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Abstract—We use the approximate message passing framework
(AMP) [1] to address the problem of recovering a sparse
vector from undersampled noisy measurements. We propose an
algorithm based on Sparse Bayesian learning (SBL) [2]. Unlike
the original EM based SBL that requires matrix inversions, the
proposed algorithm has linear complexity, which makes it well
suited for large scale problems. Compared to other message
passing techniques, the algorithm requires fewer approximations,
due to the conditional Gaussian prior assumption on the original
vector. Numerical results show that the proposed algorithm has
comparable and in many cases better performance than existing
algorithms despite significant reduction in complexity.

I. INTRODUCTION

In the basic single measurement vector (SMV) sparse signal
recovery problem, we wish to reconstruct the original sparse
signal xxx ∈ RN from M ≤ N noisy linear measurements
yyy ∈ RM :

y = Ax+ e,y = Ax+ e,y = Ax+ e, (1)

where AAA ∈ RN×M is a known measurement matrix and
eee ∈ RM is the additive noise modeled by eee ∼ N (0, σ2III).
If xxx is sufficiently sparse and AAA is well designed, accurate
recovery of xxx is possible.
While this SMV model has a wide range of applications,
such as magnetic resonance imaging (MRI), direction of
arrival (DOA) estimation and electroencephalography (EEG)/
magnetoencephalography (MEG). The model can be extended
to address the case when multiple measurement vectors are
available. The multiple measurement vector (MMV) model
can be used for a number of applications, such as DOA
estimation and EEG/MEG source localization. The MMV
model is described by:

Y = AX + E,Y = AX + E,Y = AX + E, (2)

where YYY , [Y.1Y.1Y.1, ...,Y.TY.TY.T ] ∈ RN×T is the
measurement matrix containing T measurement vectors,
XXX , [X.1X.1X.1, ...,X.TX.TX.T ] ∈ RM×T is the unknown source matrix.
And EEE is the unknown noise matrix. In this model we
assume a common sparsity profile, which means that the
support, which is the location of non zero elements, in XXX is
identical across all columns. In practice it was also found
that the different measurement vectors experience temporal
correlation. It was found in [3] that exploiting this temporal
correlation will yield superior performance when compared
to solving the MMV problem while assuming independent

vectors.

Compared to other techniques such as greedy algorithms,
mixed norm optimization and reweighted algorithms, using
Bayesian techniques for sparse signal recovery generally
achieves the best performance. Among these Bayesian
algorithms is the sparse Bayesian learning algorithm (SBL)
which was first introduced by Tipping [4] and then used for
the first time for sparse signal recovery by Wipf and Rao [2].
SBL has some appealing properties since its global minimum
was proven to be at the sparsest solution [2], unlike l1 based
algorithms. And it was also proven to have less number of
local minima when compared to classical recovery algorithms
such as the FOCUSS algorithm [5]. However, the SBLs
complexity level makes it unsuitable for the use on large
scale problems such as imaging for example. In this work,
we develop an algorithm based on the same assumptions used
in SBL, but use the belief propagation method proposed in
[6] to recover the sparse signal. Compared to the original EM
based SBL which requires matrix inversions, the proposed
approach results in linear complexity, which makes it suitable
for large scale problems.

The approximate message passing algorithm was first intro-
duced by Donoho, Maleki and Montenari in [1]. The algorithm
uses loopy belief propagation to solve the l1 minimization
problem. It uses the central limit theorem to approximate all
messages on the factor graph by Gaussian messages, which
requires keeping track of the mean and variance of these
messages instead of calculating the actual message at each
step. The technique also uses Taylor series approximation to
reduce the number of messages even further. The authors also
provided a framework to apply the algorithm to Bayesian
techniques. The use of a Bayesian framework with belief
propagation was proposed previously in [7] [8]. However,
because of the Bernoulli-Gaussian or Gaussian mixture priors
imposed on the original vector xxx, several approximations had
to be made in order to make all the messages on the factor
graph Gaussian. On the other hand, the SBL conditional
Gaussian prior employed in our approach, results in Gaussian
messages all over the graph, without the need for approx-
imations. In addition to that, the Gaussian prior results in a
much simpler model, and easier message scheduling especially
when we consider the case of multiple measurements with time
correlation.
Our numerical results show that the proposed algorithm has



comparable performance to other algorithms and in many
cases performs slightly better, while reducing the complexity
significantly and simplifying the model.

II. SMV AMP-SBL
As mentioned before, in this work we will follow the

assumptions of the original SBL algorithm. SBL assumes the
Gaussian liklihood model:

P (yyy | xxx;σ2) = (2πσ2)−
N
2 exp(− 1

2σ2
‖y −Axy −Axy −Ax‖2) (3)

Using a hierarchical Bayesian framework, it was shown
in [9] that a number of sparsity promoting priors can be
represented using a Gaussian scale mixture. A conditional
Gaussian prior is imposed on P (xxx;γγγ), and the desired prior
on P (xxx) can be obtained by changing the prior on P (γγγ). In
the SBL case, a non-informative prior is assumed on γγγ. The
conditional prior on xxx becomes a parametrized Gaussian (4),
where the parameter vector (γγγ) can be learned from the data.

P (xxx;γγγ) =

N∏
n=1

(2πγn)−
1
2 exp(− x2n

2γn
) (4)

This prior was shown in [4] to be a sparsity promoting prior
on xxx. And since it is Gaussian when conditioned on γγγ, it is
appealing to use with the AMP framework.

Based on the previous assumptions and using (5), we can
construct the factor graph in figure 1.

P (xxx | yyy) = P (yyy | xxx)P (xxx;γγγ) (5)

Where gm = P (ym | xxx) and fn = P (xn; γn).
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Fig. 1: AMP SBL Factor Graph

Since all the functions on the factor graph are Gaussian
pdfs, it will be shown that all the messages passed by the sum
product algorithm are also Gaussian, and we only need to keep
track of the mean and variance of these messages.

Vfn→xn(xn) ∝ fn(xn; γn) (6)

Vgm→xn(xn) ∝
∫
x−n

gm(xn)
∏
q 6=n

Vxq→gm(xn) (7)

Where
∫
x−n

denotes the integration over all xi, i 6= n. When
Vxq→gm(xn) ∝ N (xq;µqm, vqm), we use the following fact:

∏
q

N (x;µq, vq) ∝ N (x;

∑
q µqv

−1
q∑

q v
−1
q

,
1∑
q v
−1
q

) (8)

And the mean and variance of a message from the factor node
gm to the variable node xn becomes:

Vgm→xn ∝ N (Amnxn; znm, cnm); (9)
Where

znm = ym −
∑
q 6=n

Amqµqm (10)

cnm = σ2 +
∑
q 6=n

|Amq|2vqm (11)

Next we compute the message from a variable node xn
to a factor node gm. And by using (8) again, this message
corresponds to a Gaussian pdf, and we only need to evaluate
its mean and variance.

Vxn→gm ∝ Vfn→xn
∏
l 6=m

Vgl→xn (12)

∏
l 6=m

Vgl→xn ∝ N (xn;

∑
l 6=mAlnzln/cln∑
l 6=m |Alm|2

,
1∑

l 6=m |Alm|2
)

(13)

In the large system limit we approximate cln by:

cln ≈ cn ,
1

M

M∑
m=1

cmn (14)

And the mean and variance of Vxn→gm are given by:

µnm =
∑
l 6=m

Alnzln(
γn

cn + γn
) (15)

vnm =
cnγn
cn + γn

(16)

Finally, we can estimate the posterior P (xn | yyy) using:

P (xn | yyy) ∝ Vfn→xn
M∏
l=1

Vgl→xn ∝ N (xn;µn, vn) (17)

µn =

M∑
l=1

Alnzln(
γn

cn + γn
) (18)

vn =
cnγn
cn + γn

(19)

The analysis above can be considered a simplified version of
the analysis in [11] which assumes a Bernoulli-Gaussian prior
on xxx. We then use the same Taylor series approximation given
by the original AMP algorithm, and summarize one iteration of
the AMP-SBL algorithm in Table1. This process is repeated,
until we reach a stable solution, or until a predetermined
maximum number of iterations are completed.



As we discussed earlier, we will need to learn γγγ from the
data, and to do this we use the EM algorithm which is also
used in the original SBL. The EM updates can be found by:

γ(i+1)
n = argmax

γn
Exxx|yyy;γγγ(i),σ2 [P (yyy,xxx;γγγ, σ2)] (20)

= argmax
γn

Exxx|yyy;γγγ(i),σ2 [P (yyy | xxx;σ2)P (xxx;γγγ)] (21)

= Exxx|yyy;γγγ(i),σ2 [x2n] (22)

= µ2
n + vn (23)

The EM algorithm will also be used to find the noise
variance σ2 in the case that it is unknown.

σ2(i+1)
= argmax

σ2
Exxx|yyy;γγγ,σ2(i) [P (yyy,xxx;γγγ, σ2)] (24)

(25)

The derivation is very similar to the original SBL one [2]
and yields a very similar result:

σ2(i+1)
=
‖yyy −AAAxxx‖2 − σ2

∑N
n=1(1− (γn)−1vn)

M
(26)

Definitions
Fn(Kn, c) = Kn(

γn
c+γn

)

Gn(Kn, c) = ( c.γn
c+γn

)

F ′n(Kn, c) = ( γn
c+γn

)

Message updates
Kn =

∑M
m=1 A

∗
mnzm + µn

µn = Fn(Kn, c)
vn = Gn(Kn, c)

c = σ2 + 1
M

∑N
n=1 vn

z
(t)
m = ym −

∑N
n=1 Amnµn + zm

M

∑N
n=1 F

′
n(µn, c)

Parameter updates
γn = Vn + µ2n

σ2(i+1)
=
‖yyy−AAAxxx‖2−σ2 ∑N

n=1(1−(γn)
−1vn)

M

TABLE I: AMP SBL Algorithm

III. MMV AMP-TSBL

The original single vector SBL can be extended for the
case of multiple measurement vectors (MMV). In [10] the
case of independent measurements was studied. However,
since the extension to the independent measurement case is
straight forward, and it can be considered a special case of the
time correlated multiple measurements that share a common
support, we will only discuss the time correlated case in this
section. The above factor graph can be extended in accordance
to the following model:

y(t) = Ax(t) + e(t)y(t) = Ax(t) + e(t)y(t) = Ax(t) + e(t), t = 1, 2...T (27)

x(t)x(t)x(t) ∈ CN, y(t)y(t)y(t) ∈ CM (28)

The model can be restated as:

ȳ = D(A)x̄+ ēȳ = D(A)x̄+ ēȳ = D(A)x̄+ ē (29)

Where ȳ̄ȳy , [y(1)
>
, y(2)

>
.., y(T )>y(1)

>
, y(2)

>
.., y(T )>y(1)

>
, y(2)

>
.., y(T )> ], x̄̄x̄x , [x(1)

>
, x(2)

>
.., x(T )>x(1)

>
, x(2)

>
.., x(T )>x(1)

>
, x(2)

>
.., x(T )> ],

ē̄ēe , [e(1)
>
, e(2)

>
.., e(T )>e(1)

>
, e(2)

>
.., e(T )>e(1)

>
, e(2)

>
.., e(T )> ] and D(A)D(A)D(A) is a diagonal matrix

constructed from T replicas of AAA.

P (x̄ | ȳx̄ | ȳx̄ | ȳ) ∝
T∏
t=1

[
M∏
m=1

P (y(t)m | x(t)x(t)x(t))

N∏
n=1

P (x(t)n | x(t−1)n )

]
(30)

We can now construct the factor graph in figure 2.
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Fig. 2: AMP TSBL Factor Graph

Where:

g(t)m (xxx) = P (y(t)m | x(t)x(t)x(t)) = N (y(t)m ; aHmx
(t)x(t)x(t), σ2) (31)

and we model the temporal correlation between measurement
vectors by an AR(1) process, with correlation coefficient β:

f (t)n (xn) = P (x(t)n | x(t−1)n ) = N (x(t)n ;βx(t−1)n , (1− β2)γn)
(32)

The derivation of messages within each measurement vector
is very similar to the SMV case and will not be shown here
due to space considerations. We will only show the derivation
of messages passed between different measurement vectors.
Again in this factor graph, all of the messages are Gaussian,
and we only need to keep track of the mean and variance of
each message. We start by finding the messages from factor
nodes to neighboring variable node in the forward direction:

V
f
(1)
n →x(1)

n
∝ N (x(1)n ; 0, γn) (33)

V
f
(t)
n →x(t)

n
∝ N (x(t)n ; η(t)n , ψ(t)

n ) (34)

∝
∫ ( M∏

l=1

V
g
(t−1)
l

→x(t−1)
n

)
V
f
(t−1)
n →x(t−1)

n
P (x(t)n | x(t−1)

n ) dx(t−1)
n

(35)



∝
∫ (∏M

l=1N (x
(t−1)
n ;µ

(t−1)
n , v

(t−1)
n )

)
N (x

(t−1)
n ; η

(t−1)
n , ψ

(t−1)
n )

×N (x
(t)
n ;βx

(t−1)
n , (1− β2)γn) dx

(t−1)
n (36)

Where:

µ(t)
n =

M∑
l=1

A∗lnz
(t)
ln , v

(t)
n = c(t)n =

1

M

M∑
m=1

c(t)mn (37)

Using rules for Gaussian pdf multiplication and convolution
we get:

η(t)n = β

(
µ
(t−1)
n

v
(t−1)
n

+
η
(t−1)
n

ψ
(t−1)
n

)(
v
(t−1)
n ψ

(t−1)
n

v
(t−1)
n + ψ

(t−1)
n

)
(38)

ψ(t)
n = β2

(
v
(t−1)
n ψ

(t−1)
n

v
(t−1)
n + ψ

(t−1)
n

)
+ (1− β2)γn (39)

We now find the message updates between vectors in the
backward direction:

V
f
(t+1)
n →x(t)

n
∝ N (x(t)n ; θ(t)n , φ(t)n ) (40)

∝
∫ ( M∏

l=1

V
g
(t+1)
l

→x(t+1)
n

)
V
f
(t+2)
n →x(t+1)

n
P (x(t+1)

n | x(t)n ) dx(t+1)
n

(41)

∝
∫ (∏M

l=1N (x
(t+1)
n ;µ

(t+1)
n , v

(t+1)
n )

)
N (x

(t+1)
n ; θ

(t+1)
n , φ

(t+1)
n )

×N (x
(t+1)
n ;βx

(t)
n , (1− β2)γn) dx

(t+1)
n (42)

Using rules for Gaussian pdf multiplication and convolution
again we get:

θ(t)n =
1

β

(
µ
(t+1)
n

v
(t+1)
n

+
θ
(t+1)
n

φ
(t+1)
n

)(
v
(t+1)
n φ

(t+1)
n

v
(t+1)
n + φ

(t+1)
n

)
(43)

φ(t)n =
1

β2

(
v
(t+1)
n φ

(t+1)
n

v
(t+1)
n + φ

(t+1)
n

+ (1− β2)γn

)
(44)

Following the same framework in [6] Taylor series approx-
imations are made to reduce the number of updates.

Finally, we use the EM algorithm to update the values of
γγγ, σ2 and β. Table II summarizes one iteration of the AMP-
TSBL algorithm. While the formula for the EM updates for β
is not shown in the table, it follows standard EM derivation,
and requires the solution of a cubic equation.

Definitions

Fn(K
(t)
n , c(t)) =

K
(t)
n

c(t)
+
η
(t)
n

ψ
(t)
n

+
θ
(t)
n

φ
(t)
n

1

c(t)
+ 1

ψ
(t)
n

+ 1

φ
(t)
n

Gn(K
(t)
n , c(t)) = 1

1

c(t)
+ 1

ψ
(t)
n

+ 1

φ
(t)
n

F ′n(K
(t)
n , c(t)) =

1

c(t)
1

c(t)
+ 1

ψ
(t)
n

+ 1

φ
(t)
n

Message Updates
η
(1)
n = 0

ψ
(1)
n = γn
fort = 2 : T

η
(t)
n = β(K

(t−1)
n

c(t−1) + η
(t−1)
n

ψ
(t−1)
n

)( ψ
(t−1)
n c(t−1)

ψ
(t−1)
n +c(t−1)

)

ψ
(t)
n = β2( ψ

(t−1)
n c(t−1)

ψ
(t−1)
n +c(t−1)

) + (1− β2)γn

K
(t)
n =

∑M
m=1 A

∗
mnz

(t)
m + µ

(t)
n

µ
(t)
n = Fn(K

(t)
n , c(t))

v
(t)
n = Gn(K

(t)
n , c(t))

c(t) = σ2 + 1
M

∑N
n=1 v

(t)
n

z
(t)
m = ym −

∑N
n=1 Amnµ

(t)
n + z

(t)
m
M

∑N
n=1 F

′
n(µ

(t)
n , c(t))

fort = T − 1 : 1

θ
(t)
n = 1

β
(K

(t+1)
n

c(t+1) + θ
(t+1)
n

φ
(t+1)
n

)( φ
(t+1)
n c(t+1)

θ
(t+1)
n +c(t+1)

)

φ
(t)
n = 1

β2 (
φ
(t+1)
n c(t+1)

φ
(t+1)
n +c(t+1)

+ (1− β2)γn)

Parameter updates
γn = 1

T
[
∑T
t=1 V

(t)
n + (µ

(t)
n )2 − β2

∑T
t=2 V

(t−1)
n + (µ

(t−1)
n )2]

σ2 = 1
M×T

∑T
t=1[‖y(t) −Ax(t)y(t) −Ax(t)y(t) −Ax(t)‖2 − σ2

∑N
n=1(1−

V
(t)
n
γn

)]

TABLE II: AMP TSBL Algorithm

IV. NUMERICAL RESULTS

We conduct numerical experiments to compare the per-
formance of the proposed algorithms to the original SBL
[2], TSBL [3] and AMP-MMV [8] algorithms. The elements
of AAA are generated according to Amn ∼ N (0,M−1). The
source vector xxxo was generated with K nonzero elements,
and the source matrix XXXo was generated with K nonzero
rows. While the locations of the nonzero elements/rows were
randomly chosen. We use two performance measures. The
first measure is the normalized MSE. In the SMV case
NMSE , E{‖x̂̂x̂x − xxxo‖2}/E{‖xxxo‖2} and in the MMV case
NMSE , E{‖X̂̂X̂X − XXXo‖2F}/E{‖XXXo‖2F}. We also use the
runtime of each algorithm as a measure of complexity. In each
experiment we run 100 iterations, with N = 200, M = 100
and λ = K

N = .2.
Figure 3 shows a comparison between NMSE of the original

SBL and the proposed AMP-SBL over a range of SNR values.
We can see that AMP-SBL performs slightly better than SBL.
However, checking the complexity (runtime) in figure 4, we
can see that a significant reduction in complexity is offered
by AMP-SBL. The complexity difference will be even more
significant at larger problem sizes, since for each iteration
AMP-SBL requires O(M + N) linear operations, while the
original SBL requires an inversion of a M ×M matrix.

In figure 5 we run a comparison between AMP-TSBL,
TSBL and AMP-MMV over a range of SNR values and corre-
lation coefficient β values. The AMP-MMV algorithm uses a
Bernoulli-Gaussian prior and requires several approximations



to make all messages on the factor graph Gaussian. And it
also requires more complicated message scheduling compared
to AMP-TSBL because the factor graph it constructs contains
more loops. From figure 5 we can see that the performance of
AMP-TSBL is often comparable and sometimes better than the
other two algorithms. However, comparing runtimes (figure 6)
we can see a significant reduction in the case on AMP-TSBL
compared to the other two algorithms. It is worth noting that
the problem size we are using here is not very large, due to
runtime limitations of the original TSBL. As the problem size
grows both the AMP-TSBL and AMP-MMV complexities will
grow linearly, which is not the case for TSBL that requires
matrix inversions.

Fig. 3: MSE Comparison for SMV Algorithms

Fig. 4: Runtime Comparison for SMV Algorithms

Fig. 5: MSE Comparison for MMV Algorithms

Fig. 6: Runtime Comparison for MMV Algorithms

V. CONCLUSION

In this paper we considered the problem of sparse signal
recovery in the single measurement case and in the multiple
measurement case with temporal correlation between mea-
surements. We presented two algorithms that use the original
assumptions of the SBL and TSBL algorithms. The proposed
algorithms apply the approximate messaeg passing framework
with these assumptions to significantly reduce the complexity
of the original algorithms. We compared the proposed algo-
rithms to the original SBL and TSBL algorithms, and to the
AMP-MMV algorithm which also uses the AMP framework.
We showed that while NMSE performance is comparable
with previous algorithms, the new approach offers the lowest
complexity level. The complexity reduction can be attributed
to using the AMP framework with a Gaussian prior on xxx when
conditioned on γγγ. In addition to this complexity reduction, the
proposed technique offers much simpler implementation when
compared to other previously used Bayesian techniques.
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