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Abstract 

Imaging of brain activity based on magnetoen- 
cephalogmphy (MEG) requires high resolution e s t f  
motes that closely approcimate the spatial distribution 
of the underlying currents. W e  etamine the physics 
of the MEG problem t o  motivate the development of a 
new algorithm that meets its unique requirements. The 
technique is a nonparametric, iterative, weighted norm 
minimization procedure with posteriori constraints. W e  
develop the algorithm and determine the necessary re- 
quirements for convergence. Issues of initialization and 
bias equalization for MEG reconstruction, and tech- 
niques for analysis of noisy data are discussed. 

1 Introduction 

Magnetoencephalogr aphy measures the weak mag- 
netic fields outside the head produced by electric cur- 
rents in the brain. The electric currents are due to the 
simultaneous firings of large populations of neurons, 
often concentrated within localized discrete aggregates 
that extend tens to hundreds of square millimeters [l]. 
Solving the neuromagnetic inverse problem, the iden- 
tification and characterization of the generators of the 
measured fields, may reveal much about the function 
of the brain. The complexity of the problem however 
requires development of special estimation techniques. 

We begin our approach by examining the physical 
and mathematical nature of the problem to develop an 
algorithm to accomodate its unique requirements. The 
inverse problem is intrinsically ill-posed, as a myriad of 
current configurations within the head can produce the 
same external magnetic field. The underdetermination 
is exacerbated because source reconstruction at  any 
given instant is based on only a few measurements con- 
taminated by noise. Furthermore, the reconstructed 
current configuration must be consistent with physio- 
logical evidence which suggests that the energy of the 
signal is often located in a few small discrete centers. 
In signal processing terms, the problem is nearfield, 
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signal-to-noise ratio is low and three-dimensional field 
determination is required. 

The nature of the problem suggests a number of 
requirements for neuromagnetic current estimation. 
Imaging of small discrete sources requires a high res- 
olution technique. Accurate three-dimensional local- 
ization of neuromagnetic sources requins that the spa- 
tial ertent of the sources be closely reconstructed. The 
source depth estimate is particularly sensitive to the 
spatial extent reconstruction. None of the currently 
used methods addresses this issue adequately. 

Two principal source models are presently employed 
in MEG with variations closely tied to  these two. Sev- 
eral methods employ the multiple dipole model as- 
sumption where each active neuronal aggregate is mod- 
eled as an equivalent point current dipole [2]. The re- 
sulting low order model simplifies the estimation pro- 
cess. However, the inaccuracy of such models can lead 
to substantial errors in source localization when the 
size of the sources is significant relative to the distance 
at  which they are recorded [3]. Alternatively, the non- 
parametric minimum 2-norm model [4] yields high di- 
mensional (0( lo3)), poorly constrained solutions, lim- 
ited to the outer surface of the reconstruction volume. 
This type of solution is a t  odds with expectations of 
non-surficial localized sources. More recently, we and 
others have investigated weighted minimum norm mod- 
els. 

In ill-posed problems, extra assumptions about the 
source signal are necessary to  obtain a unique estimate. 
However, in general the available a priori information 
in neuromagnetic imaging is not sufficient t o  constrain 
the solution to  the required degree of high accuracy. 
Here we present a new nonparametric method in MEG. 
I t  is an iterative weighted norm minimization' tech- 
nique constrained a priori to a class of models repre- 
senting highly localized but arbitrary shaped sources, 
and on posteriori information. These kind of assump- 
tions are consistent with expectations based on physi- 

All norms in this paper refer to the 2-norm 
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ological knowledge. Provided proper initialization, the 
algorithm accurately recovers the extent and locations 
of the sources. An iterative algorithm for MEG with 
posteriori constraints was first suggested in [5], but the 
results were presented in 2-D reconstructions only. The 
results indicated that the method had limited capacity 
to spatially concentrate sources. A similar algorithm 
was also suggested in the spectral estimation context 

The nonparametric techniques have a number of 
general advantages. The often complicated step of 
parametric source modeling is avoided, and a wealth 
of supplementary information can be incorporated rel- 
atively easily into the estimate. The algorithm finds 
a solution based on an instantaneous snapshot of data  
and can be used with nonstationary processes such as 
highly dynamic brain activity. In fact, the approach re- 
quires no assumptions about the nature of the signals, 
for example that they are uncorrelated or are special 
statistical processes. 

[GI. 

2 Discrete Forward Model 

The neuromagnetic forward problem is naturally 
continuous and can be described by the Biot-Savart 
law. Here we employ a discrete model approximation 
to the law to simplify the presentation. Advantages 
of the continuous model in MEG are undermined by 
noise in the data. Different methods of discretization 
lead to approximations of differing accuracy. Because 
the accuracy of the discretization is irrelevant for the 
purpose of this paper, we choose a simple method of 
spatial sampling. The algorithm could be used equally 
well with any type of discretized model. 

In discrete form, a set of measurements of the mag- 
netic field 6(r- )  at  locations r; around the head are re- 
lated to the discretized neural electric current x by a 
linear transformation, with each equation correspond- 
ing to a single measurement 

where A is m x n ,  m < n matrix of rank m. Each three 
elements of z and the three corresponding columns of A 
describe the three components (2, y and 2) of a single 
point current vector. For the sensor location r;, the 
three elements of the A matrix corresponding to  the 
single point current vector located at  r; are defined as 

where s(r:) denotes the orientation of the ith sensor 
and k is a constant in our model. 

3 Inverse Algorithm 

3.1 Background 

In discrete form the problem is becomes one of find- 
ing a solution to an underdetermined system of linear 
equations 

Ax = 6. (3) 

The infinite set of solutions to (3) is a linear variety 

where v is any vector in the null space of A ,  xmn = A+6 
is the minimum 2-norm (Euclidian norm) solution, and 
A+ denotes the Moore-Penrose inverse. Our objective 
as discussed above is to  find the true solution from the 
set (4) of possible ones. An element, of the linear variety 
(4) can be reached through a weighted minilnuin norm 
solution as [7] 

x = W(AW)+b = W 2 A T ( A W 2 A T ) - ’ 6  (5) 

where W is a symmetric weight matrix. This is equiva 
lent to solving a constrained norm minimization prob- 
lem. 

Minimize ~ ~ W - l x ~ ~ ,  sub jec t  to Az = 6. (6) 

The weighted norm minimization procedure provides 
the basis for our algorithm. 

3.2 Algorithm 

The constraint information in W is assumed to be 
a priori. We maintain that in general, the a priori 
information available to  build the weight matrix in 
MEG is not sufficient to  provide the required degree of 
constraint. Instead, we propose using posteriori con- 
straints. The motivation for the algorithm comes from 
the nature of the localized sources often encountered i n  
the MEG inverse problem. The reconstructed current 
has to be sparse, with few active elements and the rest 
being zeros. A successful algorithm should find a low 
dimensional solution to the problem. We define low 
dimensional solutions to  be basic solutions which are 
estimates with the number of non-zero elements not 
exceeding the number of measurements m. In the al- 
gorithm, a diagonal weight matrix W k  is constructed 
from elements of the solution 21. of the previous itera- 
tive step. The kth step of the algorithm then solves (6) 

by minimizing the norm J J W - l ~ h + l J I  = C:=’=, (*)2. 

The effect, as explained below, is a gradual increase of 
a few elements of x a t  the expense of others until only 

k 
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a minimum number of elements remain, and the algo- 
rithm converges to a low dimensional estimate. The 
algorithm can be written as follows [8,9,10] 

We postpone discussion of the initialization of the it- 
erative algorithm, along with other key issues effecting 
convergence, until after the properties of the algorithm 
are described. 

3.3 Properties of the Algorithm 

Property 1. Convergence to a localized solution: 
Except for a few special cases, the algorithm converges 
to a low dimensional solution2. In the rare cases of spe- 
cial geometry, the algorithm can converge to  a solution 
with a slightly larger number of nonzero elements. A 
setup of sensor configuration that is not perfectly sym- 
metric avoids this problem entirely. The convergence 
is determined by the minimization at each step of the 
norm 

If the element 8'; is small in magnitude, it will tend to 
decrease the magnitude of in the next iteration, 
unless the corresponding column in A is necessary in 
fitting b, when taken in conjunction with the current 
linear combination of other columns of A. This implies 
that once a favorable weighting is obtained, the selected 
elements continue to be favored at the expense of others 
until convergence to  the solution with only these few 
elements is completed. 
Property 2. Stationary Fixed Points: The algo- 
rithm is a discrete nonlinear process (a map) whose 
geometry consists of stable fixed points (s-f-ps) which 
are the basic pdimensional (p 5 m) solutions, and 
unstable fixed points (U-f-ps) located in I-dimensional 
( 1  > m) hyperplanes. The higher dimensional solutions 
in the cases of special symmetry are saddle points. The 
s-f-ps are the solutions to the reduced square systems 
of equations with the left hand sides obtained from the 
original system by selecting all sets of linearly inde- 
pendent columns from the A matrix. The algorithm 
converges to  one of the s-f-ps unless the initialization 
falls exactly on an u-f-p. 
Property 3. Robustness: The method is robust 
with respect to the choice of W. The convergence to 

lThe dimension of the exact estimate never drops below 
the dimension of 50 but asymptotically converges to a low di- 
mensional vector. In finite precision the solution becomes low 
dimensional. 

some k e d  point with p < m non-zero elements occurs 
for any choice of W that weighs the corresponding p 
columns of A favorably compared to  the remaining n-p 
columns regardless of the precise values of the weights. 
It implies that  the algorithm is insensitive to  changes in 
the weights that preserve the relative differences, and 
that the weight function does not need to be a solution 
to  the system (1). 

3.4 Initialization and Bias Equalization 

A particular localized solution is not unique. The e 
lution to  which the algorithm converges depends on two 
key factors: the initialization and the size of the basins 
of attraction around each localized solution. The issues 
are fairly complex. Here we briefly present methods 
that have proven reliable for many of the cases likely 
to be encountered in MEG. A complete discussion will 
appear in [ll]. 

The s-f-ps divide the solution space into regions of 
attraction. The final solution is determined by the re- 
gion into which the initialization 20 falls. The closer the 
20 is to the true solution, the greater is the chance of it 
being in the right region of attraction. The objective of 
the initialization is then to capture as many true fea- 
tures of the signal as possible. Solutions to the given 
problem, for example the minimum norm solution, a 
weighted minimum norm solution that utilizes a priori 
information about the process, or a solution based on 
a highly localized or even multiple dipole model with 
a small residual added to zero valued elements are all 
potential candidates for initialization. Alternatively, 
the initialization does not need to be a solution to the 
given system, allowing great flexibility, including prop- 
erly guessed functions. In analyses of a time sequence of 
measurements, a preceding snapshot within a sequence 
may be used to initialize the reconstruction of the next. 
We have found that initialization with the minimum 
norm estimate, scaled to remove the bias as described 
below, works well for many cases. 

A special property of MEG and similar physical 
problems allows one to judge the acceptability of a 
found solution. In MEG, in general, there is only one 
highly localized solution with dimension less than m, 
and all other localized solutions are of the highest pos- 
sible dimension m. If the solution obtained is a thicket 
of na disconnected single point sources, i t  is often an 
indication that the true signal was not found. If this 
occurs, different initializations may be tried until the 
highly localized solution is found. A well constructed 
initial estimate that fails, sometimes may be perturbed 
in some logical direction to yield a localized solution. 

The outcome of the algorithm is also determined by 
the shape of the regions of attraction of localized so- 
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lutions. An initialization that is in close proximity to 
some s-f-p can still be in the attracting region of an- 
other far removed s-f-p. To converge to the true so- 
lution with a small attracting region, the initialization 
has to start very close to it.  This is highly undesirable, 
and so we want to  equalize the areas of the regions as 
much as possible. The size of the regions is set dynam- 
ically based on the particular b and A .  While A can be 
scaled to at least partly counter the bias contained in it,  
we generally do not have control over 6 .  Thus the best 
we can do is to  equalize general regional size differences 
due to the bias in A .  Such strategies do not preclude 
the existence of singular cases with poor convergence. 
This issue is still being actively investigated. 

In neuromagnetic inverse procedures based on norm 
minimization, the bias contained in A is toward so- 
lutions closest to  the sensors, because magnetic field 
strength decreases in proportion to  the square of the 
distance from the source. Countering of even the 
known bias is not easy, and it is not clear if exact 
cancellation can be achieved at  all. The intrinsic bias 
works similarly to the way external weights bias the 
solution toward some regions of the source space in 
the weighted minimum norm algorithm. Some columns 
of A can have large effective weights due to  the large 
magnitudes of their elements relative to other columns. 
This can produce disproportionally large values in the 
corresponding solution elements. We adopt an obvious 
approach to scaling A ,  using counter weights by incor- 
porating them into the existing weights of our iterative 
algorithm. Since the bias in A affects most iterations, 
the scaling is used at  each step rather than just for 
initialization. 

The goal of the bias removal is to eliminate any nat- 
ural size difference between the columns of A .  Because 
the size of vectors is not uniquely defined there is no 
simple recipe for compensation. The total size of the 
column vectors as measured by the 1- or 2-norm, as 
well as disproportionately larger or smaller individual 
column elements or a greater range of element magni- 
tudes within a column compared with other columns, 
can all contribute to the bias. All these factors must be 
adjusted simultaneously and are dependent on a par- 
ticular A .  Even within a single application like MEG, 
the matrix A is not universal but is dependent on the 
sensor geometry. We have had good success with first 
normalizing the columns of A by dividing each element 
in a column by the 2-norm of that column and fine tun- 
ing the weights further. For the geometry we use, which 
is described below, the normalization tends to slightly 
bias the deeper sources. Hence we scale the normaliza- 
tion weights by a factor proportional to the distance to 
a source element from the center of the sphere. 

It is important to note that the A matrix in MEG 

is frequently ill-conditioned, which can lead to poor re- 
sults. Numerically robust computational schemes are 
required. If numerical instability persists, the meth- 
ods for stabilizing the solution in the presence of noise 
that we discuss in Section 5 may he used in noiseless 
simulations as well. 

4 Simulations 

A single dipole case and a combination of a single 
dipole and two extended sources were used to demon- 
strate the performance of the algorithm. The geome- 
try of the 37-sensor BTI Squid Magnetometer centered 
on the z-axis above the head was used in the siinula 
tions. The 3-D reconstruction examples are shown in 
Figs. 1 and 2. The 3-D results were projected onto 
a 2-D surface, using an orthographic projection. The 
values of the distributed estimates in Figs. l ( b )  and 
2(b) were encoded into five intensity levels with val- 
ues below a threshold not shown. For clarity a maxi- 
mum intensity projection was used; only the highest of 
the three-dimensional values projecting onto the same 
point on the plane was plotted. The minimum norm es- 
timate was used to initialize the single dipole solution. 
A weighted minimum norm estimate with the scaled 
A matrix as described above, w a s  used for initializa- 
tion in the multiple sources example. The algorithm 
correctly reconstructed all sources and converged after 
only 5 and 4 iterations respectively i n  the two exam- 
ples. In the case of significantly extended sources, the 
algorithm sometimes produces an extra z-component in 
voxels immediately under a true source location. Sim- 
ple matching of all three components of the current 
eliminates this artifact. 

5 Reconstruction with Noisy Data 

No analysis of an ill-posed inverse problem is com- 
plete without examining the stability of the solution 
to noise in the measurements. Because of limited 
space we only briefly state the results here. In gen- 
eral, neuromagnetic source reconstructions that pro- 
vide an exact fit to  the data are extremely sensitive 
to noise in the measurements. Even though our tech- 
nique provides low dimensional solut,ions, the sensitiv- 
ity remains. Techniques to  stabilize the solution are 
required. Here we discuss the two existing methods for 
handling noisy data: regularization and singular value 
decomposition (SVD) truncation. A third method - the 
spectral approach is equivalent in principle to  the SVD 
truncation method but has worse numerical propert.ies. 
Because our algorithm works to reduce the dimension 
of the solution, the SVD truncation method facilitates 
convergence. Regularization, on the other hand, in- 
creases the size of the smallest eigenvalues of A ,  which 
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does not allow the solution to drop below m dimen- 
sions. We succesafully employed the SVD truncation 
method in conjunction with our algorithm (7-9) to  cor- 
rectly recover sources from noisy simulated data. In 
our implementation, the number of the truncated sin- 
gular values was increased successively with each iter- 
ation. Ultimately more robust methods utilizing both 
techniques may be developed. 
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Figure 1: A 2-D projection of the 3-D reconstruction of a single dipole: (a} the true source position. (b) the 
minimum norm estimate, (c) the estimate from the new algorithm after 5 iterations. 

Figure 2: A 2-D projection of the 3-D reconstruction of a single dipole and two extended sources: (a) the true 
source position, (b) the minimum norm estimate. (c) the estimate from the new algorithm after 5 iterations. 

171 

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on March 14,2010 at 01:47:54 EST from IEEE Xplore.  Restrictions apply. 


