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Abstract—We seek to characterize the performance of schedul-
ing policies for wireless systems that are based on Cumulative
Density Functions (CDF) of the channels. We first derive optimal
scheduling policies for a two-user system under max-sum rate
and max-min rate performance criteria subject to the same
temporal resource constraints as those under CDF-based policies.
The behaviors of the CDF schemes are then compared against
those of the optimal policies. We illustrate the differences in
scheduling decision boundaries as well as the sub-optimality in
rate performance of the CDF-based policies.

Index Terms—CDF, Scheduling, Fairness

I. I NTRODUCTION

DYNAMIC user scheduling has always been a very diffi-
cult task in wireless systems. A good scheduling policy

must be able to take advantage of multiuser diversity to achieve
high system throughput and at the same time guarantee service
fairness. These tasks become much more challenging in the
next generation wireless network as the channels experienced
by the users will have very different characteristics due to
the multi-tier, heterogeneous nature of the systems. The CDF-
based scheduling policy introduced in [1] in which the users
are selected based on how good their current channels are
relative to their own channel conditions, independent of the
specific channel distributions emerges to be a good choice for
such diverse systems.

Despite its salient properties, CDF scheduling characteris-
tics are not very well understood comparing to other popular
scheduling schemes such as theProportional Fairness scheme,
which has been studied extensively in the literature. Beside
some basic properties introduced in the original paper [1],
several additional performance features examined in [2], and
scaling laws in [3], many questions regarding CDF scheduling
characteristics remain unanswered. Better understandingof
the properties of the CDF scheme is crucial in bringing this
technique to the practical implementation in next generation
wireless systems. In this paper, we will further examine CDF
scheduling characteristics by deriving the optimal scheduling
policies with respect to common metrics and comparing and
contrasting CDF scheduling performance against the optimal-
ity. For fair comparisons, the optimal policies are also sub-
jected to the same temporal resource constraints achieved by
CDF scheduling. For mathematical tractability, we only derive
the solutions for a two-user system. Given the diverse and
dynamic nature of the wireless systems, the optimal policies
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can become extremely complex to analyze and/or implement
in reality for large systems. As a results, there have been few
works in the literature discussing optimal scheduling policies.
Most practical existing scheduling methods are sub-optimal,
ad-hoc in nature. The work in [4] does consider scheduling
optimality. However, the authors in this work consider onlythe
max sum-rate criterion and they do not derive explicit closed
functional form for the scheduling decision boundary, which
we need for comparing against CDF scheduling. In [4], the
decision boundary is learned via stochastic approximations.

II. BACKGROUND AND SCHEDULING CRITERIA

We start with a quick review of the CDF scheduling scheme.
Consider a set ofK users sharing a common channel resource.
Let Xk be the SNR for the userk. Perform the transformation
Uk = FXk

(Xk), whereFXk
(x) is the CDF ofXk. The CDF

scheduling policy selects a user to serve according to:k∗ =

argmax
k

U
1/wk

k , wherewk is the time fraction allocated to user

k. It is known that this policy performs well. It is, nonetheless,
a sub-optimal scheme [2] with respect to rate performance due
to the fact that it is not formulated for rate optimization.

Let us now consider the problem of maximizing the average
sum rate of aK-user system subject to the same user proba-
bility of access constraints0 ≤ wk ≤ 1 with

∑K
k=1 wk = 1.

Let X = [X1, . . . , XK ]T , andx = [x1, . . . , xK ]T , the vector
of SNR realizations. The users’ instantaneous ratesRk and
the average sum rateRs for the system are then

Rk =

{

log(1 +Xk), when user k selected

0, otherwise

Rs = E

[
K∑

k=1

Rk(Xk)

]

=

∫

0�x≺∞

K∑

k=1

Rk(Xk)fX(x)dx

wherefX(x) is the joint pdf ofX. The max sum rate problem
can be formulated as follows:

V∗ = argmax
V∈Px

K∑

k=1

∫

Vk

Rk(xk)fX(x)dx

s.t.
∫

Vk

fX(x)dx = wk

where Vk is the region in the positive orthant0 ≤
x1, . . . , xK ≤ ∞ corresponding to userk being selected,
V = {Vk}

K
k=1, the set of allVk ’s, andPx are the set of all

partitions of the positive orthant. Letuk = FXk
(xk), where

FXk
(x) is the cumulative distribution function (CDF) of the

SNR of userk. Perform a change of variables fromx1, . . . , xK



Fig. 1: Scheduling Decision Boundary

to u1, . . . , uK , and letCk be the region in theu1-uK space
(a.k.a. theu-space) where userk is selected,C = {Ck}

K
k=1,

andPu the set of all partitions of the hypercube0 ≤ uk ≤ 1.
With the users independently distributed, this selection scheme
can be re-formulated as follows in the u-space:

C∗ = argmax
C∈Pu

K∑

k=1

∫

Ck

log[1 + F−1
Xk

(uk)]du

s.t. Volume(Ck) = wk

(1)

Next, we consider the max min-rate criterion. Under this
criterion, it is necessary to compare user achievable rates.
Yet, even if the user channels are i.i.d, users with different
temporal resource constraints receive different average rates.
Consequently, it is necessary to define a metric suitably
normalized by the resource allocation to facilitate the required
user performance comparison.

Definition 1. The allocation-normalized rate, R̄k of userk
with an allocation constraintwk :

∑K
k=1 wk = 1 is defined as

R̄k =
Rk

Kwk

where K is the number of users in the system,Rk is the
average rate achieved by userk. The max-min selection policy
can now be defined as:

V∗ = argmax
V∈Px

min
k

R̄k

s.t.
∫

Vk

fX(x)dx = wk

This problem can be reformulated in theu-space as follows:

C∗ = argmax
C∈Pu

min
1

wk

∫

Ck

log[1 + F−1
Xk

(uk)]du

s.t. Volume(Ck) = wk

(2)

III. M AX SUM-RATE SCHEDULING FOR A TWO-USER

SYSTEM

In this section, we derive the optimal scheduling scheme for
a two-user system under the system sum-rate criterion. With
the number of usersK = 2, the objective function of (1)
becomes

Rs =

∫

C1

log[1 + F−1
X1

(u1)]du+

∫

C2

log[1 + F−1
X2

(u2)]du

=

∫

C1

(
log[1 + F−1

X1
(u1)]− log[1 + F−1

X2
(u2)]

)
du

+

∫

C1∪C2

log[1 + F−1
X2

(u2)]du

The selection scheme that maximizes the system sum rate
can be formulated as follows

C∗
1 = argmax

C1

∫

C1

(

log[1 + F−1
X1

(u1)]

− log[1 + F−1
X2

(u2)]
)

du1du2

s.t. Area(C1) = w1

(3)

Now let C1 be a region bounded by0 ≤ u1 ≤ 1, 0 ≤ u2 ≤
h(u1), where0 ≤ h(u1) ≤ 1, ∀u1 ∈ [0, 1] as in figure 1. The
solution to problem (3) is stated in theorem 1.

Theorem 1. The optimal decision boundary for the sum-rate
criterion has the following form:

h∗(u1) = FX2

(
λ′[1 + F−1

X1
(u1)]− 1

)
(4)

s.t.
∫ 1

0

h∗(u1)du1 = w1 (5)

Proof: see Appendix A.
The condition (5) can be used to solve forλ′ in order to

satisfy the access probability constraint.

IV. M AX M IN-RATE SCHEDULING FOR A TWO-USER

SYSTEM

For a two-user system under the max min-rate criterion,
problem (2) becomes the following

C∗
1 = argmax

C1

min

{

1

w1

∫

C1

log[1 + F−1
X1

(u1)]du1du2

A−
1

w2

∫

C1

log[1 + F−1
X2

(u2)]du1du2

}

s.t. Area(C1) = w1

(6)

where A , 1
w2

∫

C1∪C2

log[1 + F−1
X2

(u2)]du1du2. With the
regionC1 defined in section III, problem (6) becomes

h∗(u1) = argmax
h(u1),t

t

s.t.:
1

w1

∫ 1

0

h(u1) log[1 + F−1
X1

(u1)]du1 ≥ t

A−
1

w2

∫ 1

0

du1

∫ h(u1)

0

log[1 + F−1
X2

(u2)]du2

︸ ︷︷ ︸

I[h(u1)]

≥ t

∫ 1

0

h(u1)du1 = w1

(7)

The solution to problem (7) is summarized in theorem 2.

Theorem 2. The optimal decision boundary for the max min-
rate criterion has one of the following three forms

1) Equal rates are not possible, user 1 is too strong.

u2 = h∗(u1) = w1
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Fig. 2: Non-IID Users: CDF Scheduling’s Sum Rate
Loss Under High User Channel Discrepancy

2) Equal rates are not possible, user 2 is too strong.

u1 = g∗(u2) = w2 = 1− w1

3) Equal rates are possible.

h∗(u1) = FX2

(

λ3[(1 + F−1
X1

(u1))]
λ1w2

λ2w1 − 1
)

, (8)

where λ1, λ2, and λ3 can be found from the following
system of equations







λ1 + λ2 = 1, 0 ≤ λ1, λ2 ≤ 1
∫ 1

0
h∗(u1)du1 = w1

R̄1(h
∗) = R̄2(h

∗)

(9)

Proof: see Appendix B.

V. CDF SCHEDULING PERFORMANCECOMPARISONS

It is well known that CDF scheduling is optimal when the
user channels areindependent and identically distributed (iid)
and all users have the same resource allocations. Thus, in
order to characterize its sub-optimality, we consider different
allocation constraints under both non-iid and iid user channels.
Assuming Rayleigh fading for both users, we have

fX1
(x) =

1

C1
e−

x

C1 , FX1
(x) = 1− e−

x

C1

fX2
(x) =

1

C2
e−

x

C2 , FX2
(x) = 1− e−

x

C2

F−1
X1

(x) = −C1 log(1− x), F−1
X2

(x) = −C2 log(1− x)

whereC1, C2 are the mean SNR values.
First, let us consider the max sum-rate criterion. Result (4)

becomes

h∗(u1) = 1− e−[λ(1−C1 log(1−u1))−1]/C2 (10)

Plugging (10) into the constraint (5) and after some alge-
braic manipulation, we get

1−
C2e

1−λ

C2

C2 + λC1
= w1 (11)

Equation (11) can then be solved numerically forλ. For
the non-iid case where there is a large difference between
the two users average SNR’s, the sum rate for CDF policy
versus the optimal selection is shown in Figure 2. In this case

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1

w
1

S
u
m

 R
a
te

CDF vs Optimal − User 1

 

CDF

Optimal

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

w
1

S
u
m

 R
a
te

CDF vs Optimal − User 2

 

CDF

Optimal

Fig. 3: Non-IID Users: CDF Scheduling Allocates
More Rate To Weak Users
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Fig. 4: Non-IID Users: Decision Boundaries for
CDF Scheduling vs the Optimal Policy

(very high user discrepancy withC1 = 0.1, C2 = 50), the
maximum rate loss for CDF is around5%. Figure 3 shows that
the CDF scheme allocates more rate to the weak user (user
1), while sacrificing the strong user’s performance. Figure4
illustrates the differences in scheduling decision boundaries for
CDF scheduling and the optimal policy for different resource
allocations. For theiid case (C1 = C2 = 50 in this example),
the CDF policy is optimal when the allocation isw1 = w2 =
0.5. Otherwise, it has a small loss compared to the optimal
allocation (≈ 1.2% in this case) as seen in Figure 5.

Next, we consider the max min-rate criterion under the same
iid channel setting. The normalized rate for CDF scheme vs.
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Fig. 5: Max Sum-Rate Criterion: CDF Scheduling’s
Sum Rate Loss Under IID Channels



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

w
1

M
in

 N
or

m
al

iz
ed

 R
at

e

CDF vs Max−min

 

 
CDF
Max−min

Fig. 6: Max Min-Rate Criterion: CDF Scheduling’s
Min Rate Loss Under IID Channels
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Fig. 7: Decision Boundaries for CDF vs Optimal
Policies Under IID Channels

the optimal max-min policy is shown on figure 6. The CDF
loss is around5% in this case. The comparison of allocation
boundaries between CDF and the optimal policies for both
max sum-rate and max min-rate criteria for different allocation
constraints is shown on Figure 7. It can be seen that even in
the i.i.d case, the CDF policy is onlyclose to the optimal
policies when user allocation constraintswk are close to each
other, i.e.wk ≈ 1/K.

VI. CONCLUSION

In this paper we derive the optimal decision boundaries for
a two-user system under both max sum-rate and max min-
rate criteria. The performance of the CDF scheduling policy
is compared against both optimal policies. It can be seen
while the CDF scheme is not optimal in general, the loss in
performance is small, which may be a good tradeoff for its low
complexity. The study of the optimal scheduling boundaries
and CDF scheduling performance for a system with more than
two users is part of our future work.

APPENDIX A
PROOF OF THEOREM1

For brevity, we provide only a sketch of the proof. Problem
(3) can be rewritten as follows:

h∗(u1) = argmax
h(u1)

∫ 1

0

du1

(

h(u1) log[1 + F−1
X1

(u1)]−

−

∫ h(u1)

0

log[1 + F−1
X2

(u2)]du2

︸ ︷︷ ︸

I[h(u1)]

)

s.t.
∫ 1

0

h(u1)du1 = w1

Form the following Lagrangian:

L(h, λ) ,

∫ 1

0

(

h(u1) log[1 + F−1
X1

(u1)]− I[h(u1)]+

+ λh(u1)

)

du1 − λw1

Following the principle ofCalculus of Variations, we let

h(u1) = h∗(u1) + ǫδ(u1) and set ∂∂ǫL(ǫ, λ)

∣
∣
∣
∣
ǫ=0

= 0, ∀δ(u1).

This leads to the following result after some algebraic steps:

log[λ′(1 + F−1
X1

(u1))]− log[1 + F−1
X2

(h∗(u1))] = 0

wherelog λ′ , λ. This results in the optimal boundary in (4).

APPENDIX B
PROOF OFTHEOREM 2

From (7), we can form the following Lagrangian:

L(h, λ1, λ2, λ3, t) = t+

+ λ1

(
1

w1

∫ 1

0

h(u1) log[1 + F−1
X1

(u1)]du1 − t

)

+ λ2







A−

1

w2

∫ 1

0

du1

∫ h(u1)

0

log[1 + F−1
X2

(u2)]du2

︸ ︷︷ ︸

I[h(u1)]

−t








+ λ3

(∫ 1

0

h(u1)du1 − w1

)

where λ1 ≥ 0 and λ2 ≥ 0. Again, following the princi-
ple of Calculus of Variations, we let h(u1) = h∗(u1) +
ǫδ(u1) and obtain the results in theorem 2 by setting
∂
∂ǫL(ǫ, λ1, λ2, λ3, t)

∣
∣
∣
∣
ǫ=0

= 0, ∀δ(u1).
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