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Abstract—We seek to characterize the performance of schedul- can become extremely complex to analyze and/or implement
ing policies for wireless systems that are based on Cumulative in reality for large systems. As a results, there have been fe
Density Functions (CDF) of the channels. We first derive optimal \,,5rks in the literature discussing optimal scheduling giek.

scheduling policies for a two-user system under max-sum rate Most tical existi heduli thod b .
and max-min rate performance criteria subject to the same ost practical existing scheduling methods are sub-opfima

temporal resource constraints as those under CDF-based polige ad-hoc in nature. The work in [4] does consider scheduling
The behaviors of the CDF schemes are then compared againstoptimality. However, the authors in this work consider ottig
those of the optimal policies. We illustrate the differences in max sum-rate criterion and they do not derive explicit otbse
scheduling decision boundaries as well as the sub-optimality in functional form for the scheduling decision boundary, hic
rate performance of the CDF-based policies. . . . ’
_ _ we need for comparing against CDF scheduling. In [4], the
Index Terms—CDF, Scheduling, Faimness decision boundary is learned via stochastic approximation

I. INTRODUCTION Il. BACKGROUND AND SCHEDULING CRITERIA

YNAMIC user scheduling has always been a very diffi- We start with a quick review of the CDF scheduling scheme.

cult task in wireless systems. A good scheduling poliggonsider a set of users sharing a common channel resource.
must be able to take advantage of multiuser diversity toexehi et X, be the SNR for the usér. Perform the transformation
high system throughput and at the same time guarantee servic. — Fy, (X,,), where F, () is the CDF ofX}. The CDF
fairness. These tasks become much more challenging in $#eduling policy selects a user to serve according:to=

next generation wireless network as the channels exp«mﬂengwgmaX U;/Wk, wherewy, is the time fraction allocated to user
by the users will have very different characteristics due

the multi-tier, heterogeneous nature of the systems. The-C
based scheduling policy introduced in [1] in which the use

are selected based on how good their current channels té)r et us now consider the problem of maximizing the average
relative totheir own channel conditions, independent of the u w ! P Ximizing verag

specific channel distributions emerges to be a good choice E(IS;IT ra:cte of aK—USﬁr t?y;tte@m <subje<ct1t3\littr;1e sa}Kme use_r E)roba—
such diverse systems. y or access constraints < wy < Dy W = 1.

Despite its salient properties, CDF scheduling charasterF¢t X = [X1,..., Xk]", andx N w1, ..., 2x]", the vector
tics are not very well understood comparing to other popul%f SNR realizations. The users’ instantaneous ratgsand
scheduling schemes such as Breportional Fairness scheme, the average sum rai, for the system are then
which has been studied extensively in the literature. Besid {log(l + X4), when user k selected

0 k. . . .
II?C' It is known that this policy performs well. It is, nonethste
%sub-optimal scheme [2] with respect to rate performanee du
he fact that it is not formulated for rate optimization.

some basic properties introduced in the original paper [1], 1% =

) ; " 0, otherwise
several additional performance features examined in 2, a « X«
scaling laws in [3], many questions regarding CDF schedulin B B
characteristics remain unanswered. Better understanaing Ry =E ;Rk(x’f) - /Mx%okle’“(Xk)fX(x)dx

the properties of the CDF scheme is crucial in bringing this _ o
technique to the practical implementation in next genenati Where fx (x) is the joint pdf ofX. The max sum rate problem
wireless systems. In this paper, we will further examine CD§an be formulated as follows:

scheduling characteristics by deriving the optimal schiedu K

policies _W|th respect to common metrics and.companng_and V* — argmax / Ri () fx (x)dx
contrasting CDF scheduling performance against the optima Ver. (= /v
ity. For fair comparisons, the optimal policies are also-sub
jected to the same temporal resource constraints achigved b s.t. fx(x)dx = wy,
Vi

CDF scheduling. For mathematical tractability, we onlyiker . . _ -

the solutions for a two-user system. Given the diverse aMdnere Vi is the region in the positive prthan@ <

dynamic nature of the wireless systems, the optimal palicié1,----Zx < oo corresponding to usek being selected,
V = {V,}£ | the set of allV}’s, and P, are the set of all
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Iy - /C (log[1 + Fi (u1)] — log[1 + Fx ) (u2)]) du

+ / log[1 + Fy, (uz)]du
JC1LUCo

The selection scheme that maximizes the system sum rate
can be formulated as follows

C; = argmax / (log[l + F);ll (u1)]
Cl Cl

—log[1 + F);zl (uz)])duldug ®)
s.t. Area(Cy) = wy

Now let C; be a region bounded by < uy < 1,0 < ug <
to ug,...,ug, and letC, be the region in the,-ux space h(u1), whereO < h(u;) < 1,Vu; € [0,1] as in figure 1. The
(a.k.a. theu-space) where usék is selected( = {Ck}llﬁ(:l’ solution to problem (3) is stated in theorem 1.
and P, the set of all partitions of the hypercube< w;, < 1.
With the users independently distributed, this selectreme
can be re-formulated as follows in the u-space:

v

0

Fig. 1: Scheduling Decision Boundary

Theorem 1. The optimal decision boundary for the sum-rate
criterion has the following form:

K h*(ul) = FX2 ()\/[1 + F);ll(ul)} — 1) (4)

C* = argmax / log[1 + Fxt(ug)]du 1
Cgepu kZ:I Cr g[ Xk( k)] (1) s.t. / h* (ul)dul = W1 (5)

0
S.t. Volume(Cy) = wy Proof: see Appendix A. [ ]

Next, we consider the max min-rate criterion. Under this The condition (5) can be used to solve fdtin order to
criterion, it is necessary to compare user achievable .ratgatisfy the access probability constraint.
Yet, even if the user channels are i.i.d, users with differen
temporal resource constraints receive different averaggsr IV. MAX MIN-RATE SCHEDULING FOR ATWO-USER
Consequently, it is necessary to define a metric suitably SYSTEM
normalized by the resource allocation to facilitate theunesg

. For a two-user system under the max min-rate criterion,
user performance comparison.

problem (2) becomes the following

Definition 1. The allocation-normalized rate, R, of userk
with an allocation constraingy, : Zle w, = 1 is defined as C; = argmax min i/ log[1 + Fgl(ul)]duldug
n o B 2 w e l
k= 1 (6)
Kwy, A— —/ log[1 + F)}; (ug)]duidug
where K is the number of users in the systeR), is the w2 Je,
average rate achieved by ugefrThe max-min selection policy s.t. Area(Cy) = w;

can now be defined as: N ) _
where A £ - [, log[l + Fx, (u2)lduidus. With the

V* = argmax minRy, region C; defined in section lll, problem (6) becomes

VeEP,

h*(up) = argmax ¢
st | fx(x)dx = wy h(ui),t
Vi 1 )
This problem can be reformulated in thespace as follows;  S-t.: wr )y h(uy)log[l + Fi | (u1)]duy >t
C* = argmax min i/ log[1 + F ! (ug)]du A I d h(ul)l pol dus >+ (D
CEP, wk Je, X (2) T ), ) og[l + Fy, (uz)]dus > t
s.t. Volume(Cy) = wy, e
1
I1I. M AX SUM-RATE SCHEDULING FOR ATWO-USER / h(uy)duy = wy
SYSTEM 0

In this section, we derive the optimal scheduling scheme for The solution to problem (7) is summarized in theorem 2.

a two-user system under the system sum-rate criterion. Wi . L -
the number of userdc — 2, the objective function of (1) 1fpleorem 2. The optimal decision boundary for the max min

becomes rate criterion has one of the following three forms
1) Equal rates are not possible, user 1 is too strong.

R, = / log[1 + Fgll(ul)]du —|—/ log[1 + Fg;(ug)]du up = (1) = wy
Cy Ca
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Fig. 2: Non-IID Users: CDF Scheduling’s Sum Rate
Loss Under High User Channel Discrepancy

Fig. 3: Non-1ID Users: CDF Scheduling Allocates
More Rate To Weak Users

. . CDF vs Optimal Region Selection
2) Equal rates are not possible, user 2 is too strong.

1— — —Optimal
uy = g" (u2) =wp =1 —wy /ﬁFCDE
3) Equal rates are possible. S AN
Aqw ~ - B _ //
P*(u1) = Fx, (Mal(1+ F ()] —1), @®) 3 A7
where Ay, A2, and A3 can be found from the following - m; ;Sgs, -7
system of equations Vo
2005\ o
M+ =10<2, <1 = -
1 0 0.2 0.4 0.6 0.8 1
fO h*(ul)dul = Wy 9) Uy

Ry (h*) = Ry(h¥)
Proof: see Appendix B.

Fig. 4: Non-1ID Users: Decision Boundaries for
[ ] CDF Scheduling vs the Optimal Policy

V. CDF SCHEDULING PERFORMANCECOMPARISONS (very high user discrepancy witt; = 0.1, Cy = 50), the

It is well known that CDF scheduling is optimal when thén@ximum rate loss for CDF is arount. Figure 3 shows that
user channels ar@dependent and identically distributed (iid) the CDF scheme allocates more rate to the weak user (user
and all users have the same resource allocations. ThusLlnWhile sacrificing the strong user's performance. Figére
order to characterize its sub-optimality, we consideredht illustrates the differences in scheduling decision bouegddor
allocation constraints under both non-iid and iid user cledsn  CDF scheduling and the optimal policy for different res@urc

Assuming Rayleigh fading for both users, we have allocations. For theid case C; = C2 = 50 in this example),
the CDF policy is optimal when the allocationis, = we =

0.5. Otherwise, it has a small loss compared to the optimal
1 allocation & 1.2% in this case) as seen in Figure 5.
Ix,(x) = ie*c%, Fx,(z)=1- e s Next, we consider the max min-rate criterion under the same
) Cy ) iid channel setting. The normalized rate for CDF scheme vs.
Fy (z) = =Crlog(l — ), Fy, (v) = —Czlog(1 — z)

where Cl, Cy are the mean SNR values. CDF Sum Rate vs Optimal Sum Rate

First, let us consider the max sum-rate criterion. Resylt (4 41 CDF
becomes 4t — — — Optimal
h*(up) =1 — e~ A(1=Crlog(1-u1))-1]/C (10) 30l
(0]
Plugging (10) into the constraint (5) and after some alge- % 38l
braic manipulation, we get 3
g 37t
2€ ~2
e 11 6
CQ i )\Cl w1 ( ) 3.6
Equation (11) can then be solved numerically far For 35, 02 04 06 0.8
the non-iid case where there is a large difference between w,

the two users average SNR's, the sum rate for CDF policy

versus the optimal selection is shown in Figure 2. In thigcas Fig. 5: Max Sum-Rate Criterion: CDF Scheduling's

Sum Rate Loss Under IID Channels
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Form the following Lagrangian:
Fig. 6: Max Min-Rate Criterion: CDF Scheduling’s

h 1
Min Rate Loss Under IID Channels L(h,\) é/ (h(ul)log[l + Fgll(ul)] — I[h(ui)]+
0

CDF vs Optimal Region Selections

L7

+ )\h(ul)> dU1 — )\’LUl

Following the principle ofCalculus of Variations, we let
h(uy) = h*(u1) + €d(uq) and Setﬁﬁ(e, A) =0, Vé(uq).
This leads to the following result after soerﬁg algebraic step

log[N' (1 + Fi, (w1))] — log[1 + Fi) (A" (u1))] = 0

wherelog \’ £ \. This results in the optimal boundary in (4).

w, = 0.25

~#= Sum-rate
—Q— CDF
Maxmin APPENDIXB

06 os 1 PROOF OFTHEOREM 2
From (7), we can form the following Lagrangian:

‘C(ha )‘17 )‘27 A37.&) =i+

1 <1 /01 h(u1)log[l + Fy ! (u1)]duy — t)

wq

1

Fig. 7: Decision Boundaries for CDF vs Optimal
Policies Under IID Channels

the optimal max-min policy is shown on figure 6. The CDF

loss is around% in this case. The comparison of allocation

boundaries between CDF and the optimal policies for both 1 L h(u1) .

max sum-rate and max min-rate criteria for different altmra ~ +A2 [ A — o / duy / log[1 + Fy, (u2)]dus —t
constraints is shown on Figure 7. It can be seen that even in 270 0
the i.i.d case, the CDF policy is onlglose to the optimal Ih(u1)]
policies when user allocation constraintg are close to each I\ /1 h(ur)duy — w

other, i.e.w;, ~ 1/K. *\ o 1/ — T

where A\; > 0 and \; > 0. Again, following the princi-
VI. CONCLUSION ple of Calculus of Variations, we let h(u;) = h*(u1) +
In this paper we derive the optimal decision boundaries fe#(u1) and obtain the results in theorem 2 by setting

a two-user system under both max sum-rate and max mig—ﬁ(6 A1, A2, As, ) =0, ¥o(up).
rate criteria. The performance of the CDF scheduling policy "~~~ "7 7| _,
is compared against both optimal policies. It can be seen REFERENCES
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