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ABSTRACT

In this article we study the sparse signal recovery problem
in a bayesian framework using a novel Bootstrapped Sparse
Bayesian Learning method. Sparse Bayesian Learning (SBL)
framework is an effective tool for pruning out the irrelevant
features and ending up with a sparse representation. In SBL
the choice of prior over the variances of the Gaussian Scale
mixture has been an interesting area of research for some time
now. This motivates us to use a more generalized maximum
entropy density as the prior which results in a new variant of
SBL. It has been shown to perform better than traditional SBL
empirically and it also accelerates the pruning procedure. Be-
cause of this advantage, this variant of SBL can be claimed as
more robust choice as it is less sensitive to the threshold for
pruning. Theoretical justifications have also been provided to
show that the proposed model actually promotes sparse point
estimates.

Index Terms— Sparse Bayesian Learning, Expectation-
Maximization, Bootstrapped, Max-Entropy

1. INTRODUCTION

Sparse Bayesian Learning, using automatic relevance detec-
tion was first introduced by Tipping [1] and it has proven to
be a very effective and efficient method for a variety of re-
gression and classification problems. SBL can also be viewed
as an Empirical Bayes framework, where a type-II likelihood
or evidence is maximized to estimate the hyperparameters. It
has been shown that the SBL cost function retains a desirable
property of the £p-norm (counting measure) diversity measure
(i.e., the global minimum is uniquely achieved at the max-
imally sparse solution under certain conditions) while often
possessing a more limited constellation of local minima than
MAP estimation methods [2]. In [3] SBL was first introduced
for sparse recovery problem and from then on it has been used
as one of the efficient models for this problem because of its
huge improvement in performance over a traditional #; mini-
mization approaches like LASSO, reweighted ¢; method etc.

Other than SBL, sparse signal recovery problem can also
be viewed in a Bayesian setting as a maximum a-posteriori
(MAP) solution to a regression problem with the parameters

i.e. the regression coefficients having some prior sparse dis-
tribution (shown in Figure 1), which promotes sparsity. A
Laplacian prior over the coefficients in a MAP setting will
lead us to the same cost function as in LASSO [4]. This
framework is commonly known as the Type I method. In
this method using various sparse distributions over coeffi-
cients can lead us to a more sparse solution but the problem
of local minima arises, as the resultant sparse penalty func-
tion is a concave function. There are some recent works
which involves a Bound optimization technique over these
concave penalty functions using Majorization-Minimization
algorithm. But the exciting result in [5], that most of the
sparse priors over the coefficient vector can be represented as
a Gaussian Scale Mixture, opens up other options and leads
to a Hierarchical or commonly known as Type II framework.

In initial works, it was proposed to use a non informa-
tive prior over the scaling hyperparameter in a Gaussian
Scale Mixture (GSM). Though this approach performs con-
siderably better than the traditional ¢; norm minimization
approach, the question still remains can we use anything bet-
ter than a non-informative prior? To answer this question
in some recent works exponential prior over the scaling pa-
rameters were used to connect it back with LASSO, which
is named as Bayesian Lasso [6]. Demi-Bayesian Lasso has
also been proposed recently, which uses the SBL’s Type II
maximum likelihood approach. In [7] it has been shown that
SBL’s Type II maximum likelihood approach is equivalent to
MAP estimation where the prior on the parameters is ’non-
factorial”, which leads to a concave penalty function that
gives us more sparse solutions and because of the smoothness
of the landscape, global minima can be achieved without
much hindrance.

In this article we propose a maximum entropy density as
the prior over the variances which uses the information learnt
from the previous iteration efficiently to generate a weakly
informative prior instead of a flat non informative prior. This
helps us not only to converge faster but also to obtain more
sparse solutions because of an extra shrinkage term in the
cost function. Our proposed model is also more robust to the
pruning threshold than SBL. We also show that our model is
consistent with the analysis from [7], which proves that it will
promote exact sparse point estimates.



The rest of the paper is organized in the following way.
Section 2 summarizes the Bayesian frameworks for sparse
signal recovery problem for a detailed background, Section 3
presents the model and discusses how the bootstrapped prior
has been constructed, also presents the inference procedure
and Section 4 provides a theoretical justification of the model
and discusses why it promotes sparsity. Section 5 summa-
rizes the performance of the proposed model over synthetic
data. Finally, Section 6 concludes the paper and talks about
some future directions of this work.

|
<

ke 0 [Tipping, 2001]

Gaussian Distribution Sparse Distribution

Fig. 1. Example of Sparse Distribution

2. BACKGROUND

Here, we are concerned with the following linear generative
model,

y=>r+e€ (D)

where, ® € RV*M s a dictionary of unit £5 norm basis
vectors, y is the measurement vector, x is a vector of unknown
weights and e is uncorrelated Gaussian noise. For overcom-
plete dictionaries, i.e., when M > N and rank(®)= N, the
estimation problem is ill posed and sparsity constraints over
the weight vector x is needed. This sparsity constraint moti-
vates the problem to be viewed from a Bayesian point of view,
which involves putting a sparse prior over x.

The estimation problem can be easily solved now by ob-
taining a MAP estimate of x,

& = arg max p(yla)p(z) (2)

and these methods are referred as Type I methods, such as
£,-quasi-norm approaches [9], FOCUSS algorithm involving
Jeffreys prior [10, 11], LASSO involving a Laplacian prior
[12, 9] etc.

In recent works, there has been a new approach of using a
latent variable structure in a hierarchical bayes framework to

represent a more complicated sparse prior over z. The sparse
priors on z can be represented as, p(z) = [ p(z|y)p(y)dv,
allowing the random variable to be viewed in a hierarchy.
The framework allows for complicated models in a simple
manner and is indispensable as we move towards complex
problems with structure. This prior can be written as a Gaus-
sian scale mixture, p(z;) = [ N(0,v;)p(v;)dv; which in-
cludes the popular priors such the Laplacian and Student-t
distributions. Also we have the separability constraint, i.e,
p(z) = Hi\il p(x;). In estimation stage a MAP estimate
of v is sought and often justified by assuming that a non-
informative prior has been employed for p(~y). This method is
referred as Type II methods which integrate out the unknown
x and then solve,

g = arg mgxp(v\y) = argmax / p(ylz)N(0,7)p(v)dz
3)

3. PROPOSED MODEL

3.1. Choice of Priors on the variance of Gaussian Scale
Mixture

As we have discussed in the introduction, most of the sparse
priors over the coefficients can be represented as a Gaus-
sian Scale Mixture (GSM), p(z;) = [ N(x:;0,v:)p(v:)dvi,
where different choice of p(+;) will lead to a different sparse
distribution p(x) such as, Laplacian, Student-t distribution
etc. But the question we are trying to address here is which
p(7;) i.e. the prior over the variance should we choose, and
is there a generic choice? In the original work of Tipping,
it has been suggested to use a non informative prior over the
variances, or treat them as deterministic parameters. But,
we believe a better choice of this prior which has at least
some information encoded in it, can lead us to much faster
convergence along with more sparse coefficients.

3.1.1. How to create this prior?

1. To make this prior informative, the estimated values
of hyperparameters from SBL in an empirical bayes
framework can be used in an efficient way. This choice
leads us to a bootstrapped version.

2. We can use that estimated values of v as sample mean
and generate a maximum entropy density as our prior.

Before we go into more details of this bootstrapped prior,
we will discuss about the Maximum Entropy Density frame-
work very briefly.

3.1.2. Maximum Entropy Distribution

A maximum entropy density is obtained by maximizing the
the Shanon’s Entropy measure given some moment con-



straints.
max H(p(x)) = max — /p(a;) Inp(x)dzx “4)

with constraints, E[¢;(z)] = [ ¢;(z)p(z)dx = p;.
The solution dlstrlbutlon of this problem is given as,

p(a) o ewp|— Z Ajbj(@)] (5)

3.1.3. Bootstrapped Prior

In our problem we will use the previously obtained estimates

of the variances from Empirical Bayes as sample mean of

these hyperparameters. We will use this sample mean as the

single moment constraint and formulate the maximum en-

tropy prior. As we are using the previously estimations to cre-

ate this prior, we will name it as a Bootstrapped Prior, which

is given as,
1 i

p() =[] ean(-=) (©6)

7

where, v* are the estimated variances from the empirical
bayes framework.

3.2. Bootstrapped SBL

Here we will discuss the different stages sequentially of this
Bootstrapped SBL framework:

1. Run SBL with a non informative prior over -y for few
initial iterations to obtain the initial estimates y*.

2. Use the initial v* estimates to create a weakly infor-
mative prior using the maximum entropy framework,
which leads to an exponential distribution (equation 7).

3. Finally run SBL in a Hierarchical Bayesian framework
with the informative bootstrapped prior over .

3.3. Inference Procedure

In the inference procedure MAP estimates of both the coeffi-
cient vector x and v are sought. For estimation of ~,

4 = arg mgxp(vly) = argmax / p(ylz)p(|y)p(y)de

—argmlny E Yy +In|%, \—f—Zf (vi)

=1
(N
Where, f(vi) = —2lnp(y) and ¥, = M + OT®T,
where ' = diag(y) and X\ is the variance of Gaussian
noise €. For estimating x we will compute the posterior,

p(zly; ') = N(z; p, X) Where,

p=TOT (N + oTdT) "1y (8)
Y =T-ToT (A +oTd")"'oT )

We can use & = p as the point estimate of the coefficient
vector. To estimate v we have to solve the optimization prob-
lem described in equation (7). Because of the space constraint
we will not go into the details of the optimization procedure.
For details please refer to reference [3]. Like SBL, we also
treat our coefficient vector as the hidden data and employ an
EM algorithm with the above discussed bootstrapped prior
over the variances and the update rule of the variances has the
form:

N = (/1’]+ij)
J
1+\/1+ (12 + 2j5)

(10)

4. THEORETICAL JUSTIFICATION

To show that our proposed model promotes exactly sparse
point estimates, we will use the approach discussed in [13]
to revert back our type II problem in a type I setting and will
show that the originated penalty function satisfies the required
properties that will promote sparsity.

Now using the following relationship in (7),

1
y"'S, 1y = min Ty = Dzl + 27T (1)

as in [13], we can show that the Type II coefficients can
be obtained by solving the following problem,

xH:argminLH(x) (12)

where,
Lii(z) = [ly — ®x||3 + Agri () (13)

and,
g1 _mmZ—HnlEyHZm (14)

with, f(v:) = —2In P(y;).
So using bootstrapped prior we get,

f) =2nqf +22 (15)
i
which is a concave and non decreasing function. This is a
sufficient condition as shown in [13] for g;;(z) to be a con-
cave and non-decreasing function of |z|. Hence it will lead to
a point sparse estimate of z, i.e the coefficients.
Now in a Type II framework after using this bootstrapped
prior the cost function in 7 space becomes,

Lrr(y) =[Sy + 975,y + > 3—] (16)
;i



The key difference of this cost function from SBL is the
last term, which is a result of the bootstrapped prior over 7.
It can be thought of an extra shrinkage term which facilitates
the pruning process to obtain sparse estimate.

5. SIMULATION RESULTS

To validate our model, we will use some synthetically gener-
ated data and we will compare the recovery performance with
the traditional Sparse Bayesian Learning algorithm. Compar-
ison of SBL with other well known Sparse signal recovery
algorithms such as LASSO, reweighted ¢; minimization or
reweighted /2 minimization can be found in recent literatures
[2, 3].

5.1. Problem Specification

We will generate the measurement vector y usinga N x M =
25 x 100 dictionary ®, whose elements are generated from a
normal distribution with mean=0 and variance=1. Hence we
can say that Spark measure of the dictionary matrix will be
(N + 1) = 26. In our coefficient vector z of dimension 100
we will have randomly placed &£ = 8 non zero elements. We
will present these generated measurements and the dictionary
to our algorithm. The estimated coefficients will then be com-
pared with the original 4., that has been used to generate the
measurement. Now as k < % we can say that there will be
a unique sparse coefficient vector z. For noisy cases we will
also present the SNR to our algorithm and like SBL we will

use a fixed noise variance value during the estimation stage.

5.2. Estimation Performance

Following the previously discussed experimental setting we
perform these experiments for different SNR and present the
averaged performance over 1000 instances for SBL and ME-
SBL (Proposed method: Max Entropy SBL). Figure 2 shows
the average number of non zero coefficients for both the mod-
els. Its evident that for noisy environment ME-SBL outper-
forms SBL as it gives a more sparse estimate by pruning the
coefficient vector more efficiently, which could be because of
the extra shrinkage term that has been shown in the type II
cost function. Figure 3 shows the normalized mean square
error for both the models and again we can see that ME-SBL
outperforms SBL in noisy cases when SNR is low. This result
proves that ME-SBL is actually pruning out the unnecessary
coefficients which results in less number of non zero elements
and also reduced normalized mean square error. We believe
that for more large scale problem, that we have been working
on, this performance difference will be more noticeable.

Another major advantage of the proposed model is its less
sensitivity to the pruning threshold, which makes it a more
robust choice.
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Fig. 2. Average number of non zero coefficients in the esti-
mate
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Fig. 3. Normalized mean square error plot for different SNR

6. CONCLUSION

In this paper we proposed a new variant of Sparse Bayesian
Learning and addressed an important question of the choice of
the prior over the variance in SBL. We have also shown the-
oretically, borrowing some analysis from relevant work that
this bootstrapped prior promotes point sparse estimates. Ex-
perimentally also it performs better than SBL in noisy envi-
ronments, as shown in our simulation results. We can also
establish a connection of the proposed model with a deter-
ministic weighted ¢ norm minimization approach. A detailed
analysis of this and efficient optimization algorithms will be
a topic of our future works.
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