_n \)

Benefit:

\(S_x \) is easier to determine making it computationally attractive

\[
S_x \approx \frac{1}{L} \sum_{n=1}^{L-1} x[n] x^H[n]
\]

Same \(S_x \) is needed if you change your mind on direction of interest. Can deal with multiple signals of interest with considerable ease.
Relationship between MPDR and MVDR

For uncorrelated sources $W_{mpdr} = W_{mvdr}$

Proof is based on the Matrix Inversion Lemma

$$(A + BCD)^{-1} = A^{-1} - A^{-1}B(DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

Note that

$$S_x = P_s V_s V_s^H + S_n = S_n + V_s P_s V_s^H$$

MPDR needs inverse of S_x. Using the matrix inversion lemma with $A = S_n$, $B = V_s$, $C = P_s$, and $D = V_s^H$, we have

$$S_x^{-1} = S_n^{-1} - S_n^{-1}V_s \left(V_s^H S_n^{-1} V_s + \frac{1}{P_s} \right)^{-1} V_s^H S_n^{-1}$$
\[W_{mpdr} = W_{mvdr} \]

\[
S^{-1}_x = S^{-1}_n - S^{-1}_n V_s (V^H_s S^{-1}_n V_s + \frac{1}{P_s})^{-1} V^H_s S^{-1}_n V_s
\]

\[
S^{-1}_x V_s = S^{-1}_n V_s - S^{-1}_n V_s (V^H_s S^{-1}_n V_s + \frac{1}{P_s})^{-1} V^H_s S^{-1}_n V_s
\]

\[
= S^{-1}_n V_s - S^{-1}_n V_s \frac{V^H_s S^{-1}_n V_s}{V^H_s S^{-1}_n V_s + \frac{1}{P_s}}
\]

\[
= \frac{1}{P_s} S^{-1}_n V_s = \beta S^{-1}_n V_s \quad \text{where} \quad \beta = \frac{1}{V^H_s S^{-1}_n V_s + \frac{1}{P_s}}
\]

Note that

\[
V^H_s S^{-1}_x V_s = \beta V^H_s S^{-1}_n V_s
\]

Hence

\[
W_{mpdr} = \frac{1}{V^H_s S^{-1}_x V_s} S^{-1}_x V_s = \frac{1}{\beta V^H_s S^{-1}_n V_s} \beta S^{-1}_n V_s = \frac{1}{V^H_s S^{-1}_n V_s} S^{-1}_n V_s = W_{mvdr}
\]
Spatial Power Spectrum using MPDR

- Beamsteering and measuring power at the output of BF, i.e. $E(||(W_d \odot V(\psi_T))^H x[n]||^2)$. FFT based processing for ULA

- MPDR based spatial power spectrum estimation: Measure power at the output of the MPDR BF given by $W_{mpdr} = \frac{1}{V_s^H S_x^{-1} V_s} S_x^{-1} V_s$

\[
E(||W_{mpdr}^H x[n]||^2) = W_{mpdr}^H S_x W_{mpdr}
\]

\[
= \left(\frac{1}{V_s^H S_x^{-1} V_s} V_s^H S_x^{-1} \right) S_x \left(S_x^{-1} V_s \frac{1}{V_s^H S_x^{-1} V_s} \right)
\]

\[
= \frac{1}{V_s^H S_x^{-1} V_s} \left(V_s^H S_x^{-1} S_x S_x^{-1} V_s \right) \frac{1}{V_s^H S_x^{-1} V_s}
\]

\[
= \frac{1}{V_s^H S_x^{-1} V_s} \frac{1}{V_s^H S_x^{-1} V_s}
\]