Broadband Beamforming

Bhaskar D Rao
University of California, San Diego
Email: brao@ucsd.edu
Narrow band signals: $\tilde{f}(t-\tau)e^{j\omega_c(t-\tau)} \approx \tilde{f}(t)e^{j\omega_c(t-\tau)}$, for $\tau \ll T = \frac{1}{2B}$

The signal becomes broadband if the bandwidth becomes large and the delay across the array can no longer be considered small compared to the sampling interval.
Signals such as speech signals are naturally baseband signals and are broadband in nature.
Delay and Sum beamformer

Delay the output of the sensors appropriately and enable constructive addition of the copies to get SNR improvement over white noise. In the presence of an interferer, will use FIR filters at the output to cancel or suppress interference.
Time-Delay Estimation: Preliminaries

\[r_{x_1x_2}[m] = E(x_1[n + m]x_2^*[n]) \] and from LTI systems theory we know the cross-power spectrum is given by

\[S_{y_1y_2}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} r_{y_1y_2}[m]e^{-j\omega m} = H_1(e^{j\omega})H_2^*(e^{j\omega})S_{x_1x_2}(e^{j\omega}) \]

\(S_{y_1y_1}(e^{j\omega}) \) is the power spectrum which is real and positive. If we are given data, we can divide the data into \(L \) blocks of length \(N \) and estimate the cross-power spectrum using the FFT.

\[^1\text{Carter, G. Clifford. Coherence and time delay estimation: an applied tutorial for research, development, test, and evaluation engineers. IEEE, 1993.}\]
Time Delay Estimation

\[y_1[n] = r_1(nT) = s[n] + z_1[n] \]
\[y_2[n] = r_2(nT) = s[n - D] + z_2[n] \]

Assuming the noises are uncorrelated, \(r_{y_2y_1}[m] = r_{ss}[m - D] \).

\[\hat{D} = \arg \max_m r_{y_2y_1}[m] = \arg \max_m \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{y_2y_1}(e^{j\omega}) e^{j\omega m} d\omega \right\} \]

The peak is sharp if \(s[n] \) is a white noise sequence and in the absence of reverberation/multipath.
Generalized Cross-Correlation (GCC) Methods

\[\hat{D} = \arg \max_m \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(e^{j\omega})S_{y2y1}(e^{j\omega})e^{j\omega m} d\omega\]

Cross-Correlation Method: \(\phi(e^{j\omega}) = 1\)

The purpose of \(\phi(e^{j\omega})\) is to whiten the signal and/or weight the spectrum based on the SNR in the frequency domain. Note that \(S_{y2y1}(e^{j\omega}) = S_{ss}(e^{j\omega})e^{-j\omega D}\).

PHAse Transform (PHAT): \(\phi(e^{j\omega}) = \frac{1}{|S_{y2y1}(e^{j\omega})|}\)

Smoothed COherence Transform (SCOT): \(\phi(e^{j\omega}) = \frac{1}{\sqrt{S_{y1y1}(e^{j\omega})S_{y2y2}(e^{j\omega})}}\)

Maximum-Likelihood (ML): \(\phi(e^{j\omega}) = \frac{1}{|S_{y2y1}(e^{j\omega})|} \frac{|\gamma_{y2y1}(e^{j\omega})|^2}{1-|\gamma_{y2y1}(e^{j\omega})|^2}\) where

\[\gamma_{y2y1}(e^{j\omega}) = \frac{S_{y2y1}(e^{j\omega})}{\sqrt{S_{y1y1}(e^{j\omega})S_{y2y2}(e^{j\omega})}}, 0 \leq |\gamma_{y2y1}(e^{j\omega})| \leq 1, \forall \omega\]

is the coherence function.
Adaptive Broadband Beamformer

Fig. 1. Broad-band antenna array and equivalent processor for signals coming from the look direction.
Number of sensors: \(N = K \), number of taps, i.e. order of FIR filters is \(J \).

If we denote the input measurement vector as \(x[n] \), then the data in the tap delay line is \([x[n], x[n - 1], \ldots, x[n - J + 1]]\)

Weights: Using vector notation, the weights in the tap delay line are \([W_0, W_1, \ldots, W_{J-1}]\), where \(W_k = [w_{k,0}, w_{k,1}, \ldots, w_{k,N-1}] \).

Key Question: How to characterize and design such an array?

Characterization: Frequency-Wavenumber Response

Extension of the MPDR formulation: Look direction constraint plus minimize output power
Frequency Wavenumber Response

If the source signal is \(s(t) = e^{j\Omega t} \) from direction \(\mathbf{k} \), then the signal received at sensor \(l \) is delayed relative to the origin by \(\tau_l \).

\[
\chi_l(t) = s(t) = e^{j\Omega(t-\tau_l)} \quad \text{or} \quad \chi_l[n] = x_l(nT) = e^{j\Omega(nT-\tau_l)} = e^{j\omega(n-\tilde{\tau}_l)}
\]

where \(\omega = \Omega T \) and \(\tilde{\tau}_l = \frac{1}{T} \tau_l \).

Output of sensor \(l \) is given by

\[
x_l[n] \rightarrow H_l(z) \rightarrow y_l[n] = e^{j\omega(n-\tilde{\tau}_l)} H_l(e^{j\omega})
\]

The array output

\[
y[n] = \sum_{l=0}^{N-1} y_l[n] = \sum_{l=0}^{N-1} e^{j\omega(n-\tilde{\tau}_l)} H_l(e^{j\omega}) = e^{j\omega n} \sum_{l=0}^{N-1} e^{-j\omega\tilde{\tau}_l} H_l(e^{j\omega}) = e^{j\omega n} B(\omega, \mathbf{k})
\]

\[
B(\omega, \mathbf{k}) = \sum_{l=0}^{N-1} e^{-j\omega\tilde{\tau}_l} H_l(e^{j\omega}) \quad \text{is the frequency-wavenumber response of array}
\]
Beamformer output

\[y[n] = W_0^T x[n] + W_1^T x[n-1] + \ldots + W_{J-1}^T x[n-J+1] = \sum_{k=0}^{J-1} W_k^T x[n-k] \]

Constraints: Define \(\mathbf{1} = [1, 1, \ldots, 1]^T \), a vector in \(\mathbb{R}^N \).

\[\sum_{m=0}^{N-1} w_{k,m} = f_k \quad \text{or} \quad \mathbf{1}^T W_k = f_k, \quad k = 0, 1, \ldots, J-1 \]

This is equivalent to look direction transfer function constraint of

\[H_d(z) = F(z) = f_0 + f_1 z^{-1} + \ldots + f_{J-1} z^{-(J-1)} = \sum_{m=0}^{J-1} f_m z^{-m} \]
Frost Beamformer

Stacking all the BF weights and the constraints into large vectors of dimension NJ, we have

$$y[n] = W^T X[n], \quad \text{where} \quad W = [W_0^T, W_1^T, \ldots, W_{J-1}^T]^T$$

and $X[n] = [x^T[n], x^T[n-1], \ldots, x^T[n-J+1]]^T$.

The output power is $E(y^2[n]) = W^T R_{xx} W$ where $R_{xx} = E(X[n]X^T[n])$.

The constraints are given by

$$C^T W = f \quad \text{or} \quad W = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_{J-1} \end{bmatrix}$$

The optimization problem is

$$\min_W W^T R_{xx} W \quad \text{subject to} \quad C^T W = f$$

Using Lagrange multipliers, we can show

$$W_o = R_{xx}^{-1} C (C^T R_{xx}^{-1} C)^{-1} f$$
Because of the symmetric nature of the constraints with respect to time \(1^T W_k = f_k\), i.e. the constraint matrix \(1\) is the same, the constraint can be implemented first followed by filtering. Our \(W_q = \frac{1}{N}[1, 1, \ldots, 1]^T\) and our \(B\) matrix is an orthonormal set of vectors orthogonal to \(W_q\). If \(N = 8\), a choice for \(B\) is from the Haar basis

\[
B = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
-1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & -1 & 0
\end{bmatrix}
\]
Broadband via Narrowband processing

\[\mathbf{x}(t) \rightarrow \text{Fourier Transform at M Frequencies} \rightarrow Y_{\Delta T}(\omega_{m}, k) \rightarrow \text{NB Beamformer} \rightarrow Y_{\Delta T}(\omega_{(M-1)2}, k) \rightarrow \text{Inverse Discrete Fourier Transform} \rightarrow y(t) \]

Interval:

\[(k-1)\Delta T \leq t < k\Delta T \quad k = 1, \cdots, K \]

\[k = 1, \cdots, K \]

\[k = 1, \cdots, K \]

Figure 5.1 Frequency-domain beamformer.
Narrow-band modeling at the output of each band

\[x(\omega_c, n) = V(\omega_c, k_s)F_s[\omega_c, n] + \sum_{l=1}^{D-1} V(\omega_c, k_l)F_l[\omega_c, n] + Z[\omega_c, n] \]

Assumptions

- \(F_s[\omega_c, n], F_l[\omega_c, n], l = 1, \ldots, D - 1 \), and \(Z[\omega_c, n] \) are zero mean
- \(E(|F_s[\omega_c, n]|^2) = p_s(\omega_c) \), and \(E(|F_l[n]|^2 = p_l(\omega_c), l = 1, \ldots, D - 1 \), and \(E(Z[\omega_c, n]Z^H[\omega_c, n]) = \sigma_Z^2(\omega_c)I \)

- All the signals/sources are uncorrelated with each other and over time: \(E(F_l[\omega_c, n]F_m^*[\omega_c, p]) = p_l(\omega_c)\delta[l - m]\delta[n - p] \) and \(E(F_l[\omega_c, n]F_s^*[\omega_c, p]) = 0 \)

- The sources are uncorrelated with the noise: \(E(Z[\omega_c, n]F_l^*[\omega_c, m]) = 0 \)

- We also need properties at two distinct center frequencies \(\omega_{c1} \) and \(\omega_{c2} \). Usually assumed uncorrelated, e.g. \(E(F_l[\omega_{c1}, n]F_m^*[\omega_{c2}, p]) = 0 \)
FFT implementation

Figure 6.116 FFT processing.
Some Issues to Address

▶ Source recovery: MPDR or other beamformers on each band followed by inverse FFT. No serious impediments here

▶ DOA estimation: How do we combine the bands to find an estimate of the DOA. Can independently compute DOA in each band and then combine. Can do DOA estimation by utilizing all the bands together in a synergistic manner. SINR may be different in each band.

▶ Element spacing: The wavelength has a range \((\lambda_{\text{min}}, \lambda_{\text{max}})\). How to space the sensors? Non-uniform spacing is an option with some elements at \(\lambda_{\text{min}}/2\) spacing.

Figure 3.57 Nested arrays.
Independent Component Analysis (ICA)

Bhaskar D Rao
University of California, San Diego
Email: brao@ucsd.edu
ICA

Instantaneous Mixing Model: Assume N sensors, D sources with $D < N$, that are linearly mixed

$$x[n] = As[n] + Z[n]$$

Problem: Both mixing matrix A and sources $s[n]$ are unknown. From measurements of $x[n]$, $n = 0, 1, ..., L - 1$, recover A and $s[n]$.

Assumptions:

- Sources are zero mean, i.e. $E(s_l[n] = 0, l = 1, .., D$.
- Sources are uncorrelated, i.e. $E(s[n]s^T[n]) = \text{diag}(p_l)$.
- Sources are independent, i.e. $p(s_1, s_2, .., s_D) = \Pi_{l=1}^D p_l(s_l)$.
- Sources are non-Gaussian distributed except for possibly one.

ICA relies on independence and non-Gaussian source assumption.
ICA and Applications

More general model is Convolutive Mixing: \(x_l[n] = \sum_{k=1}^{D} h_{lk}[n] * s_k[n] \)

ICA has several practical applications:

- The "cocktail party problem": separation of voices or music or sounds
- Sensor array processing, e.g. radar
- Biomedical signal processing with multiple sensors: EEG, ECG, MEG, fMRI
- Telecommunications: e.g. multiuser detection in CDMA
- Financial and other time series
- Noise removal from signals and images
- Feature extraction for images and signals
- Brain modelling

The simple “Cocktail Party” Problem

Mixing matrix A

s_1

s_2

Sources

x_1

x_2

Observations

$x = As$

n sources, $m=n$ observations
ICA and EEG Processing

<table>
<thead>
<tr>
<th>EEG</th>
<th>ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fz</td>
<td>1</td>
</tr>
<tr>
<td>Cz</td>
<td>2</td>
</tr>
<tr>
<td>Pz</td>
<td>3</td>
</tr>
<tr>
<td>Oz</td>
<td>4</td>
</tr>
<tr>
<td>F3</td>
<td>5</td>
</tr>
<tr>
<td>F4</td>
<td>6</td>
</tr>
<tr>
<td>C3</td>
<td>7</td>
</tr>
<tr>
<td>C4</td>
<td>8</td>
</tr>
<tr>
<td>T3</td>
<td>9</td>
</tr>
<tr>
<td>T4</td>
<td>10</td>
</tr>
<tr>
<td>P3</td>
<td>11</td>
</tr>
<tr>
<td>P4</td>
<td>12</td>
</tr>
<tr>
<td>Fpz</td>
<td>13</td>
</tr>
<tr>
<td>EOG</td>
<td>14</td>
</tr>
</tbody>
</table>

1 sec.

Figure 1: Left: 4.5 seconds of 14-channel EEG data. Right: an ICA transform of the same data, using weights trained on 6.5 minutes of similar data from the same session.

Principal Component Analysis (PCA)

PCA is a data representation/compression technique: Finds an efficient low-dimensional orthonormal basis to represent a random vector in a mean squared sense.

\[R_{xx} = E(x[n]x^H[n]) = APA^H + \sigma^2_z I, \quad \text{where } P = \text{diag}(p_l) \]

Eigen-decomposition should allow us to find the number of sources \(D \) and the noise variance.
Let us assume \(N = D \) and \(\sigma^2_z = 0 \).

Problem: Find an orthonormal basis \(W \) for a \(p \)-dimensional subspace \((p \leq N) \), i.e \(W \in \mathbb{C}^{N \times p} \) and \(WHW = I_{p \times p} \), such that \(E(|W^Hx[n]|^2) \) is maximized.

\[\max_{W \in \mathbb{C}^{N \times p}, WHW = I_{p \times p}} W^H R_{xx} W \]

Solution (PCA): \(W = [q_1, \ldots, q_p] \), where \(q_l \) is an eigenvector of \(R_{xx} \) corresponding to the \(l \)th largest eigenvalue. The approximation for \(x[n] \) is obtained as

\[\hat{x}[n] = WW^H x[n] \]
If $E = [q_1, ..., q_N]$, then $R_{xx} = EΛE^H$, is an eigen-decomposition where $Λ = \text{diag}(\lambda_i)$ contains the ordered eigenvalues, i.e. $\lambda_1 \geq \lambda_2 ... \geq \lambda_N \geq 0$.

Then $B = Λ^{-\frac{1}{2}}E^H$ is a whitening matrix, i.e. $BR_{xx}B^H = I_{N \times N}$ and $y[n] = Bx[n]$ has uncorrelated components.

If B is a whitening matrix, QB is also a whitening matrix where Q is an orthonormal matrix and $y_Q[n] = QBx[n]$ also has uncorrelated components.

Implications

- Gaussian sources are not separable: If the sources ($s[n]$) are Gaussian, $y[n]$ and $y_Q[n]$ represent independent Gaussian sources. Non-unique

- Uncorrelated property is not enough to separate sources

Need Independent and Non-Gaussian sources: The goal is to find Q, the remaining unknown.