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Abstract—This paper proposes a detector for large-scale
multiple-input multiple-output (MIMO) systems for 16-QAM
constellation and channel knowledge at the receiver. The detector
is composed of multiple stages. During the first stage, linear
MMSE filter is employed and nearest neighbor quantization is
performed resulting in a sub-optimal estimate. In the second
stage, the residual in the measurement vector is calculated and
the subsequent detector works on the error vector which has
additional structure. The error vector is often sparse (has few
non-zero components) with the all-zero and lowest energy errors
having the largest priors. Large number of antennas reduces
the dependencies between error and noise vectors and allows
the residual detection problem to be modeled as a linear inverse
problem with sparse regularizer. The familiar sparse structure
motivates the application of Sparse Bayesian Learning method
in the detection. The resulting detector shows promise: the SNR
gain over MMSE receiver is ∼ 10 dB at a bit error rate (BER)
of 10−3 for 16-QAM 16× 16 system.

Index Terms—MIMO detection, sparsity, sparse bayesian
learning, MMSE residual

I. INTRODUCTION

Multiple-input multiple-output (MIMO) antenna systems
have attractive diversity and capacity gains [1]. In the near
future, large MIMO systems with tens and even hundreds of
antennas will be promising due to high spectral efficiency.
Massive MIMO is reflective of a base station with large
number of antennas communicating with many single-antenna
mobile terminals. Let Nt and Nr be the number of transmit
and receive antennas respectively. The complex baseband
received vector for this MIMO system in ideal flat fading,
rich scattering environment can be represented as

y = Hcxc + nc (1)

Where xc ∈ QNt is the transmit vector with Q being the M-
QAM modulation alphabet. The received vector is given by
yc ∈ CNr . Hc is the Nr × Nt channel gain matrix that is
perfectly known at the receiver. Its elements are i.i.d. with
distribution CN (0, 2). The entries of noise vector nc are also
i.i.d. with distribution CN (0, 2σ2

n). For clarity, the problem
will be transformed into real domain[
<(yc)
=(yc)

]
=

[
<(Hc) −=(Hc)
=(Hc) <(Hc)

] [
<(xc)
=(xc)

]
+

[
<(nc)
=(nc)

]
(2)
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Fig. 1: MMSE-LRR Sequential detector.

y = Hx + n (3)

Let N = 2Nt = 2Nr. Then, x ∈ PN is the transmit vector
where P is

√
M -PAM modulation alphabet. H is now N ×N

whose entries come from N (0, 1). Elements of n now come
from N (0, σ2

n). Finally, y ∈ RN .
Since noise is Gaussian and transmit priors are uniform,

MIMO detection problem can be formulated as minimization
of the following l2 norm

x̂ML = arg min
x∈PN

‖y −Hx‖2 (4)

One of the key challenges in large MIMO systems is the
solution of (4). Global ML-detection is NP-hard problem [2]
and is not feasible for large number of antennas. Sphere
decoding detectors offer reduction in complexity [3] , but are
still very expensive [4]. Several reduced complexity iterative
MIMO detectors have been proposed in the past that achieve
mixed results for various conditions ( [5]–[10]).

Recently, a novel low-complexity LRR (Linear Regression
of MMSE Residual) receiver has been proposed [11]. This
LRR method consists of two stages as shown in Fig. 1
where Q(.) implies nearest neighbor quantization. During
the first stage, a classic linear minimum mean square error
(MMSE) filter is applied to the received vector and the result
is quantized. During the second stage, another linear MMSE
filter is applied to the quantized residual of the first estimate.
Then, the output of the LRR filter is added to the original
estimate and the result is quantized. The additional LRR
stage results in significant performance improvement for a
manageable increase in complexity of the receiver [11].

This paper will build upon this idea of sequential residual
detection by exploiting the structure of the quantized error
vector. It will be shown that the error vector following MMSE
filter usually will have only few non-zero components. This
sparsity is amplified as the number of antennas increases. If
the dependency between the error vector and the thermal noise
is relaxed, MAP estimate of quantized error can be posed as a
linear inverse problem with sparse constraint. Sparsity in the
context of coding theory was developed in [12] and was used



Fig. 2: MMSE-SBL Sequential detector.

Fig. 3: MMSE-LRR-SBL Sequential detector.

for MIMO detection very recently in [13], but to the best of
our knowledge was never applied to MMSE residual.

Various approaches from compressed sensing can be used
to solve the resultant MAP equation [14]–[17]. Unfortunately,
highly sparse constraints increase the number of local minima
[18] which results in convergence errors for these algorithms.
Sparse Bayesian Learning (SBL) approach that was first
introduced in [19] for classification and applied in [18] to
signal processing is well suited for handling local minima at
the expense of increased complexity.

In this work we examine two sequential large-scale MIMO
receivers. First receiver in Fig. 2 consists of MMSE detector
followed by SBL detector of MMSE residual. The second
receiver in Fig. 3 consists of MMSE, LRR and SBL detectors.
The results are compared to the MMSE-LRR detector from
[11] and the classic successive interference canceler first
presented in [20] and optimized in [21]. The results show
promise for sequential detectors in the context of large MIMO
systems.

This paper is organized as follows: section II goes over
the MMSE-LRR detector. Section III analyzes the structure
of the MMSE residual to set the stage for the application of
SBL method in section IV. Simulation results are presented in
section V followed by conclusion in section VI.

II. MMSE-LRR DETECTOR

First stage of the low-complexity detector in Fig. 1 is the
linear minimum mean square error (MMSE) receiver [22]
given by

Gmmse = arg min
G

E
[
‖x−Gy‖2

]
(5)

The resultant MMSE filter has the following form ( [23] [22])

Gmmse = ΣxyΣyy
−1 =

√
N

σ2
s

(
HTH +

N

ρ
I

)−1
HT (6)

Where σ2
s is the average signal energy and ρ =

σ2
s

2σ2
n

is the
average SNR at the received antenna. The quantized MMSE
estimate is given by x̂ = Q (Gmmsey). MMSE receiver is not
optimal and residual can be formed

ỹ = y −Hx̂ = Hx̃q + n where x̃q = x− x̂ (7)

The LRR filter in [11] then performs another linear MMSE
estimate of this residual.

Gres = Σx̃qỹΣỹỹ
−1 (8)

x̂ = Q(xmmse + Gresỹ) (9)

Where local training is used to empirically estimate the
correlation matrices Σx̃qỹ and Σỹỹ [11]. This two-stage solu-
tion performs well. For 16 × 16 16-QAM system, additional
detector has gain of 7 dB over MMSE for BER of 10−3

[11]. The LRR stage gives a best linear estimate of the error
vector ignoring the additional problem structure. Next section
explores the properties of the MMSE residual that will be used
to improve the subsequent detector.

III. ANALYSIS OF MMSE RESIDUAL

The quantized error vector x̃q in (7) is discrete and comes
from another constellation as shown in Fig. 4. The error
constellation represents the differences between all of the
original constellation pairs and its cardinality is equal to
(2
√
M − 1)

2
for the square M-QAM modulation. Elements of

x̃q have few additional properties. Origin is one of the error
constellation points and reflects the correct detection by the
MMSE receiver. Probability mass function (pmf) of the new
constellation will no longer be uniform and will be dependent
on the SINR at each stream. The interference term following
MMSE must be examined to understand the structure of the
pmf. The un-quantized output following MMSE filter is given
by

x̂ = GmmseHx + Gmmsen = Fx + Gn (10)

After proper scaling, each stream looks like

x̂i = xi +
1

Fii

∑
k 6=i

Fikxk +
1

Fii

∑
k

Giknk (11)

For even moderate N , the co-channel interference term involv-
ing xk can be approximated by Gaussian distribution. Mean
of xk and nk is zero by definition. Consequently the overall
noise term will be zero-mean Gaussian

x̂i = xi + zi z = N (0,Σx̃x̃)

Σx̃x̃ = ( ρNHTH + I)
−1

γi = 1
(HHHρ+I)−1

ii

− 1
(12)

Where Σx̃x̃ is the MSE matrix and γi is the SINR at each
stream [22]. The probability of mistaking xk = b if xk = a
was transmitted will be given by the q-function

p(b|a) = Q

(
|b− a|

√
3γk
M − 1

)
(13)
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Fig. 4: Original 16-QAM constellation (blue squares) and error constel-
lation (red circles).
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Fig. 5: Quantized error priors of 16-QAM signal following MMSE for
SINR of 5 dB.

Q(w) =
1

2π

∫ ∞
w

exp

(
−w2

2

)
dw (14)

Probability of error x̃qk = b−a will then be a scaled version of
(13). Even for moderate γk the error prior will drop off quickly
with the increase in |b− a|. Consequently, we can expect the
zero error prior to have largest weight and the bulk of errors
to be the nearest neighbor data points. Experimental results
confirm this as shown in Fig. 5. In order to apply the Bayesian
methods with separable prior and tractable optimization, we
need them to be uncorrelated. The error covariance is provided
by Σx̃x̃ in (12). Since the elements of the channel matrix are
modeled as i.i.d Gaussian, HTH/N → I as N increases and
the diagonal of Σx̃x̃ becomes more dominant as shown in Fig.
6.

With error priors focused on zero and low correlation
between x̃qi we can expect x̃q to be sparse for large N . Fig.
7 shows probability vs. sparsity of x̃q for 16-QAM, 16 x
16 antenna system. It is evident from the plot that with the
increase in SNR, the error vector becomes extremely sparse.
In the next section we will take advantage of that property in
the subsequent detector.

IV. SPARSE BAYESIAN LEARNING OF MMSE RESIDUAL

We will examine the detector shown in Fig. 2. Given
the residual equation (7) the subsequent detector attempts to
maximize the following log-posterior

ˆ̃xq = argmax
x̃q

logP (x̃q|ỹ)

= argmax
x̃q

logP (ỹ|x̃q) + logP (x̃q) (15)
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Fig. 6: Average normalized magnitude of MSE matrix following MMSE
for N=16 (a) and N=64 (b).
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Fig. 7: Probability that quantized error vector following MMSE has a
given number of non-zero components for 16-QAM 16× 16 system for
various SNR.

Where the prior P (x̃q) is sparse and can serve as a regularizer
to aid in optimization. This sparse constraint comes at the
expense of correlation between the original thermal noise n
and x̃q . Additionally, covariance of x̃q is no longer white
and x̃q is still discrete. In order to simplify (15) we need
to relax these constraints. In section III it was determined
that the correlation among the elements of x̃q decreases as
N increases. This inclines us to replace the joint pmf of the
quantized error vector by a product of one dimensional priors

P (x̃q) =

Nt∏
i=1

P (x̃qi ) (16)

Next, we will attempt to replace the sparse discrete pmf by a
sparse continuous pdf hoping that the sparsity of the constraint
will compensate for the relaxation. Finally, we will ignore the
dependency between the noise and the error vector

P (n|x̃q) ∼ P (n) (17)

These assumptions result in the following cost function

ˆ̃xq = argmin
x̃q
‖ỹ −Hx̃q‖22 + λ

Nt∑
i=1

g(x̃qi ) (18)

Where function g(x̃qi ) reflects the structure of logP (x̃qi ) and
λ = σ2

n. Optimization problem (18) is a linear inverse problem
with sparse constraint that arises in the area of compressed
sensing. These types of problems are generally solved in two
different ways: MAP estimation (Type I) and Hierarchical
Bayesian (Type II) approaches.

Direct minimization of (18) leads to Type I (MAP esti-
mation). Numerous approaches were developed that reflect
various degrees of sparsity represented by g(x̃qi ). Example
priors are l1 norm that reflect laplacian prior ( [15], [24]), lp
norm with (p ≤ 1) ( [16], [25]) and Jeffrey’s prior [17]. These
approaches generally can have fast convergence rates with
one significant drawback. As the sparsity increases the sparse
regularizer becomes concave and overall problem is no-longer
convex. For highly sparse constraints such as Jeffrey’s prior a
lot of local minima emerge. These MAP methods easily get
stuck in local minima and result in convergence error. Besides,
our model in (15) is a relaxation of the actual posterior and
the minimization algorithm should be less sensitive to the
additional complexity that was ignored.



Hierarchical Bayesian framework attempts to address these
deficiencies by introducing additional latent variables. Many
concave functions can be represented as a Gaussian Scale
Mixture (GSM) in the following manner [26]

P (x̃qi ) =

∫
P (x̃qi |γi)P (γi)dγi =

∫
N(x̃qi ; 0, γi)P (γi)dγi

(19)
Where P (γi) dictates the actual shape of P (x̃qi ). Remember
that x̃qi was made continuous. Using this decomposition one
can view x̃qi as nuisance parameters that can be integrated out
to find the scale mixture that most closely reflects the residual
ỹ across all possible x̃qi

γ̂ = argmax
γ

∫
P (ỹ|x̃qi )

∏
i

P (x̃qi |γi)P (γi)dx̃
q (20)

Integral in (20) can be solved in closed form, resulting the
following Type II optimization [19]

γ̂ = argmin
γ

log |Σỹ|+ ỹTΣỹỹ +
∑
i

logP (γi) (21)

Where Σỹ = λI + HΓHT and Γ is a diagonal matrix with
Γii = γi. The last term involving the priors of the latent
variables is generally ignored [19]. Even without the last term
the minimization cannot be performed in closed form and
expectation minimization (EM) or fixed point (FP) algorithm is
used [19]. EM method requires the knowledge of the posterior
of the hidden variables which can be calculated in closed form

P (x̃q|ỹ; γ) =

P (ỹ|x̃q)
∏
i

P (x̃qi |γi)∫
P (ỹ|x̃q)

∏
i

P (x̃qi |γi)dx̃q
= N(µx,Σx)

(22)
Where the posterior mean and covariance are given by

µx = ΓHT (λI + HΓHT )
−1

ỹ

Σx = Γ− ΓHT (λI + HΓHT )
−1

HΓ (23)

The expectation step in the EM algorithm can then be repre-
sented as [18]

E step: Ex̃q|ỹ;γk [log p(x̃q, ỹ; γ)]→ update Σx , µx

(24)

Followed by maximizaton step

M step: γ(k+1)
i = arg max

γi≥0
Ex̃q|ỹ;γk [log p(x̃q, ỹ; γ)]

= Ex̃q|ỹ;γk [(x̃q)
2
] = (Σx)ii + (µx)

2
i

(25)

Then, as a final step nearest neighbor quantization is per-
formed using the posterior mean µx and the original MMSE
estimate

x̂MMSE-SBL = Q(xmmse + µx) (26)

The SBL algorithm can perform much better than Type I
methods because local minima are smoothed away [18]. The
increase in performance comes at the expense of complexity.
Each EM step contains a matrix multiplication and a matrix
inversion. If K is the maximum number of EM iterations,

then the upper bound on the overall complexity of SBL step
is O(KN3) . By varying K one can trade off performance
and complexity.

In the simulations that follow we have also attempted the
SBL step following the LRR stage as was shown in Fig. 3

x̂MMSE-LRR-SBL = Q(xLRR + µx) (27)

V. SIMULATION RESULTS

First, four detectors were examined: MMSE, MMSE-LRR
[11], MMSE-SBL and SIC [21]. Fig. 8 shows the BER for
these detectors for 16-QAM modulation and 16× 16 (a) and
64× 64 (b) antenna systems respectively. Symbols were gray
encoded for each stream. Maximum number of SBL iterations
was limited to 50. Local training to generate LRR filter was
limited to N2 as in [11]. For lower dimension (a), MMSE-
LRR detector outperforms MMSE-SBL by 2 dB at BER 10−3.
Worse performance of MMSE-SBL could be explained by
simplification of the MAP equation (15) made in section IV.
Correlation between some of the elements of x̃q might still
be significant as well as the dependency between the noise
n and x̃q . As the number of antennas increases to 64, the
average correlation drops and the cost function (18) is closer
to the actual posterior. In this case MMSE-SBL outperforms
MMSE- LRR by 1 dB at BER 10−3. SIC detector outperforms
both MMSE-SBL and MMSE-LRR in either case.

In the second case, we decided to put SBL and LRR stages
in sequence and compare its performance to MMSE-LRR and
SIC. BER results for the same simulation settings are shown
in Fig. 9. SBL stage gives additional 2 dB (a) and 5 dB (b) of
performance boost over LRR at BER 10−3. We observe in Fig.
9b that MMSE-LRR-SBL finally outperforms SIC for large
number of antennas by 3 dB. Both LRR and SBL detectors
perform better with low correlation among the elements of the
error vector, but deal with it in different ways. LRR detector
spreads the interference across the elements whereas our SBL
algorithm ignores it and focuses on the sparsity of the error
vector. Different behavior of these two methods allows them
to be placed in sequence. SIC detector also benefits from
the low correlation among the transmit elements, but this
is quickly compensated by a large number of errors when
incorrect detection occurs early on and its effect is propagated
to subsequent streams. Due to this weakness, SIC cannot take
advantage of the increased diversity in the same manner that
LRR and SBL can.

The simulations are also being performed for 64-QAM
system and will be presented in the follow up work.

VI. CONCLUSION

We have examined the MMSE error vector and came to a
conclusion that it is often sparse. This property was exploited
to cast the log posterior of the error vector in the form of
linear inverse problem with a sparse constraint. Then, Sparse
Bayesian framework was used and EM algorithm utilized to
improve the estimate of the transmit vector. SBL detector in
sequence with LRR stage shows promising results for large
number of antennas and 16-QAM constellations. The subject
of the future work will be to get a better representation
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Fig. 8: BER vs. average received SNR at the antenna for 16-QAM 16×16
(a) and 64× 64 (b) systems for MMSE, MMSE-LRR, MMSE-SBL and
SIC receivers.
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Fig. 9: BER vs. average received SNR at the antenna for 16-QAM 16×16
(a) and 64×64 (b) systems for MMSE, MMSE-LRR, MMSE-LRR-SBL
and SIC receivers.

of (15) by accounting for the dependencies between the
variables. Then, EM algorithm will be optimized to reduce
the complexity of the SBL stage. The optimal sequence of
detectors will also be analyzed.
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